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Abstract—Machine reading comprehension (MRC) methods
have shown great success in many datasets, but existing methods
fail to achieve satisfactory results in low-resource scenarios. In
addition, existing MRC models suffer from a notable decrease
in performance when confronted with scenes different from
the training data. Thus, it is hard to transfer knowledge be-
tween domains. In this paper, we propose an adaptive meta-
learning framework to learn and transfer the shared knowledge.
The framework is based on model-agnostic meta-learning algo-
rithm, aiming to aggregate meta-knowledge among multi-source
datasets. Furthermore, for better adaptation to different target
domain, we investigate an adaptive adversarial training strategy
to obtain domain-specific meta-knowledge. We empirically adopt
three large-size datasets as source domains and five small-size
datasets as target domains, and extensive experiments show the
effectiveness of our framework.

Index Terms—Natural Language Understanding, Machine
Reading Comprehension, Meta Learning, Adversarial Training.

I. INTRODUCTION

Machine reading comprehension (MRC) attempts to answer
many kinds of questions, including simple questions and multi-
hop reasoning questions, after reading a document or multiple
documents.Recently, MRC models based on the manner of
fine-tuning the pre-trained language model for downstream
tasks, have achieved acceptable performance [1]. However,
these models still rely on an adequate scale of the training
data in the target domain. When confronted with the low-
resource MRC task, even the performance of models based
on pre-training deteriorates significantly.

As shown in Figure 1, as the scale of the labeled data re-
duced, the performance of BERT-based MRC model decreases
by a large margin. Specifically, when approximately 40% data
is used for training, the performance curve falls sharply. In
fact, for some domains, the lack of adequate labeled data
makes it difficult to train a domain-specific MRC model with
satisfactory performance. Therefore, it is of great importance
and necessity to solve the low-resource problem in MRC.

An intuitive solution is to generalize or transfer knowledge
learned in resource-rich domains to resource-poor domains. [2]
trained models on one or more source MRC datasets, and then
evaluated their performance on a target domain, either without
any additional target training examples (generalization) or with
additional target examples (transfer). They found that current
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Fig. 1: Exact match and F1 curves of the BERT-based MRC
model on SQuAD, with different data volume.

models over-fit to the particular training set and generalize
poorly even to similar datasets. Besides, they also investigated
the effect of knowledge transfer based on domain-level similar-
ities and fine-tuning. Despite some improvements, the shared
knowledge among multiple datasets of source domains has not
been fully exploited. Although each MRC dataset involves the
use of different expertise, there is still substantial overlap in
the abilities required to answer questions across these datasets.
Therefore, we believe it is meaningful to effectively exploit the
shared knowledge among multiple datasets, and use them to
promote the language understanding of the low-resource setup.

For a target domain, the learning objective is to find an
optimal model that is well adapted to the current data. How-
ever, due to the lack of sufficient training samples, the optimal
parameters oscillate with time during training. Therefore, it is
difficult to learn an acceptable model with insufficient data.
To address this issue, we propose an adaptive meta-learning
framework for multi-source domain adaptation of MRC. The
intuition behind the framework is that the past experience
over multiple source domains can be used to facilitate the
adaptation to a new environment. Specifically, we employ
a model-agnostic meta-learning (MAML) algorithm [3] to
aggregate the meta-knowledge from multiple source domains.
The main focus of this paper is not to propose a new meta-
learning algorithm, but to explore whether the representative
meta-learning algorithm MAML is suitable for many-to-one
machine reading comprehension scenario, and how to improve
the domain transfer ability under the MAML framework.

Since meta-knowledge is transferred, there is still a gap
between source domains and target domains. Especially when



the difference of data distribution is large, the performance of
domain adaptation will be highly affected. To fill the domain
gap, one possible way is to generate adversarial examples
through adding imperceptible perturbations on inputs, which
can be used to improve the model robustness [4]. However, the
traditional adversarial training adds noises with the gradient of
the source domain, which is futile to cross the domain gap. It
may even broaden the gap. To solve this issue, we design an
adaptive meta-learning framework based on adaptive adversar-
ial training strategy, and employ gradient of the target domain
to guide adversarial examples generation in the source domain.
Therefore, we can obtain domain-specific meta-knowledge,
rather than the fixed one.

