
Smart Contract Vulnerability Detection Based on
Clustering Opcode Instructions

Xiguo Gu, Huiwen Yang, Shifan Liu, Zhanqi Cui∗
Computer School, Beijing Information Science and Technology University, Beijing, China

Email:{xiguo gu, yhw yagol, pawn2017, czq}@bistu.edu.cn

Abstract

Smart contracts are programs running on the blockchain.
In recent years, due to the continuous occurrence of
smart contract security accidents, how to effectively detect
vulnerabilities in smart contracts has received extensive
attention. Machine learning-based vulnerability detection
techniques have the advantage of not requiring expert
rules. However, existing approaches have limitations in
identifying vulnerabilities caused by version updates of
smart contract compilers. In this paper, we propose OC-
Detector, a smart contract vulnerabilities detection approach
based on opcode instruction clustering. OC-Detector learns
the characteristics of opcode instructions to cluster them
and replaces opcode instructions belonging to the same
cluster with the cluster number. After that, the similarity is
calculated against the contract in the vulnerability database
to identify vulnerabilities. Experimental results demonstrate
that OC-Detector improves the F1 value of detecting
vulnerabilities from 0.04 to 0.40 compared to DC-Hunter,
Securify, SmartCheck, and Osiris. Additionally, compared to
DC-Hunter, F1 value is improved by 0.27 when detecting
vulnerabilities in smart contracts compiled by different
version compilers.

Index Terms—Ethereum, Smart Contracts, Slicing, Word em-
bedding, Clustering.

I. INTRODUCTION

The blockchain is a distributed database with characteris-
tics of decentralization, immutability, traceability, and joint
maintenance by multiple parties[1]. Smart contracts are pro-
grams that run on the blockchain, which help developers
apply blockchain techniques to several fields, such as finance,
education, and the internet of things. Ethereum is the most
popular blockchain platform, which uses the Ethereum Virtual
Machine (EVM) to execute smart contracts.

While smart contracts have given rise to a variety of appli-
cations, its stored digital assets make it vulnerable to numerous
attacks. For instance, in 2016, a security vulnerability in
the DAO contracts led to the loss of more than 3.6 million
Ethereum tokens, with a value of about $60 million. In this

∗ Zhanqi Cui is the corresponding author.
DOI reference number: 10.18293/SEKE2023-183

case, the attacker repeatedly reentered the transfer function to
steal Ethereum tokens through a reentrance vulnerability in the
DAO contract[2].

Therefore, it is necessary to study effective vulnerability
detection techniques to mitigate losses caused by vulnera-
bilities in smart contracts. Due to the rapid development of
machine learning technology, machine learning-based vulner-
ability detection techniques for smart contracts have gained
considerable attention in recent years. Specially, it is often
challenging to obtain the source code of smart contracts, while
contract bytecode can be directly acquired from Ethereum
platforms. Hence, bytecode-based techniques for detecting
vulnerabilities in smart contracts are more practical. Han
et al.[3] leverage program slicing techniques, track the data
flow and extract slices from contract bytecode. They also
used graph embedding techniques to capture more structural
information to improve the performance of detecting smart
contract vulnerabilities. However, the Solidity language, which
is used to write smart contract code in Ethereum, is still in
the evolutionary stage. For example, 11 versions were released
in 2021. Depending on the version of Solidity compilers,
the same statement in the smart contract may have different
opcode instructions. Therefore, it is difficult to detect vulnera-
bilities by using machine learning-based approaches when the
model is trained on other versions of smart contracts.

To solve the above problems, we present OC-Detector,
a smart contract vulnerability detection approach based on
clustering opcode instructions. First, OC-Detector transforms
the bytecode of smart contracts into opcode instructions, which
are then embedded into vectors via word embedding tech-
niques. Second, OC-Detector utilizes a clustering algorithm to
classify vectors into several clusters based on their semantic
information. After that, we construct a dataset containing 4
types of vulnerabilities by selecting representative contracts,
including reentrance, timestamp-dependencies, access control,
and unchecked call return values. Finally, OC-Detector slices
the target contracts and represents the opcode instructions
belonging to the same cluster uniformly based on the results
of clustering and detects vulnerabilities by comparing the
similarity between the target contract and the dataset. Experi-
mental results demonstrate that OC-Detector is more effective
than other existing approaches, including DC-Hunter[3], Secu-
rity[4], SmartCheck[5] and Osiris[6]. The F1 value is improved
by 0.04 to 0.40. Additionally, compared with DC-Hunter, the
F1 value is improved by 0.27 when detecting vulnerabilities

in smart contracts compiled by different version compilers.
To summarize, our main contributions are as follows:
• We propose OC-Detector, a smart contract vulnerability

detection approach based on clustering opcode instruc-
tions. OC-Detector can alleviate false negatives and false
positives caused by inconsistent compiled opcode instruc-
tions by different version compilers.

