
Research on Directed Grey-box Fuzzing
Technology Based on Target

Liang Sun Peng Wu Shaoxian Shu
National University of Defense Technology National University of Defense Technology Hunan Institute of Traffic Engineering

Changsha, China Changsha, China Hengyang, China
E-mail:nirvana_sl@126.com

Abstract—In recent years, grey-box fuzzing has been proven to be
the most effective method for discovering vulnerabilities in
software. However, the present grey-box fuzzing still has some
shortcomings. Most existing grey-box fuzzers are coverage
guided and consider the program code equally, and spend a lot of
time on improving the code coverage. However, most of the code
in the program does not contain bugs and only a small percentage
of the code may have bugs. Therefore, blindly improving code
coverage can waste limited resources on a large number of bug
independent locations and reduce the efficiency of fuzzing.

In order to solve the above problems, we propose a targeted
mutation strategy for continuous target exploration. By
identifying the key bytes in the input seeds, a mutation algorithm
for different stages of mutation is proposed to ensure that the
subsequent generation of seeds can still hit the target location as
much as possible, to realize the continuous exploration of the
target location. In addition, based on this mutation strategy, we
propose a fuzzing optimization method based on multi-factor
seed selection, using LLVM framework to insert the target
location information into the test program for preprocessing, and
then the multi-factor seed selection strategy is used to select
better seeds to explore the target location.

Keywords-fuzzy testing; directed grey-box fuzzing; seed
mutation strategy; seed selection strategy

I. INTRODUCTION
Vulnerability mining techniques have received a lot of

attention due to the increase in the number of vulnerabilities
and the intensification of the damage. Among the many
vulnerability mining techniques, fuzzy testing techniques [1]
have been proven to be one of the most effective techniques for
detecting software security[2, 3], which was first proposed by
Miller et al. in 1990. It can be generally divided into white-box
fuzzy testing, black-box fuzzy testing, and gray-box fuzzy
testing [4] which gray-box fuzzy testing has been proven to be
efficient and effective.

There are also some issues in gray-box fuzzy testing.
American Fuzzy Loop (AFL) [5], the most representative gray-
box fuzzy testing tool in the industry, which does not
differentiate the code in the process of fuzzy testing and does
not guide the direction of variation, which makes the variation
of AFL random and blind.

Based on the widely used AFL tool, this project identifies
the high-risk target locations in the program to be tested
through manual analysis or static analysis reports, selects the

DOI reference number: 10.18293/SEKE2023-182

seeds that can easily hit the target locations during the fuzzy
testing phase, and "controls" the seed variants so that the
subsequent variants can still reach the target locations as much
as possible.

II. RELATEDWORKS

Directed fuzzy testing is a vulnerability detection technique
for target locations in a user-specified program. Unlike
coverage-oriented fuzzy testing, directed fuzzy testing spends a
lot of time exploring a given target location in the code rather
than wasting a lot of time on irrelevant areas of program code.
Most existing directed fuzzy testing tools are based on
symbolic execution, which uses directed symbolic execution
techniques to transform the reachability problem of reaching a
target location into an iterative constraint solving the problem
for the ultimate purpose of directed fuzzy testing. The
effectiveness of directed symbolic execution comes at the cost
of efficiency, which spends a significant amount of time on
program analysis and constraint solving. In each iteration,
directed symbolic execution uses program analysis to
determine which paths better approach the target location,
constructs corresponding path conditions based on the
sequence of instructions along those paths, and uses a
constraint solver to check the satisfiability of those conditions.

Directed gray-box fuzzy testing (DGF) is a vulnerability
detection technique based on gray-box fuzzy testing to
implement directed DGF, which retains the efficiency of gray-
box fuzzy testing and usually leaves all program analysis in the
program compilation phase. Once the target location is marked,
DGF needs to generate seed inputs to reach the target location.
In addition to marking the target locations, researchers have
also noticed that the interrelationships between targets also help
to reach the targets.

