
Contribution-based Test Case Reduction Strategy
for Mutation-based Fault Localization

Haifeng Wang†, Kun Yang†∗, Xiangnan Zhao†, Yuchen Cui†, Weiwei Wang‡
†Center for Advanced Metering Infrastructure, National Institute of Metrology, China

‡College of Information Science and Technology, Beijing University of Chemical Technology, China
Email: wanghaifeng@nim.ac.cn

Abstract—Fault localization is one of the most expensive steps
during software debugging. Mutation-based Fault Localization
(MBFL) is a promising technique but with a high computational
cost since the large mutation execution on mutation analysis.
Previous studies mainly reduce the cost of decreasing the number
of mutants and optimizing the process execution, such kinds of
strategies have shown promising results. However, reducing the
cost of MBFL by decreasing the number of test cases is also
effective. In this paper, we propose a Contribution-Based Test
Case Reduction (CBTCR) strategy for improving the efficiency
of MBFL. CBTCR first measures the contribution value of
each test case and then selects the test cases according to
the value. Then it takes the reduced test suite for executing
the mutants. We evaluate CBTCR on 383 real software faults
from the Defects4J benchmark. The results show that CBTCR
outperforms the other MBFL test case reduction strategies (e.g.,
FTMES, IETCR) in terms of the Top-N and MAP metrics.
Also, CBTCR can significantly reduce 85.43% of the cost on
average while maintaining a similar accuracy to original MBFL
techniques.

Keywords—software debugging; fault localization; mutation-
based fault localization; test case reduction

I. INTRODUCTION

Software debugging is an expensive and difficult process
that costs developers a large amount of time and effort [1].
The first step in debugging, called fault localization (FL),
is to identify the root cause of observed failures. FL is a
complicated and time-consuming task, as it is important in
software maintenance and evolution. To alleviate the human
effort in localizing a fault, various automated FL techniques
have been proposed, e.g., spectrum-based [2] and mutation-
based [3], [4] techniques.

Spectrum-based fault localization (SBFL), is one of the
most widely studied techniques. SBFL considers the binary
coverage of the program elements but with inherently limited
fault localization accuracy. Recent studies have shown that
mutation-based fault localization (MBFL) techniques can help
improve the performance of fault localization and achieve
a higher fault localization accuracy than the state-of-the-art
SBFL techniques [3].

MBFL is based on mutation analysis and works by making
syntactic changes to the program. Although the studies have
shown that MBFL aims the localize accuracy improvement
of suspicious elements list for fault software debugging, the

DOI reference number: 10.18293/SEKE2023-180

computational cost is high for such techniques. Hence, re-
searchers investigate optimization strategies for MBFL tech-
niques, which can be divided into three groups: (1) reduce the
mutants [1], [3], [5]; (2) reduce the test cases [6], [7]; and (3)
optimize the execution [8]. However, other opportunities exist
for optimization.

In this study, a novel test case reduction strategy named
CBTCR (Contribution-Based Test Case Reduction) is pro-
posed aiming at optimizing the mutation execution. CBTCR
keeps both failed and passed test cases like IETCR [7] but
is different from FTMES [6], which only employs the failed
ones. In detail, CBTCR uses test cover and suspiciousness
of SBFL to measure the contribution value of test cases for
MBFL. Next, the test cases are executed with higher values
and avoid the execution of the rest ones.

The contributions of this paper are as follows:
• This paper proposes a contribution-based test case reduc-

tion (CBTCR) strategy to reduce the mutation execution
cost of MBFL.

• This paper reports an empirical study on 383 real-fault
programs from Defects4J, and the results show that
MBFL execution cost could be remarkably reduced while
adopting CBTCR. At the same time, the fault localization
accuracy is kept almost the same as the original MBFL.

• The scripts and dataset used in this paper are all available
in the GitHub repository1 to facilitate the replication of
our study and evaluation of future work.

The rest of this paper is organized as follows. Section II
summarizes the background and related work. Section III
describes the details of our approach. Section IV illustrates
the experimental setup and analyzes our experimental results.
Finally, Section V summarizes our study with potential future
work.