• Experiments are conducted to compare OC-Detector with
DC-Hunter, Securify, SmartCheck, and Osiris. Experi-
mental results shows that OC-Detector outperforms ex-
isting approaches on a large-scale dataset.

The remainder of the paper is structured as follows: Section
II provides an example to illustrate the motivation of this
research. Section III presents details of the approach. Section
IV describes the experiments and evaluations to validate the
effectiveness of the OC-Detector. Section V analyzes threats
of validity. Section VI reviews related work. Section VII
concludes the paper and discusses future research directions.

II. THE MOTIVATION EXAMPLE

In practical applications, opcode instructions play a vital
role in the execution of programs, and their variations can
result in significant differences in program behaviors. Due to
the frequent iteration of compiler versions, opcode instruc-
tions generated by different versions of compilers can vary
significantly. Using existing vulnerability detection techniques
to detect smart contract vulnerabilities can may lead to false
positives and false negatives due to inconsistencies of opcode
instructions. Figure 1 shows a vulnerable contract that is
compiled into various opcode instructions by different versions
of compilers.

Figure 1 shows “PERSONAL BANK[1]”, an example of a
smart contract with a vulnerability, in which the vulnerability
is located at line 10. The contract may execute a recursive
call at line 10, which triggers a vulnerability that could cause
damage to the contract caller. In line 5 of the contract, different
version compilers will compile the contract to different opcode
instructions. For instance, the 0.4.11 version Solidity compiler
generates opcode instructions as “ISZERO, ISZERO, PUSH,
JUMPI, INVALID, JUMPDEST, PUSH”, whereas the 0.4.26
version generates “ISZERO, DUP1, ISZERO, PUSH, JUMPI,
PUSH, DUP1, INVALID”. When using our replicated DC-
Hunter to detect opcode instructions compiled with version
0.4.26 compiler using opcode instructions generated by ver-
sion 0.4.11 compiler, it fails to detect the vulnerability on
line 10 of the smart contract. While by clustering the opcode
instructions using OC-Detector, the opcode instructions with
similar features in different versions can be clustered into
the same cluster, and to make a uniform representation. This
effectively eliminates the differences of opcode instruction
sequences generated by the two versions of compiler. As a
result, the vulnerability in the contract can be successfully
detected without the influence of opcode instructions generated
by different version compilers.

[1]PERSONAL BANK: https://github.com/chen2233/smartbugs/blob/master
/dataset/reentrancy/0x01f8c4e3fa3edeb29e514cba738d87ce8c091d3f.sol

Fig. 1: A motivation example of smart contract.

III. SMART CONTRACT VULNERABILITY DETECTION
BASED ON CLUSTERING OPCODE INSTRUCTIONS

Figure 2 presents the proposed approach for detecting smart
contract vulnerabilities based on clustering opcode instruc-
tions. First, OC-Detector converts the bytecode of a smart
contract into opcode instructions, then embeds them into vec-
tors by using word embedding models. Second, OC-Detector
utilizes clustering algorithms to classify vectors of opcode
instructions into several clusters based on their semantic
information. After that, representative contracts are selected
to construct a vulnerability dataset. The opcode instructions
that belong to the same cluster in the vulnerability dataset are
uniformly represented. Finally, the target contracts are sliced
and the opcode instructions belonging to the same cluster are
uniformly represented. The vulnerability is then detected by
comparing the similarity of the target contract with those in
the vulnerability dataset.

A. Opcode instruction vectorization.

Due to the difficulty of obtaining the source code of smart
contracts, it is challenging to learn contract features directly
from the source code. Therefore, we utilize smart contract
opcode instructions to learn contract features and translate the
opcode instructions into vectors.