V-Fuzz[6] is oriented to vulnerability probabilities, and
deep learning models predict vulnerability probabilities to
guide the fuzzing process to potentially vulnerable code regions.
semFuzz[7] can automatically recover knowledge related to
vulnerabilities from text reports and use this information to
guide the system in building test cases to trigger known or
related unknown vulnerabilities. Seed inputs that perform well
in DGF can bring the fuzzy testing process closer to the target
location and improve the performance of the subsequent
mutation process. Studies have shown that the classical
directed fuzzy testing tool AFLGo[8] generates a large number
of inputs that are unable to reach the location of the code with
vulnerabilities . Therefore, optimizing input generation can be



of great help to improve the directionality of DGF. seededfuzz
improves the initial seed generation and selection for directed
fuzzing. It uses static analysis, dynamic monitoring, and
symbolic execution techniques on the target program to select
and generate appropriate seeds for directed fuzzing, it identifies
the vulnerability-sensitive parts of the input seeds, generates
new inputs by changing the relevant bytes, and feeds them to
the target program to trigger exceptions.FuzzGuard[9] uses a
deep learning-based approach that filters out inputs that cannot
reach the target location before learning, and uses a large
number of inputs marked as reachable to train the model. The
model is then used to predict the likelihood that the newly
generated inputs will reach the target location without running
them directly, thus saving time on the actual
execution.SemFuzz uses information (system calls and
parameters) retrieved from CVE descriptions and git logs to
generate seed inputs to increase the probability of hitting the
vulnerability function.TIFF and ProFuzzer identify input types
to help mutate and maximize the likelihood of triggering
memory corruption errors.

Selecting seeds that better hit the target location is a key
part of DGF. AFLGo generates the call graph and control flow
graph of the program to be tested at compile time to calculate
the distance of the seed to the target basic block, prioritizing
seeds that are close to the target location. RDFuzz[10]
combines distance and frequency to prioritize the seeds. One
drawback of the distance-based approach is that it focuses only
on the shortest distance, and when there are multiple paths to
the same target, seeds that are farther away may be ignored.

III. TARGET-GUIDED DIRECTED GRAY BOX FUZZY
TESTING METHODS

Most existing gray-box fuzzy tests are code coverage
guided [2], where the most classic coverage oriented tool,
AFL, is designed to find more vulnerabilities by increasing the
code coverage. In general the broader the scope of code
covered during the execution of fuzzy tests, the more likely it
is to find potential vulnerabilities in the code. However, most
areas of code in real software are not vulnerable, and only
some areas may be vulnerable. Therefore, all code should not
be treated equally, and more resources should be given to code
locations with higher risk or user requirements to explore,
instead of wasting a lot of time and computational resources in
unrelated code areas, which leads to a decrease in the
efficiency of fuzzy testing. Yet there is randomness and
blindness in the seed variation part of fuzzy testing that
generates a large number of inputs. This leads to the fact that it
is often difficult for fuzzy tests to ensure that the mutated
inputs can still reach the target location. In particular, when
encountering some branches composed of complex conditions,
it is more likely to be difficult to reach the target position, and
even if the target position is occasionally hit, it is difficult to
reach it again. Moreover, most of the vulnerabilities that exist
in actual software are not of the type that will be triggered
simply after execution, which requires fuzzy testing tools not
only to generate seed inputs that can reach the target location,
but also to generate a large number of inputs that can

continuously reach the target location after seed mutation to
achieve continuous exploration of the target location.

A. A Goal-Oriented Directed Gray-Box Fuzzy Testing
Framework
This paper improves on the classical fuzzy testing tool AFL

by improving the source code preprocessing, seed selection
strategy and seed variation method, and proposes the goal-
oriented directed gray-box fuzzy testing tool DTFuzz. It can be
seen that the entire directed gray box fuzzy testing framework
is divided into two phases: the preprocessing phase and the
fuzzy testing cycle phase, in which the fuzzy testing cycle
mainly includes the multi-factor seed selection strategy and the
directed mutation strategy.

After obtaining the source code of the program to be tested,
the first thing that needs to be determined is which locations
are the target locations in this test. This part can be analyzed by
program static analysis tools such as Cppcheck, Clang, etc.,
and the generated results are processed to generate a uniform
format target file, or the target location information can be
determined by the user directly specifying the target location.