II. BACKGROUND AND RELATED WORK

A. Mutation-Based Fault Localization

Mutation-based fault localization is a well-studied technique
that is based on mutation analysis. In mutation analysis,
mutants are used to evaluate the quality of test cases based
on their ability to distinguish the mutants’ behavior from
that of the original program [3]. Mutants can be evaluated
by suspiciousness using the MBFL formulas. MBFL works

1https://github.com/hfwiz/CBTCR

Mutant Execution

Program

Test Suite

Test Cover

Results

Program Execution

Failed
Test Cases

Sort & Select

Reduced
Test Suite

Ranking List

Statements Covered
by Fail Test Cases

Mutating

MutantsMutation
Operators

Passed
Test Cases

Contribution Value

Mutant Sus. Statement Sus.

Fig. 1. The CBTCR workflow

based on the assumption that mutants killed mostly by failed
test cases have a connection with program faults. Recent
studies [3] also demonstrated that MBFL could significantly
outperform other types of fault localization techniques.

B. MBFL Reduction Strategies

MBFL achieves high accuracy of fault localization but faces
huge computational costs on execution. Various strategies have
been presented for reducing the cost of MBFL, which can
be divided into three categories: (1) reduce the mutants [1],
[3]–[5], [9]. SELECTIVE [5] selects the ”sufficient” mutation
operators for generating mutants. SMBFL [1] reduces the
mutants by examining only the statements in the dynamic
program slice. In another aspect, SAMPLING [3], SOME [9],
and WSOME [4] are reducing the cost by decreasing the
mutants from the mutant set. (2) reduce the test cases [6].
FTMES [6] uses only the set of failed test cases to execute
mutants while avoiding the execution of passed test cases.
IETCR [7] measures the information of test cases using
entropy and selects a proportion of them. (3) optimize the
execution [8]. DMES [8] contains two kinds of optimizations,
i.e., mutation execution optimization and test case execution
optimization.

III. OUR METHOD

A. Contribution Value of Tests

In software engineering, a good quality software it is
essential to rely on good test cases, which are more powerful
to discover bugs in the programs. It is the classic objective
of testing and a failed test is more powerful than a passed
test in that it can help find defects. In mutation-based fault
localization, the test suite has been run first for obtaining
elements covered by fail tests, so it is easy to distinguish
the passed and failed test cases before executing mutants.
However, how to distinguish the good and bad of the passed
test cases is unclear.

To fill this gap, in this paper, we define Contribution
value to measure the possible fault localization effectiveness
for MBFL. Here, we will clarify the meaning of basic terms
and notations used in this paper, including programs, tests,
coverage, and suspiciousness.

Definition 1: Test cover. Given a program P =
{s1, s2, ..., sn} with n elements, a statement s ∈ P , a test

t ∈ T = {t1, t2, ..., tm} be a set of all tests. If t executes a
statement s ∈ P , it is said that t covers s, which is formalized
by:

Cover(t, s) =

{
1(true), if t covers s
0(false), otherwise, (1)

By definition, a test cover concisely represents whether the
statement s has executed the test t, which is the original of
the spectrum-based fault localization.

For a statement s, the suspiciousness of s using SBFL
formulas is denoted as Sus(s) (the SBFL formula we called
the contribution formula, Dstar [2] is used in this paper).
Then we use Contribution value to quantitatively measure the
contribution of a test t for locating the fault in program P . The
Contribution value, simply the cV alue, can be formalized as
follows:

cV alue(t, P) =

n∑
i=1

Cover (t, si)× Sus (si) (2)

for a test t ∈ T and statements s1, s2, . . . , sn ∈ P .
In other words, the coverage of tests and the suspiciousness

of statements imply the quantitative quality of the test t for
MBFL. If a test t has a larger cV alue indicates that t can cover
more statements with greater suspiciousness, which suggests
that t is more valuable for MBFL.

B. The Workflow of CBTCR

Fig. 1 shows the workflow of our proposed CBTCR. At first,
CBTCR executes the tests against the program to obtain test
cover and results. Then, the tests are divided into passed and
failed sets. In addition, the statements covered by failed test
cases are obtained for generating mutants by seeding mutation
operators. Next, CBTCR works by calculating the contribution
value of passed test cases. After sorting and selecting test
cases with higher contribution values, a reduced test suite is
generated by combining passed and failed test cases. Finally,
the reduced test suite is executed on the mutants to get
killing information. The mutants’ suspiciousness are calculated
and the maximum one is is assigned to the statement. The
MBFL sorts all statements in descending order based on
their suspiciousness and returns a ranking list of all program
elements.