When learning contract features, we compile the bytecode
of the smart contracts and transforming them into opcode
instructions. The opcode instructions are then normalized by
removing the operands and applying a delimiter to sepa-
rate different instructions. Next, a word embedding model is
trained with the normalized opcode instruction sequences, to
learn the features of opcode instructions. This step enables the
extraction of meaningful features that can be used to identify
similarities or differences between smart contracts and provide
insights into their functionalities and potential vulnerabilities.

B. Opcode instructions clustering.

There are a total of 143 opcode instructions available
in smart contracts[2] . While some opcode instructions have
similar functions, they may differ slightly in their symbolic
representation. For instance, PUSH1, PUSH2 and PUSH3 are
all instructions used for pushing values onto the stack, but
they differ in the number of bytes they push. Furthermore, it

[2] Ethervm: https://www.ethervm.io/

Fig. 2: Framework of OC-Detector.

is imperative to note that due to different version of Solidity
compilers, the opcode instructions generated for the same
contract may vary. As shown in the motivation example.

To solve the above problem, OC-Detector clusters opcodes
with similar functionality into the same cluster. In the clus-
tering process, k opcode instructions are randomly selected
as initial cluster centers. The distance between each opcode
instruction and each cluster center is calculated, and the
opcode instructions are assigned to the cluster center closest
to it. For each opcode instruction assigned, the cluster centers
are recalculated based on existing opcode instructions in the
clusters. This process is repeated until all opcode instructions
are assigned to the corresponding clusters.

C. Opcode sequences preprocessing.

Using the opcode instruction sequences generated by con-
tract compilation for similarity calculation can be interfered
by a mass of irrelevant instructions, resulting in performance
degradation of detecting vulnerabilities.

To solve this problem, OC-Detector slices the opcode se-
quence to reduce the interference of noise based on analyzing
the dependency between opcode instructions and external data.
During the opcode instructions slicing process, smart contracts
containing representative vulnerabilities are first manually
selected and transformed into opcode instruction sequences
through preprocessing. The data dependency relationship be-
tween opcode instructions and external data in the opcode
instruction sequences is then analyzed. Instructions that intro-
duce external data and instructions that use external data are
sliced according to the data dependency relationship. Finally,
the sliced opcode instructions belonging to the same cluster are
replaced with the cluster number, and the opcode instruction
sequence is added to the vulnerability dataset.

D. Vulnerability detection.

To effectively detect vulnerabilities in smart contracts, OC-
Detector utilizes similarity calculation to detect vulnerabilities

in smart contracts. To calculate the similarity, Levenstein[3]

distance is used to calculate the similarity between the opcode
instruction sequences of two smart contract. Specifically, OC-
Detector calculates the similarity between the target contract
and each contract in the vulnerability dataset one by one. If
the similarity exceeds a threshold p, OC-Detector considers the
contract to be vulnerable and output the type of vulnerability.

IV. EXPERIMNTS AND EVALUATIONS

All experiments in this paper are run on a computer with
i7-6700H CPU and 16GB of memory, and the development
and running environment is Ubuntu 18.04 and Python 3.9.

The following three research questions are designed to
verify the effectiveness of OC-Detector.

• RQ1: How does the performance of OC-Detector com-
pare to other existing tools?

To evaluate the performance, OC-Detector is compared
with DC-Hunter, SmartCheck[4] , Securify[5] and Osiris[6] .
SmartCheck, Securify and Osiris are open source tools, while
DC-Hunter is not open-source, but it shares similarities with
OC-Detector, so we implemented it according to the descrip-
tions of the paper. In addition, to verify the effectiveness of
OC-Detector in alleviating false positives and false negatives
caused by inconsistent opcode instructions due to different
versions of Solidity compilers, we compare OC-Detector with
DC-Hunter which is similar to our approach.

• RQ2: How does the Word2Vec model affect the perfor-
mance of OC-Detector?

To verify the impact of the word embedding model trained
by opcode instruction sequence for vectorizing opcode instruc-
tions, we replace the Word2Vec model trained by opcode in-
struction sequence with the default Word2Vec model (denoted
as OC-Detector*) and compare it with OC-Detector.

[3] Levenstein: https://github.com/ztane/python-Levenshtein
[4] SmartCheck: https://github.com/smartdec/smartcheck
[5] Securify: https://github.com/eth-sri/securify
[6] Osiris: https://github.com/christoftorres/Osiris

• RQ3: How does the clustering opcode instructions affect
the performance of OC-Detector?