Next, we move to the fuzzy test loop section, where the
inputs are the staked binary program, the initialization seeds,
the target location information (actually present in the staked
program), and the outputs of the fuzzy test loop phase are the
seeds that cause abnormal program behavior (e.g., crashes or
timeouts). The priority queue of seeds is obtained through a
multi-factor seed selection strategy giving higher variant
priority to the preferred seeds. This multi-factor seed selection
strategy first distinguishes between seeds that hit the target
location and seeds that do not. If the seed does not hit the target,
it will use the original AFL strategy, and if the seed can hit the
target location, it will have a higher priority. Finally, there is
the targeted mutation strategy for the continuous exploration of
the target, which can be partly generated not only by mutation
DTFuzz first mutates each byte of the seed (using AFL's
deterministic mutation phase method) to run the program and
determine whether the mutated seeds can hit the target location.
For those seeds that can hit the target location, DTFuzz records
the location and the mutation method used to mutate these
seeds during the mutation process.

B. Targeted Variation Strategies for Targeted Continuous
Exploration
The various strategies of both the gray-box fuzzy testing

tool AFL and the directed fuzzy testing tool AFLGo do not
take into account the use of existing seed variation information,
and each variation is performed randomly. AFL's fuzzy testing
strategy is to increase the coverage of the code as much as
possible, and when the seeds hit the target location, AFL marks
them as executed, giving them less energy for subsequent seed
prioritization and energy scheduling, and it will explore other
branches to discover new paths.

To solve this problem, this paper proposes a target
continuous exploration(TCS) for target continuous exploration.
Firstly, the key nodes that affect the input seeds to reach the
target location are identified by analysis, and it is recorded
which variation can still hit the target location, so that in the
subsequent variation process, the mutated seeds can be



guaranteed to hit the target location area as much as possible,
thus achieving the continuous exploration of the target location
and improving the efficiency of the directed fuzzy test.

C. Keyword Section Determination
First of all, it should be clear that the directional variation

proposed in this chapter is used only for seeds that can hit the
target location. The variation strategy is still used for seeds
that fail to hit the target location, while the original AFL
variation strategy is still used for seeds that fail to hit the target
location.

What prevents fuzzy tests from reaching the target
location is usually caused by conditional statements that may
be directly related to some bytes of the input or obtained
through a series of complex operations. Analyzing the
relationship between the input and the conditionals can cause a
lot of overhead and thus reduce the performance of the fuzzy
test. Efficiency, if the mutated seed can still hit the target
location during the execution, by recording the location where
this mutation occurs and the corresponding mutation mode,
the connection between the input and the conditional branch
can be established to some extent, to achieve the purpose of
continuous exploration of the target.

D. Directional Variation
After determining the input keyword stanza it goes to the

mutation phase of the fuzzy test. For deterministic mutation,
not only one byte at a time is mutated, but the step size of each
mutation is continuously increased. Obviously, for single-byte
mutations, the mutation can be performed directly based on the
content of the record, while the situation is slightly different
when the mutation step is multiple bytes. Multi-byte mutations
can only be mutated if all the bytes they cover can be mutated
in the same way, otherwise they are not mutated.

When random mutation is performed, the mutation method
used for this mutation is determined first (mutation methods
using a combination of mutation operations are considered in
order), and the range of bytes that can be mutated can be
calculated based on the previously recorded information, so
that when the mutation range is randomly selected, the
subrange of the mutable byte range can be selected. If such a
variation range cannot be found this variation is skipped to
proceed to the next cycle of the random variation stage.

By processing the deterministic and random mutation
stages as described above, it is possible to generate as many
seeds as possible in the mutation stage to reach the target
location, especially for those seeds that have already hit the
target location, and to mutate the other bytes of the seeds
without affecting their hitting the target location again, so that
the target location can be fully explored continuously.