The main contributions can be summarized as follows:
• To overcome the challenge of low-resource MRC, we

propose an adaptive meta-learning framework. With this
framework, the meta knowledge across multiple source
domains can be learned, which is further used to enhance
the target-domain MRC ability. Besides, it can be easily
combined with arbitrary MRC models like BERT.

• To bridge the gap between domains in meta-learning,
we devise an adaptive adversarial training strategy. It
helps obtain the domain-specific meta knowledge. For
both the generality and the individuality are taken into
consideration, it is more suitable for each target domain.

• We evaluate our model on three resource-rich source
datasets and five resource-poor target datasets, and the
results demonstrate that the proposed model consistently
outperforms state-of-the-art baselines considerably.

II. METHODOLOGY

A. Task Definition

In general, MRC tasks can be categorized into the extractive
setting and the multiple-choice setting. To facilitate knowledge
transfer, we formulate all the MRC datasets to the extractive
type. Therefore, the example in all datasets contains a question,
a paragraph, and an answer whose content is a local context
extracted from the original paragraph.

Formally, given the paragraph P and a question Q, the goal
of MRC is to extract an answer span [s, e] from P , where s
denotes the start position and e denotes the end position in P .

B. Framework of Adaptive Meta-Learning

Our adaptive meta-learning framework consists of two parts:
Multi-source Meta-Learning (MML) and Adaptive Adversarial
Training (AAT). In the process of MML, the meta-knowledge
is learned on the merged data of multiple source domains
DS = {DS

1 , D
S
2 , ..., D

S
n} through MAML [3].

In the process of AAT, the adaptive adversarial examples
are generated, which can be used in MML to encourage the
meta-model to learn toward the target domain. Specifically,
the generation of adaptive adversarial samples D̃S

Ti
is guided

by the gradient of the target domain {DT
1 , D

T
2 , ..., D

T
m}, re-

spectively. Then, D̃S
Ti

participates in the meta-learning process
together with DS in a data-augmentation way. The details of
adaptive meta-learning are summarized in Algorithm 1.

Algorithm 1 The procedure of Adaptive Meta-Learning
Input: Multi-source data DS , target data DT

i , three sets of
parameters θ∗, θ̂, θt, and their learning rate α, β, γ
Output: Optimized parameters θ∗

1: Initialize θ∗, θ̂, θt;
2: Fine-tune the target model parameters θt on data DT

i :
θt

′ = θt − γ∇θtL(f(θt, D
T
i ));

3: for all XS from DS do
4: Compute gradients on θt with data XS , and generate

adversarial samples:
X̃S = XS + λ ∗ ∇θt

5: end for
6: Merge D̃S and DS , get new source dataDS′

;
7: while not convergent do
8: Sample data {DS1 , ..., DSK} from DS′

;
9: for i = 1 to K do

10: Sample support set DSi

Sup from DSi and train the
model θ̂:
θ̂′ = θ̂ − α∇θ̂L(f(θ̂, DSup))

11: Sample query set DSi

Que from DSi and compute
gradients for accumulation:
θ̂acc+ = θ̂, ∇θ̂acc

+ = ∇θ̂L(f(θ̂, DQue))
12: end for
13: Meta model update:

θ∗ = θ̂acc/K, θ∗′ = θ∗ − β∇θ̂acc
/K;

14: end while
15: Transfer θ∗ as the initial parameters to the downstream

task DT
i and fine-tune.

C. Multi-source Meta-Learning

MML is used to aggregate the meta-knowledge from multi-
ple resources. In the meta-learning problem setting, the goal is
to learn models that can learn new tasks from small amounts
of data. To achieve this, meta-learning algorithms require a set
of meta-training and meta-testing tasks drawn from a certain
distribution. The key assumption of learning-to-learn is that
the tasks in this distribution share common structure that can
be exploited for faster learning of new tasks.

There are two sets of model parameters required in meta-
learning. One set of parameters is used for the meta-training
task denoted as θ̂, another set is used for the meta-testing
task denoted as θ∗. For a downstream task, θ∗ is employed
for model initialization and to be fine tuned afterward. The
process of MML is described as follows:

Meta-learning involves multiple sampling data subsets
DSample = {DS1 , DS2 , ..., DSK}. Each sampling subset DSi

includes a support set and a query set, denoted as DSi =
{DSi

Sup, D
Si

Que}, and each pair of the support set and the query
set is sampled from the same distribution.