TABLE I
Top-N AND MAP OF CBTCR AND OTHER STRATEGIES ON MBFL TECHNIQUES AT DIFFERENT SAMPLING RATIOS

Technique Strategy

Sampling ratio =
10% 20% 30%

Top- MAP Top- MAP Top- MAP1 3 5 1 3 5 1 3 5

MBFL

RAND 20 51 103 0.1792 29 75 117 0.2546 27 87 116 0.2364
IETCR 10 53 93 0.1575 24 69 103 0.2228 32 78 113 0.2646
FTMES 43 88 120 0.2532 43 88 120 0.2532 43 88 120 0.2532
CBTCR 33 97 122 0.2554 38 103 131 0.2997 40 107 133 0.3163
Original 41 108 137 0.3181 -

MCBFL

RAND 44 106 134 0.2942 51 106 145 0.3357 47 106 139 0.3173
IETCR 36 101 129 0.2808 43 105 133 0.3098 51 104 134 0.3309
FTMES 46 92 131 0.2851 46 92 131 0.2851 46 92 131 0.2851
CBTCR 58 115 138 0.3600 61 116 146 0.3777 62 116 152 0.3818
Original 61 113 151 0.3789 -

IV. EXPERIMENTAL ANALYSIS

To investigate the performance of CBTCR, we perform
experiments to address the following three research questions:

• RQ1: How does CBTCR perform compared to different
test case reduction strategies (i.e., FTMES, IETCR) and
the original MBFL techniques on fault localization effec-
tiveness?

• RQ2: How much execution cost does CBTCR need when
comparing other test case reduction strategies and original
MBFL techniques?

RQ1 compares the effects of different test case reduction
strategies for MBFL techniques and the performance of such
techniques using CBTCR. RQ2 is designed to evaluate the
efficiency of MBFL adopting different reduction strategies.

A. Experimental setup

TABLE II
SUBJECT PROGRAMS

Project Versions
(used) kLOC Average

of Mutants
Average
of |Tf |

Average
of |Tp|

Lang 65 (64) 18.5 1775 3.1 172.8
Chart 26 (21) 85.1 2986 2.0 194.2
Time 27 (16) 27.3 8326 103.1 3651.0
Math 106 (99) 50.6 8531 5.4 164.7
Closure 133 (80) 85.5 18097 638.8 1639.6
Cli 38 (38) 2.5 662 2.4 157.0
Codec 18 (18) 4.5 1051 2.4 87.1
Compress 47 (47) 15.5 4066 6.4 137.6
Total 461 (383) 289.5 45494 763.6 6204.0

1) Subject Programs: We conduct the experimental studies
on the real-world benchmark of Defects4J [10]. Table II shows
the statistics of subject programs. In total, we considered 383
faults out of 461 faults in Defects4J (v2.0.0). The remaining
versions are excluded from the experiments since the omission
faults or the faults cannot be detected by the test suites.

2) Evaluation Metrics and Implementation of Experiment:
In the experiments, we utilize four metrics (i.e., EXAM [4],
Top-N [11], MAP [11], and MTP [4]) to evaluate the ef-
fectiveness of our proposed CBTCR. A fault localization
technique has a lower EXAM, higher Top-N, and higher MAP
demonstrates a better technique. In addition, cost reduction
techniques with lower MTP indicate better efficiency [9]. Note

that we take the average rank of the statements that shared the
same suspiciousness to break the tie [12].

3) Implementation of Experiment: We choose three MBFL
test case reduction strategies (FTMES [6], IETCR [7] and the
random strategy noted as “RAND”) as the baselines. We use
10%, 20%, and 30% to sample the pass test cases followed by
the previous studies [3], [4], [7]. We implement Metallaxis [3]
(noted as“MBFL”) and MCBFL-hybrid-avg [12] (noted as
“MCBFL”) as MBFL techniques. In addition, we generate
mutants by using the mutation tool Major and consider the
mutation operators provided by this tool.