TABLE I. CONTINUOUS EXPLORATION ABILITY OF TARGETS AFTER
VARIATION STRATEGY IMPROVEMENT

Actual Software
Target hits

AFLGo TCS

readelf 44.7/sec 46.4/sec

xmllint 65.9/sec 77.1/sec

mjs 19.7/sec 28.9/sec

transicc 24.8/sec 31.5/sec

libpng 120.9/sec 157.4/sec

bmp2tiff 16.3/sec 25.7/sec

objdump 22.9/sec 27.3/sec

The results are shown in Table I. For comparison, the rate
of hitting the target location was recorded to show the
continuous exploration capability of the target location. It can
be seen that the exploration ability of TCS to the target location
has a certain improve.

IV. FUZZY TEST OPTIMIZATION METHOD BASED ON MULTI-
FACTOR SEED SELECTION

In the previous chapter, the variation algorithm for target
continuous exploration (TCS) was introduced, and this method
can effectively improve the continuous exploration of target
locations. In fact, a lot of work is needed to assist before seed
variation can be performed. This chapter optimizes the fuzzy
testing procedure of AFL based on TCS, which consists of the
following parts: pre-processing of the procedure for the target
location and multi-factor seed selection.

A. Multi-Factorial Seed Selection Strategy
AFL's original seed selection strategy was to select small,

fast executing seeds and add them to the "favored" label, based
on the code coverage to increase the scope of fuzzy exploration
as much as possible to find more potential vulnerabilities, for
the targeted fuzzy test can not only consider the code coverage,
but also select the seeds that can reach the target location as
much as possible to fully explore the target location. Therefore,
the selection of seeds that can hit the target, so that they have
more possibilities of variation, and thus continue to explore the
target location is the basis of the seed selection strategy, and on
this basis, further consideration is given to the selection and
code coverage of some harder-to-hit targets.

In this section, a multi-factor seed selection strategy (MFS)
is proposed to rank the input seed levels. the MFS includes:1)
the number of target functions hit by the seed. 2) the number of
hits at the target location. and 3) the path coverage. The
execution of fuzzy tests can be easily obtained by staking them
in the preprocessing stage using shared memory and thus
making the selection. When performing the seed selection, it is
necessary to distinguish whether the seeds hit the target
location or not. For the seeds that do not hit the target location
and the initial input seeds are selected using the original seed
selection strategy, and if the seeds hit the target location, MFS
is used for seed selection.

B. Number of Seed Hits for the Objective Function
The first factor to consider is the number of target functions

hit by the seed. Generally, if the number of hit target locations
is higher, the exploration of more target locations can be
achieved in a shorter time, thus improving the efficiency of
directed fuzzy testing. For complex target locations that are
more difficult to hit are ignored if the consideration is whether



the target location is hit or not, so considering the function
where the target location is hit can preserve this information
and help in the exploration of these targets.

In this section, we need to calculate the number of target
functions hit by the seeds, and the distinction between whether
the seeds hit the target position function can be done here. We
denote this part of the weight as W1 , the total number of target
positions can be obtained directly as N , and the total number
of target position functions as Nf , in fact, after distinguishing
whether the target function is hit or not, we can use N to
calculate W1 directly, if we want to calculate the total number
of target functions will bring the extra overhead reduces the
efficiency of the fuzzy test. Note that the number of target
functions Nf ≤ N , the final computed result is somewhat larger
but does not affect the prioritization process. Next, the target
function of the seed hit the number of hits is labeled as nf , and
the weight of the first factor can be calculated as W1 = nf /N . It
can be seen that when the total number of targets is small, the
number of seed hits on the target function has a large impact on
W1. Conversely, if there are many targets, a single target hit
will have a small impact.

C. Number of Hits at the Target Location
Generally speaking, if a target location is hit many times it

will be more fully explored, which often means that these
target locations are easier to reach. In contrast, locations with
fewer hits or even no hits are harder to find if they are
potentially vulnerable. This indicates that these targets have a
more complex structure or branching conditions. For these
targets with fewer hits, they can be referred to as rare targets.