To verify the impact of the clustering algorithm used in
OC-Detector, we directly calculate the similarity between
the target contract and the contract in vulnerability dataset
without clustering (denoted as OC-Detector w/o clustering)
and compare it with OC-Detector.

A. Experimental dataset.

The experimental objects utilized two widely used datasets,
include Xblock[7] and Smartbugs[8] , which have been used
in prior smart contract vulnerability detection studies[7][8].
The Xblock dataset comprises a total of 149,363 smart con-
tracts, from which 10,000 contracts were randomly selected
for training the Word2Vec model. Another 5,000 contracts
were randomly chosen as the target contracts to evaluate the
effectiveness of OC-Detector. Since the Xblock dataset lacks
vulnerability information, we utilized Slither[9] to analyze the
5,000 target contracts and annotate their vulnerability labels.
Empirical studies have shown that Slither is the most effec-
tive static analysis tool for detecting vulnerabilities of smart
contracts[10][11]. Therefore, we chose Slither to annotate the
vulnerability information of the dataset. The Smartbugs dataset
contains 143 smart contracts that have vulnerability infor-
mation. To construct the vulnerability dataset, we manually
selected 20 smart contracts from this dataset, include 5 reen-
trant vulnerabilities, 5 timestamp-dependent vulnerabilities, 5
access control vulnerabilities, and 5 unchecked CALL return
value vulnerabilities.

B. Evaluation metrics

We utilize standard metrics, include precision, recall, and
F1 to evaluate the effectiveness of OC-Detector. Additionally,
we utilize Silhouette Coefficient[12] to evaluates the cluster-
ing effect of the K-means algorithm[13]. These evaluation
metrics are frequently utilized in vulnerability detection ap-
proaches[14][15] and clustering algorithms[16].

C. Parameter settings.

To determine proper values of the parameters, we randomly
select 500 contracts from the Xblock dataset and applying
various vulnerability detection approaches. We measured the
True Positive Rate and False Negative Rate of each approach
by different similarity thresholds. Through these experiments,
the optimal performance of OC-Detector, DC-Hunter, OC-
Detector*, and OC-Detector w/o clustering are achieved with
threshold values of 0.40, 0.50, 0.40, and 0.50, respectively.
In subsequent experiments, we evaluated the vulnerability
detection performance of each approach using these threshold
values.

To determine the optimal number of clusters for clustering
opcode instructions with different dimensions, we trained
Word2Vec models to vectorize opcode instructions into differ-
ent dimensions, and clustered the opcode instruction vectors

[7] Xblock: http://xblock.pro/ethereum
[8] Smartbugs: https://github.com/smartbugs/smartbugs

TABLE I: The performance of different approaches to detect
smart contract vulnerabilities.

Approach Avg Time(s) Precision Recall F1

DC-Hunter 6.16 0.44 0.10 0.16
Securify 23.79 0.46 0.23 0.31

SmartCheck 70.86 0.54 0.51 0.52
Osiris 21.18 0.23 0.14 0.17

OC-Detector 2.31 0.59 0.53 0.56

with different dimensions. We calculated Silhouette Coef-
ficient to determine the optimal number of clusters. The
experimental results demonstrate that for opcode instruction
vectors with 25 dimensions, the optimal number of clusters is
4, while for opcode instruction vectors with 256 dimensions,
the optimal number of clusters is 20.

After that, we randomly selected 500 contracts from the
Xblock dataset to detect potential vulnerabilities. The results
indicate that the optimal vulnerability detection performance
was achieved when opcode instructions were clustered into
4 clusters, Thus, the opcode instructions will be clustered
into 4 clusters in subsequent experiments to maximize the
effectiveness of detecting vulnerabilities.

D. Experimental results and analysis.

1) RQ1: How does the performance of OC-Detector com-
pare to other existing tools?