B. Results Analysis

TABLE III
ACCURACY IMPROVEMENT FOR MBFL TECHNIQUES ON DIFFERENT

SAMPLING RATIOS

Technique Strategy Sampling ratio =
10% 20% 30%

MBFL
RAND 42.52% 17.71% 33.80%
IETCR 62.16% 34.52% 19.54%
FTMES 0.87% 18.36% 24.92%

MCBFL
RAND 22.37% 12.51% 20.33%
IETCR 28.21% 21.92% 15.38%
FTMES 26.27% 32.48% 33.92%

Average Improve
RAND 32.44% 15.11% 27.06%
IETCR 45.18% 28.22% 17.46%
FTMES 13.57% 25.42% 29.42%

TABLE IV
THE p-value OF CBTCR AND OTHER STRATEGIES ON MBFL

TECHNIQUES AT DIFFERENT RATIOS

Technique Strategy Sampling ratio =
10% 20% 30%

MBFL

RAND 0.0346 0.0037 0.0286
IETCR 0.0110 0.0040 0.0185
FTMES 0.0246 0.0018 0.0225
Original 0.5487 0.9542 0.8124

MCBFL

RAND 0.0444 0.0093 0.0110
IETCR 0.0464 0.0063 0.0192
FTMES 0.0668 0.0217 0.0032
Original 0.8371 0.8220 0.8818

1) Answer for RQ1 (The effectiveness of CBTCR): Table I
shows that, on MBFL, CBTCR locates 122 faults at Top-
5 with a sampling ratio of 10% , which more than RAND
(103), IETCR (93), and FTMES (120). We can find that

FTMES can locate more faults at Top-1 (43). One possible
reason is that some passed tests cannot help in detecting faults.
Also, CBTCR performs better when sampling 20% and 30%
passed test cases at the metric of MAP. Besides, CBTCR
performs similarly to the original MBFL (noted as ”Original”)
when sampling 30% passed test cases. On MCBFL, CBTCR
outperforms the other three strategies in all cases. Moreover,
Table III shows the accuracy improvement for each strategy
with different sampling ratios compared with CBTCR at MAP.
The last row shows that CBTCR improves other strategies
ranging from 13.57% to 45.18% in fault localization accuracy
on average. Besides, CBTCR locates more faults at the metric
of Top-3(115) when the sampling ratio equals 10% than Origi-
nal. In addition, the wilcoxon signed-rank test (at a confidence
level of 95% and p-values less than 0.05 means significant) in
Table IV shows that EXAM of MBFL techniques with CBTCR
has a significant difference with other three strategies and the
original MBFL. Therefore, we regard 10% as the trade-off
sampling ratio for the CBTCR strategy.

2) Answer for RQ2 (The cost of CBTCR): Table V
further presents the detailed average reduction ratios MTP
of each strategy. From Table V, we can see that CBTCR
reduces execution cost varied from 69.74% to 89.47% and
it reduces 85.43% of the cost on average. Besides, CBTCR
costs more 8.84% than FTMES, but it improves 13.57% of
the fault localization accuracy for FTMES on average (see
Table III). Therefore, CBTCR is a trade-off strategy that
obtains better fault localization effectiveness by losing some
efficiency of running this strategy. Hence, there still exists
room for boosting the efficiency of CBTCR.

RAND IETCR FTMES CBTCR Original
Different Reduction Strategies

0

1000

2000

3000

4000

5000

M
TP

(m
ill

io
n)

Fig. 2. MTP of CBTCR and other strategies at sampling ratio 10%

TABLE V
AVERAGE MTP EXECUTION RATIOS REDUCED BY DIFFERENT STRATEGIES

Project RAND IETCR FTMES CBTCR

Lang 89.23% 89.23% 99.00% 89.23%
Chart 89.47% 89.47% 99.41% 89.47%
Time 87.64% 89.81% 97.05% 87.64%
Math 86.09% 86.09% 95.13% 86.09%
Closure 69.74% 73.64% 74.67% 69.74%
Cli 88.93% 88.93% 98.68% 88.93%
Codec 87.02% 87.02% 96.17% 87.02%
Compress 85.35% 85.35% 94.09% 85.35%
Average 85.43% 86.19% 94.27% 85.43%