First, we define the concept related to rare targets. The
number of executions for a target location t can be denoted as
numT [t], and for the input seed s if it hits the target location t,
it can be denoted as hits(s,t). Thus numT [t] can be computed
using equation (1). Thus, by calculating numT [t], a mapping
between the seeds and the number of hits at the target position
is established, which is updated each time the seeds hit the
target position.

numT[t] = ∑hits(s, t) （1）
s∈S

After calculating the number of hits per target numT [t] in
this way, the total number of hits for all targets can be further
calculated and expressed as NumT . Based on this we can
calculate the rarity of each target position, so that if the seed
hits that position, it will receive the corresponding weight. A
simple idea is to calculate the proportion of target branches by
this, the number of hits of the seed is inversely proportional to
its weight, as in equation (3) is shown.

NumT = ∑numT[t] （2）
t∈T

W2i =NumT/numT[ti] （3）

However, if we use only this simple method, we may
reduce the exploration of rare targets. Under ideal conditions,
seeds that can hit rare targets take precedence over other seeds.
Therefore, we must design a criterion to distinguish whether a
target is a rare target or not. A natural idea is to specify a

constant n and rank the target locations by the number of hits
and consider them rare if their rank is lower than n, or when the
number of hits is less than a certain percentage of the total
number of input seeds.

numT[t] ≤ rarity_cutoff （4）

rarity_cutoff = 2i such that 2i−1 < min (numT[t]) （5）
t∈T

For example, if the minimum number of hits on a target
location is 31, then any target location with less than 26 hits is
considered as a rare branch. Further the rarest target location t∗
can be calculated by equation (6)

t∗ = argmin(numT[t])(t∈ T) （6）

Based on the above rare target locations, if a seed can hit a
rare target location, it will have a higher priority and will
outperform other seeds that do not hit the rare target when
prioritizing.

V. EXPERIMENT AND ANALYSIS RESULT
Based on the target-guided directed gray-box fuzzy testing

approach mentioned in this paper, a directed fuzzy testing tool
DTFuzz is designed and implemented based on the classical
fuzzy testing tool AFL, which can perform directed fuzzy
testing on software with a given source code and target location,
and has a significant improvement in the exploration of target
location compared with AFL and AFLGo.

A. Experimental Setup
We compare DTFuzz with the following fuzzy testing

tools:1) AFL. the classical coverage guided gray-box fuzzy
testing tool is also the tool that this tool relies on, which does
not care about the target location. 2) AFLGo. is a directed
gray-box fuzzy testing tool that uses a simulated annealing
strategy to get as close to the target location as possible during
the fuzzing process. Since both AFLGo and DTFuzz rely on
AFL, we use AFL as the reference benchmark in our
experiments. The selection of test cases in our experiments
was based on the documentation provided by AFLGo and the
Google Fuzzy Test Suite, some of which also provide CVE
(Common Vulnerabilities & Exposures) id. from which we
selected seven actual open source software to test and evaluate
our techniques. The choice of target locations in this
experiment was based on the AFLGo documentation and the
crash reports from the Google test suite.

B. Experimental Results and Evaluation
The main focus in this experiment is on the execution speed

of the loop part of the fuzzy test, and the time of the
preprocessing part is not taken into account. In addition, code
coverage is the classical measure of gray-box fuzzing, and
although our method is directed fuzzy testing, code coverage
can also reflect the ability of fuzzy testing to a certain extent.
Finally, the number of crashes and unique crashes is the
ultimate goal of fuzzy testing and an important ability to show
the ability of fuzzy testing. Especially for DGF, the main
concern is its ability to trigger a crash at the target location.