To answer this question, we compare the vulnerability detec-
tion performance with other approaches, such as DC-Hunter,
Security, SmartCheck, and Osiris. The experimental results are
shown in Table I. As the result show, OC-Detector outperforms
other four approaches in terms of precision, recall, F1, and
average time taken to analysis each contract. Specifically, the
precision, recall, and F1 value are improved from 0.05 to 0.36,
from 0.02 to 0.43, and from 0.04 to 0.40, respectively. In addi-
tion, the average time to analysis one smart contract is reduced
from 3.85 to 68.55 seconds, when compared to other four
approaches. To validate the effectiveness of OC-Detector in
solving the issue of false positives and false negatives caused
by inconsistent opcode instructions generated by different
versions of Solidity compilers, OC-Detector is compared with
DC-Hunter. Since the contracts in the vulnerability dataset are
compiled with compilers of version 0.4.25, 0.5.15, 0.7.1, and
0.8.7, we randomly selected 500 smart contracts compiled with
compilers other than those above versions from the dataset.
Then, these 500 smart contracts are analyzed by OC-Detector
and DC-Hunter to detect vulnerabilities. The experimental
results are shown in Table II.

As the result show, OC-Detector outperforms DC-Hunter in
terms of precision, recall, and F1. The precision, recall, and
F1 value are improved by 0.14, 0.27, and 0.27, respectively.
Furthermore, the average time to analysis one smart contract
is reduced by 3.87 seconds.

Answer to RQ1: OC-Detector outperforms other tools,
include DC-Hunter, Securify, SmartCheck, and Osiris, in terms
of identifying vulnerabilities in smart contracts. Moreover,

TABLE II: The performance comparison of OC-Detector and
DC-Hunter with different compliers.

Approach Avg Time(s) Precision Recall F1

DC-Hunter 6.25 0.45 0.13 0.20
OC-Detector 2.38 0.59 0.40 0.47

TABLE III: The performance comparison of OC-Detector and
OC-Detector*.

Approach Precision Recall F1

OC-Detector 0.59 0.53 0.56
OC-Detector* 0.41 0.45 0.43

OC-Detector effectively alleviates the problem of false pos-
itives and false negatives caused by inconsistent opcode in-
structions generated by different versions of compilers.

2) RQ2: How does the Word2Vec model affect the perfor-
mance of OC-Detector?

To answer this question, OC-Detector is compared with OC-
Detector* which utilize the glove.twitter.27B.25d[9] model to
vectorize opcode instructions instead of the Word2Vec model
trained by using smart contract opcode instruction sequences,
then calculate the similarity between the target contract and
the contract of vulnerability dataset to detect vulnerabilities.

To determine the optimal number of clusters for the op-
code instruction vectors generated by the glove.twitter.27B.25d
model, we evaluate the results of clustering with different num-
ber of clusters by using Silhouette Coefficient. Experimental
results show that the optimal number of clusters is 33.

The experimental results are shown in Table III. As the
result shows, compared to OC-Detector*, the values of pre-
cision, recall, and F1 value are improved by 0.18, 0.08, and
0.13, respectively.

Answer to RQ2: Smart contract opcode instruction se-
quences can be used to learn context features of opcode
instructions, which improve the performance of smart contract
vulnerability detection.

3) RQ3: How does the clustering opcode instructions affect
the performance of OC-Detector?

To answer this question, OC-Detector is compared with
OC-Detector w/o clustering, which directly computed the
similarity between the target contract and the contract in vul-
nerability dataset without clustering the opcode instructions.
The experimental results are shown in Table IV.

As the result show, compared to OC-Detector w/o cluster-
ing, the precision, recall, and F1 value are improved by 0.17,
0.12, and 0.15, respectively.

Answer to RQ3: The clustering algorithm used by OC-
Detector helps to eliminate differences in opcode instructions
compiled by different versions of compilers and improve the
performance of detecting smart contract vulnerabilities.

[9]glove.twitter.27B.25d: https://github.com/stanfordnlp/GloVe

TABLE IV: The performance comparison of OC-Detector and
OC-Detector w/o clustering.

Approach Precision Recall F1

OC-Detector 0.59 0.53 0.56
OC-Detector w/o

clustering 0.42 0.41 0.41

V. THREATS TO VALIDITY

External validity refers to ensure the generality of the
experimental results. The contract to be checked in the ex-
periment are taken from Xblock, and the contract in the
Xblock dataset are real contract from the Ethernet, which
being able to better validate the effectiveness of the approach.
The smart contracts in the Smartbugs dataset are used to
build the vulnerability dataset. These two datasets are widely
used in studies of smart contract vulnerability detection[7][8].
Although the vulnerabilities contained in these two datasets
are representative, same performance cannot be ensured when
applying OC-Detector on other datasets.