V. CONCLUSION AND FUTURE WORK

This paper proposes a novel contribution-based test case
reduction (CBTCR) for mutation-based fault localization
(MBFL). CBTCR measures the contribution value of test cases
using test coverage and SBFL suspiciousness, and then the test
cases with higher values are used for running the mutants.
CBTCR is a strategy that uses both failed test cases and
some valuable passed test cases. This paper evaluates CBTCR
by conducting an empirical experiment on 383 faults from
Defects4J. The experimental results demonstrate that CBTCR
outperforms the previous test case reduction strategies (IETCR
and FTMES). Also, the results indicate CBTCR can highly
improve the efficiency of MBFL by reducing 85.43% of the
cost on average, while maintaining almost the same fault
localization accuracy as original MBFL techniques. In the
future, we plan to investigate the theory of CBTCR and extend
our strategy to more large-scale programs.

ACKNOWLEDGMENT

The work is supported by the National Quality Infrastructure
of China (Grant no. 2022YFF0608103).

REFERENCES

[1] N. Bayati Chaleshtari and S. Parsa, “Smbfl: Slice-based cost reduction
of mutation-based fault localization,” Empirical Software Engineering,
vol. 25, pp. 4282–4314, 2020.

[2] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for
effective software fault localization,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 290–308, 2013.

[3] M. Papadakis and Y. Le Traon, “Metallaxis-fl: mutation-based fault
localization,” Softw. Test. Verification Reliab., vol. 25, no. 5-7, pp. 605–
628, 2015.

[4] Z. Li, H. Wang, and Y. Liu, “Hmer: A hybrid mutation execution
reduction approach for mutation-based fault localization,” J. Syst. Softw.,
p. 110661, 2020.

[5] M. Papadakis and Y. Le Traon, “Effective fault localization via mutation
analysis: a selective mutation approach,” in Proceedings of the 29th
Annual ACM Symposium on Applied Computing. ACM, 2014, pp.
1293–1300.

[6] A. A. L. de Oliveira, C. G. Camilo-Junior, E. N. de Andrade Freitas,
and A. M. R. Vincenzi, “Ftmes: A failed-test-oriented mutant execution
strategy for mutation-based fault localization,” in Proceedings of the
International Symposium on Software Reliability Engineering. IEEE,
2018, pp. 155–165.

[7] H. Wang, B. Du, J. He, Y. Liu, and X. Chen, “Ietcr: An information
entropy based test case reduction strategy for mutation-based fault
localization,” IEEE Access, vol. 8, pp. 124 297–124 310, 2020.

[8] Y. Liu, Z. Li, R. Zhao, and P. Gong, “An optimal mutation execution
strategy for cost reduction of mutation-based fault localization,” Inf. Sci.,
vol. 422, pp. 572–596, 2018.

[9] Y. Liu, Z. Li, L. Wang, Z. Hu, and R. Zhao, “Statement-oriented mutant
reduction strategy for mutation based fault localization,” in 2017 IEEE
International Conference on Software Quality, Reliability and Security
(QRS). IEEE, 2017, pp. 126–137.

[10] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 international symposium on software testing and
analysis, 2014, pp. 437–440.

[11] H. Wang, Z. Li, Y. Liu, X. Chen, D. Paul, Y. Cai, and L. Fan, “Can
higher-order mutants improve the performance of mutation-based fault
localization?” IEEE Transactions on Reliability, vol. 71, no. 2, pp. 1157–
1173, 2022.

[12] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). IEEE, 2017, pp. 609–620.

	Introduction
	Background and Related Work
	Mutation-Based Fault Localization
	MBFL Reduction Strategies

	Our Method
	Contribution Value of Tests
	The Workflow of CBTCR

	Experimental Analysis
	Experimental setup
	Subject Programs
	Evaluation Metrics and Implementation of Experiment
	Implementation of Experiment

	Results Analysis
	Answer for RQ1 (The effectiveness of CBTCR)
	Answer for RQ2 (The cost of CBTCR)

	Conclusion and Future Work
	References