TABLE II. RESULTS OF RUNNING ON ACTUAL SOFTWARE

Actual
Software

Execution speed Code Coverage

AFL AFLGo DTFuzz AFL AFL
Go

DTF
uzz

readelf 387.3/sec 365.1/sec 385.8/sec 1159
7

1058
9

1028
4

xmllint 982.8/sec 851.5/sec 809.0/sec 6867 3557 5390
mjs 160.1/sec 183.4/sec 185.7/sec 3516 1881 2745
transicc 230.5/sec 166.6/sec 193.2/sec 7286 3970 5908

libpng 1543.0/sec 1168.1/sec 1063.7/se
c 3467 1574 2819

bmp2tiff 162.7/sec 98.2/sec 108.4/sec 6132 3949 5574
objdump 421.7/sec 367.6/sec 418.3/sec 7186 1660 4067

Actual
Software

Target hits Unique Crash
AFL AFLGo DTFuzz AFL AFLGo DTFuzz

readelf - 44.7/sec 42.6/sec 0 0 0
xmllint - 65.9/sec 70.6/sec 35 32 60
mjs - 19.7/sec 25.8/sec 18 63 84
transicc - 24.8/sec 28.6/sec 1 8 7
libpng - 120.9/sec 140.9/sec 0 0 0
bmp2tiff - 16.3/sec 20.1/sec 58 41 62
objdump - 22.9/sec 31.6/sec 15 4 35

The results are shown in Table II . The execution speed
of DTFuzz is not much worse than that of AFL and AFLGo on
most of the software, and DTFuzz retains the original AFL
fuzzy test loop structure, and the additional staking and shared
memory operations are performed along the original execution
path without significant overhead, which indicates that This
also indicates that DTFuzz's multi-factor seed selection and
variation strategies do not have a significant impact on the
fuzzy test rate. It can also be seen that the execution speed of
DTFuzz is slower than that of AFL, but faster than AFL on
some software. Next is the code coverage, and it can be seen
that DTfuzz has lower code coverage compared to the
coverage guided AFL, which is an expected result since
DTfuzz devotes most of its resources to exploring the target
location area and accordingly has less ability to explore the
entire code space. Then, the number of target hits, to better
represent the ability of target hits was experimentally
performed by the speed of hitting target locations, and the
results show that DTFuzz can generate more inputs that can hit
target locations in most cases compared to AFLGo. Finally,
the calculation of the number of unique crashes shows that
DTfuzz triggers more crashes than AFL and AFLGo.

TABLE III. STATISTICAL RESULTS ON THE ACTUAL SOFTWARE

Actual
Software

Execution speed Code Coverage

AFL AFLG
o DTFuzz AFL AFLG

o
DTFu
zz

readelf 387.3/sec 94.3% 99.6% 11597 97.8% 97.8%
xmllint 982.8/sec 86.6% 82.3% 6867 51.8% 78.5%
mjs 160.1/sec 114.6% 116.0% 3516 53.5% 78.1%
transicc 230.5/sec 72.3% 83.8% 7286 54.5% 81.1%
libpng 1543.0/sec 75.7% 68.9% 3467 45.4% 81.3%
bmp2tiff 162.7/sec 60.4% 66.7% 6132 64.4% 90.9%
objdump 421.7/sec 87.2% 99.2% 7186 23.1% 56.6%

Actual
Software

Target hits Unique Crash
AFL AFLGo DTFuzz AFL AFLGo DTFuzz

readelf - 44.7/sec 0.95 0 0 0

xmllint - 65.9/sec 1.07 35 0.9 1.7
mjs - 19.7/sec 1.31 18 3.5 4.7
transicc - 24.8/sec 1.15 1 8 7
libpng - 120.9/sec 1.17 0 0 0
bmp2tiff - 16.3/sec 1.23 58 0.7 1.1
objdump - 22.9/sec 1.38 15 0.3 2.3

The relevant statistics are shown in Table III . The
statistics here are based on AFLGo, except for the target
location hits, which are based on AFL. Where the seed
execution speed and code coverage are compared by
percentages, and the number of target location hits and unique
crashes are multipliers. It can be seen that DTFuzz's execution
speed is about 68% of that of AFL except for bmp2tiff and
libpng, where it is not too far from AFL. In terms of code
coverage, except for objdump, where the coverage is low, all
other software have more than 78% of the coverage of AFL.
This result shows that by relying on the multi-factor seed
selection strategy, it is possible to continue to detect other
parts of the program to be tested after the target location is
explored more fully. In terms of hitting the target location, all
the software has more than 15% improvement except for
readelf, which is slightly lower than AFLGo, and some
software has 30% improvement above. Finally, the number of
unique crashes triggered can be seen to be 1.1 times higher on
bmp2tiff than on AFL, and many times higher on all other
software, while the number of crashes triggered by DTFuzz
can be seen to be the number of collapses is also higher than
that of AFLGo, except for transicc.