Internal validity is primarily related to factors that affect the
correctness of the experiment. In this paper, we implemented
the clustering algorithm using the Sklearn[10] , trained the
Word2vec model using the Genimn[11] and calculated simi-
larity using the Levenshtein library to ensure the correctness
of the implementation. Additionally, since DC-Hunter is not
open-source, so we reimplemented it according to the descrip-
tions of the paper. Although we have tested and checked results
multiple times, the implementation details may differ from the
original paper.

Construct validity is primarily concerned with the evaluation
metrics used in the experiment. Precision, recall, and F1

value are used to evaluate the performance of detecting smart
contract vulnerabilities in the experiment. These evaluation
metrics are widely used in smart contract vulnerability de-
tection approaches[17][18]. In addition, Silhouette Coefficient
is used to evaluate the effect of clustering, which is commonly
used to in previous studies[19][20].

VI. RELATED WORK

The machine learning-based vulnerability technology has
been widely used in smart contracts. Previous research has
focused on learning contract semantics and syntax using
natural language processing techniques. For example, Wang
et al.[21] learned syntax and semantic features from bytecode
to detect smart contract vulnerabilities, while Liu et al.[22]
learned code features from contract source code to detect
vulnerabilities. However, extraneous code generates noise,
which affects the performance of learning contract syntax and
semantic information.

To solve this problem, some researchers proposed slicing
technology to filter key code and reduce interference of
code unrelated to vulnerabilities. For example, Han et al.[3]

[10] Sklearn: https://github.com/automl/auto-sklearn
[11] Genimn: https://github.com/RaRe-Technologies/gensim

reduce noise by slicing and use graph embedding algorithms
to convert program-dependent graphs into vectors to detect
vulnerabilities. This approach has demonstrated that slicing
can improve the performance of vulnerability detection.

Recent research has focused on using features learned
through natural language processing techniques to detect vul-
nerabilities by machine learning models. For example, Yang et
al.[23] proposed a new self-supervised learning approach for
smart contract representation. Cai et al.[24] encode smart con-
tract’s function into a graph with sufficient semantic features.
They then utilize bidirectional gated graph neural network with
a hybrid attention pooling layer to learn the code features,
efficiently capturing vulnerability-related features from the
graph for vulnerability detection. These approaches have been
proven to be effectively to improve the performance of smart
contract vulnerability detection.

To improve performance in detecting smart contract vul-
nerabilities, we learn opcode instruction features after slicing
opcode instruction sequences and use clustering algorithms in
machine learning to eliminate the differences between different
opcode instructions to detect contract vulnerabilities.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a smart contract vulnerability
detection approach based on clustering opcode instructions and
implement a prototype tool OC-Detector. Experimental results
on the Xblock dataset show that OC-Detector outperforms DC-
Hunter, Securify, SmartCheck, and Osiris in detecting smart
contract vulnerabilities. Specially, mitigates false positive and
false negative caused by inconsistent opcode instructions gen-
erated by different versions of compilers.

With the wide application of smart contracts, in addition to
Solidity, Go, C++, and other programming languages are also
commonly used for developing smart contracts, which also
affected by typical vulnerabilities such as reentry, overflow
and unchecked CALL return value. However, different smart
contract programming languages inevitably generate different
opcode instructions, which invalidate vulnerability detection
approaches based on specific programming languages. As part
of our future work, we plan to solve the issue of detecting vul-
nerabilities of smart contracts written in different programming
languages.

ACKNOWLEDGEMENT

This work was supported in part by the Beijing Information
Science and Technology University “Qin-Xin Talent” Cultiva-
tion Project (No. QXTCP C201906).

REFERENCES

[1] Z. Gao, L. Jiang and X. Xia, et al. Checking smart contracts with struc-
tural code embedding[J]. IEEE Transactions on Software Engineering.
2020, 47(12): 2874-2891.

[2] P. Shen, S. Li and M. Huang, et al. A Survey on Safety Regulation Tech-
nology of Blockchain Application and Blockchain Ecology[C]//2022
IEEE International Conference on Blockchain. 2022: 494-499.

[3] S. M. Han, B. Liang and J. J. Huang. DC-Hunter: Detecting dangerous
smart contracts via bytecode matching[J]. Journal of Cyber Security.
2020, 5(3): 100-112.