The most important capability for directed fuzzy testing
is the ability to continuously explore a given target location to
expose crashes at the target location. We tracked the execution
of these unique crashes with DTFuzz, recording the number of
crashes at the target location and other locations separately,
and the results are shown in Table IV. The experimental
results show that most of the unique crashes are triggered at
the target location. This means that our technique can be
effectively used for targeted fuzzing and more crashes can be
detected.

TABLE IV. RESULTS FOR THE NUMBER OF CRASHES AT THE TARGET AND
OTHER LOCATIONS

Actual Software Unique Crash
Other Locations Target Location

xmllint 20 40
mjs 17 67

transicc 0 7
bmp2tiff 21 41
objdump 11 24

Based on the experimental results, it can be seen that
DTFuzz triggers more crashes in xmllint, mjs and objdump
than it detects in other software. As an example, xmllint,
which parses one or more XML files, is useful for detecting
errors in the XML code and in the XML parser itself. It has
strict requirements on the input to the program, and if the input
does not conform to the format, the program cannot be
explored further. This result also shows that the method is able



to break through complex conditional statements and keep
exploring the program. It can also be seen that although
AFLGo also directs the fuzzy test towards the target location
and generates inputs that hit the target location, its
performance is not better than DTFuzz because its mutation
strategy is the same as AFL, which does not retain the
previous mutation information and performs random mutation
for the hit target seed.

TABLE V. EXPERIMENTAL RESULTS OF MULTI-FACTOR SEED SELECTION
STRATEGY AND DIRECTED VARIATION STRATEGY, RESPECTIVELY

Actual
Software

Unique Crash Code Coverage
DTFuzz-s DTFuzz-m DTFuzz-s DTFuzz-m

xmllint 23 52 6715 3783
mjs 18 47 3142 1421
transicc 5 10 5347 3946
bmp2tiff 37 32 6347 2742
objdump 18 26 6871 1293

In addition, further analysis of the effectiveness of the
TCS and MFS proposed in this paper is needed. We run
DTfuzz with only the multi-factor seed selection strategy
(DTFuzz-s) and DTfuzz with only the directed variation
strategy (DTFuzz-m) on the software that triggers a crash,
where only the software that triggers a crash is considered, and
the results are shown in Table V. Based on the experimental
results, we can see that DTFuzz-m can trigger more crashes.
This is because the mutation strategy ensures that the seeds
that can reach the target location are continuously generated in
subsequent mutations, generating more seeds that hit the target
location and thus triggering more crashes. The number of
crashes triggered by DTFuzz-s is similar to that of AFL. This
is because for the seed selection strategy, although seeds that
are more likely to reach the target location can be selected,
giving them more mutation possibilities, there is no guarantee
that the seeds generated by mutation can still hit the target
location, resulting in fewer crashes triggered. Similarly,
without a seed selection strategy, DTFuzz cannot fully utilize
the target location information and may waste a lot of
resources on irrelevant seeds or repeatedly execute seeds that
are more likely to hit the target location, resulting in a
decrease in the ability of fuzzy testing.

By comparing DTFuzz-m without the seed selection
strategy with DTFuzz, it can be seen that the use of the seed
selection strategy on top of the directed variation algorithm
improves the coverage of the code by the fuzzy tests and
improves the shortcomings of the variation algorithm. This is
also in line with our expectation that after the "easier" targets
are fully explored, the priority of the seeds that hit these target
locations will be lowered to better explore other targets. In
particular, the rare targets that are "harder" to hit will be
explored continuously, thus improving the ability of the
targeted ambiguity test.