[4] P. Tsankov, A. Dan, and D. Drachsler-Cohen, et al. Securify: Practical
security analysis of smart contracts[C]//Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. 2018:
67-82.

[5] S. Tikhomirov, E. Voskresenskaya and I. Ivanitskiy, et al. Smartcheck:
Static analysis of ethereum smart contracts[C]//Proceedings of the 1st
international workshop on emerging trends in software engineering for
blockchain. 2018: 9-16.

[6] C F. Torres, J. Schütte and R. State. Osiris: Hunting for integer bugs in
ethereum smart contracts[C]//Proceedings of the 34th Annual Computer
Security Applications Conference. 2018: 664-676.

[7] J F. Ferreira, P. Cruz and T. Durieux, et al. Smartbugs: A framework to
analyze solidity smart contracts[C]//Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. 2020:
1349-1352.

[8] H. W. Yang, Z. Q. Cui and X. Chen, et al. Defect Prediction for
Solidity Smart Contracts Based on Software Measurement[J]. Journal
of Software. 2022, 33(5): 1587-1611.

[9] J. Feist, G. Grieco and A. Groce. Slither: a static analysis framework
for smart contracts[C]//2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain. 2019: 8-15.

[10] M. Ren, Z. Yin and F. Ma, et al. Empirical evaluation of smart contract
testing: What is the best choice?[C]//Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
2021: 566-579.

[11] A. Ghaleb and K. Pattabiraman. How effective are smart contract
analysis tools? evaluating smart contract static analysis tools using
bug injection[C]//Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 2020: 415-427.

[12] H. Řezanková. Different approaches to the silhouette coefficient calcu-
lation in cluster evaluation[C]//21st International Scientific Conference
AMSE Applications of Mathematics and Statistics in Economics. 2018:
1-10.

[13] H. B. Tambunan, D. H. Barus and J. Hartono, et al. Electrical peak
load clustering analysis using K-means algorithm and silhouette coef-
ficient[C]//2020 International Conference on Technology and Policy in
Energy and Electric Power. 2020: 258-262.

[14] Q. Zeng, J. He and G. Zhao, et al. EtherGIS: A Vulnerability Detection
Framework for Ethereum Smart Contracts Based on Graph Learning
Features[C]//2022 IEEE 46th Annual Computers, Software, and Appli-
cations Conference. 2022: 1742-1749.

[15] A. Ghaleb, J. Rubin and K. Pattabiraman. eTainter: detecting gas-related
vulnerabilities in smart contracts[C]//Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis.
2022: 728-739.

[16] A. M. Bagirov, R. M. Aliguliyev and N Sultanova. Finding compact
and well-separated clusters: Clustering using silhouette coefficients[J].
Pattern Recognition, 2023, 135: 109144.

[17] J. Huang, S. Han and W. You, et al. Hunting vulnerable smart contracts
via graph embedding based bytecode matching[J]. IEEE Transactions
on Information Forensics and Security. 2021, 16: 2144-2156.

[18] H. Wang, G. Ye and Z. Tang, et al. Combining graph-based learning
with automated data collection for code vulnerability detection[J]. IEEE
Transactions on Information Forensics and Security, 2020, 16: 1943-
1958.

[19] P. J. Kaur. Cluster quality based performance evaluation of hierarchical
clustering method[C]//2015 1st International Conference on Next Gen-
eration Computing Technologies. 2015: 649-653.

[20] R. Hidayati, A. Zubair and A. H. Pratama, et al. Analisis Silhouette
Coefficient pada 6 Perhitungan Jarak K-Means Clustering[J]. Techno.
Com, 2021, 20(2): 186-197.

[21] W. Wang, J. Song and G. Xu, et al. Contractward: Automated vulnerabil-
ity detection models for ethereum smart contracts[J]. IEEE Transactions
on Network Science and Engineering. 2020, 8(2): 1133-1144.

[22] C. Liu, H. Liu and Z. Cao, et al. Reguard: finding reentrancy bugs in
smart contracts[C]//Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings. 2018: 65-68.

[23] S. Yang, X. Yang and B. Shen. Self-supervised learning of smart contract
representations[C]//Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension. 2022: 82-93.

[24] J. Cai, B. Li and J Zhang, et al. Combine sliced joint graph with graph
neural networks for smart contract vulnerability detection[J]. Journal of
Systems and Software, 2023, 195: 111550.