VI. CONCLUSION
The goal-oriented directed gray-box fuzzy testing

technique based on the randomness and blindness of variation
in gray-box fuzzy testing is proposed, which mainly includes
the directed variation strategy of goal continuous exploration. It
identifies the key nodes linking the input to the target location
in the program to be tested by traversing the input seeds, and
then uses the directed variation algorithm to handle the
deterministic variation phase and the random variation phase to
guide the fuzzy test toward the target location, respectively. At
the same time, the gray-box fuzzy test is further optimized
based on the directed variation strategy by using the LLVM
framework to stake the target location information into the
program to be tested based on the original staking code, and
then using a multi-factor seed selection strategy to select the
seeds that are more likely to hit the target. The concept of rare
target is proposed to reduce the number of "useless" duplicate
seeds generated for the "easier" hit targets, and give higher
priority to the harder hit target locations, which is a good way
to improve the target location exploration under complex
conditions for the directed fuzzy test. The exploration also
improves the path coverage.

The method still has the following problems: 1) the target
location is still mainly dependent on manual analysis of the
program to be measured for the static analysis tool to provide
the analysis report due to the number of generally large can not
be well used.2) For how to generate the seeds to reach the
target location mainly relies on the random variation process,
and no suitable scheme is given to generate the seeds to reach
the target location directly.

REFERENCES
[1] Miller B P, Fredriksen L, So B. An Empirical Study of the Reliability of

UNIX Utilities [J/OL]. Commun. ACM. 1990, 33 (12): 32-44.
https://doi.org/10.1145/96267. 96279.

[2] Böhme M, Pham V-T, Roychoudhury A. CoverageBased Greybox
Fuzzing as Markov Chain [C/OL]. Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. New
York,NY,USA,2016:1032-1043.
https://doi.org/10.1145/2976749.2978428.

[3] Zhao L, Duan Y, Yin H, et al. Send Hardest Problems My Way:
Probabilistic Path Prioritization for Hybrid Fuzzing [C]. Network and
Distributed System Security Symposium. 2019.

[4] Chen C, Cui B, Ma J, et al. A systematic review of fuzzing techniques
[J]. Computers Security. 2018: 118–137.

[5] American Fuzzy Lop. http://lcamtuf.coredump.cx/afl.
[6] Li Y, Ji S, Lv C, et al. V-fuzz: Vulnerability-oriented evolutionary fuzzing

[J]. arXiv preprint arXiv:1901.01142. 2019.
[7] You W, Zong P, Chen K, et al. Semfuzz: Semantics-based automatic

generation of proof-of-concept exploits [C]. Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security.
2017: 2139–2154.

[8] Böhme M, Pham V-T, Nguyen M-D, et al. Directed greybox fuzzing [C].
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 2017: 2329–2344.

[9] Zong P, Lv T, Wang D, et al. Fuzzguard: Filtering out unreachable
inputs in directed grey-box fuzzing through deep learning [C]. 29th
{USENIX} Security Symposium ({USENIX} Security 20). 2020: 2255–
2269.

[10] Ye J, Li R, Zhang B. RDFuzz: Accelerating directed fuzzing with
intertwined schedule and optimized mutation [J]. Mathematical
Problems in Engineering. 2020, 2020.


	I. INTRODUCTION
	II.RELATED WORKS
	III.TARGET-GUIDED DIRECTED GRAY BOX FUZZY TESTING METH
	A.A Goal-Oriented Directed Gray-Box Fuzzy Testing Fr
	B.Targeted Variation Strategies for Targeted Continu
	C.Keyword Section Determination
	D.Directional Variation

	IV.FUZZY TEST OPTIMIZATION METHOD BASED ON MULTI-FACT
	A.Multi-Factorial Seed Selection Strategy
	B.Number of Seed Hits for the Objective Function
	C.Number of Hits at the Target Location

	V.EXPERIMENT AND ANALYSIS RESULT
	A.Experimental Setup
	We compare DTFuzz with the following fuzzy testing

	B.Experimental Results and Evaluation
	The results are shown in Table II . The execution 
	The relevant statistics are shown in Table III . T
	The most important capability for directed fuzzy t
	Based on the experimental results, it can be seen 
	In addition, further analysis of the effectiveness
	By comparing DTFuzz-m without the seed selection s


	VI.CONCLUSION
	REFERENCES