Fast Optimization In a sampling subset, we utilize the
support set DSi

Sup to optimize θ̂. This process can be regarded
as applying DSi

Sup as the training data to train a model, and the
model parameters are optimized by stochastic gradient descent.
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Fig. 2: Overview of the adaptive meta-learning framework.
The larger circles with solid line represent source domains, and
the smaller brimless circles represent target domains. Adaptive
meta-learning is conducted by adding adaptive adversarial
examples into multi-source meta-learning.

θ̂′ = θ̂ − α∇θ̂LD
Si
Sup

(f(θ̂)), (1)

where L denotes the cross-entropy loss function, and α denotes
the learning rate.

Gradients Calculation After the previous step, we can
obtain a set of optimized parameters. Then, we utilize these
parameters to calculate the gradients on the respective query
set. This process can be regarded as applying DSi

Que as the
development data to evaluate the sampled task.

Gradients Accumulation Next, the gradients of multiple
sampled data points are accumulated. Since the accumulation
operation considers the gradient direction generated from
various subsets, it can be regarded as the shared knowledge
across multi-domain being learned.

Parameters Update The cumulative gradient is used to
update the parameters of the meta-model. Each update of θ∗

is seen as one step of training for meta-model. The formula
used to update the parameters is as follows:

θ∗′ = θ∗ − β∇θ̂acc
/K, (2)

where θ̂acc denotes the accumulative gradients on the pa-
rameters θ̂, and β is the learning rate, and K is the number
of sampling tasks.

Target Fine-tuning Through multiple iterations of the
above steps, a set of meta-model parameters θ∗ is learned.
Then, we fine-tune the target model with the initial parameters
θ∗ and the target dataset DT

i , to enable the model to be close
to the target domain.

D. Adaptive Adversarial Training

Under the framework of meta-learning, we further propose
Adaptive Adversarial Training (AAT) aiming to bridge the gap
between domains. It is based on the idea of improving model
generalization capability by adversarial training. Adversarial
training uses a mixture of adversarial and original examples

to train a model to make it more robust. Here, the adversar-
ial examples are in the form of continuous vectors instead
of actual texts in natural languages. Specifically, adversarial
examples are slightly different from original examples, and
they are generated by adding imperceptible perturbation to the
embeddings of the original examples. We first feed the source
data DS into a frozen well-trained target domain network, and
then generate adversarial samples D̃S

Ti
in the direction of the

target domain. The process of AAT is described as follows:
Perturbator Training To generate adversarial samples

more adapted to the target domain, we take the target model
as a perturbator. After fine-tuning on the target data DT

i , we
acquire a target model θt, which is used to generate directional
perturbations. The perturbator is optimized as:

θt
′ = θt − γ∇θtL(f(θt, D

T
i )), (3)

where γ is the learning rate and L denotes the cross-entropy
loss function in MRC

Adversarial Examples Generation Next, the perturbator θt
and the multi-source data DS are used to generate the adaptive
adversarial examples. Specifically, the objective of this step is
to increase the loss of the target model, given Xs sampled from
DS and its added perturbation generated from DT

i . Through
multiple iterations of the above step, we can obtain the set
of adaptive adversarial examples D̃S

Ti
corresponding to DS .

Then, D̃S
Ti

is used to train the meta-model in MML, as well
as the previous source-domain data.

III. EXPERIMENTS

A. Datasets

In the experiments, we choose eight reading comprehension
datasets with different sizes. According to the size of each
dataset, we briefly divide the datasets into source domain and
target domain. Specifically, three larger ones SQuAD [5],
NewsQA [6] and HotpotQA [7] are merged into multi-source
data, and five smaller ones DROP [8], WikiHop [7], ComQA
[9], ComplexQuestion [10] and BoolQ [11] are regarded as
target dataset respectively.

Our adaptive meta-learning method transfers the meta-
knowledge aggregated from multi-source domain datasets
to each target dataset. Due to the insufficient computation
resources, we randomly sample 100K examples from each
source dataset and combine them as the whole source-domain
dataset.

B. Baselines

We mainly compare our method with several popular pre-
trained models, which present state-of-the-art performance in
recent MRC tasks. These pre-trained models are directly fine-
tuned on target dataset. Besides, we also compare our method
with the single-source transfer method and the multi-source
transfer method. For all methods, we adopt the Exact Match
(EM) and the F1 score as our evaluation metrics.

BERT, XLM, XLNet, RoBERTa: They are Transformer-
based pre-trained language models.



SynNet: SynNet [12] is a data augmentation method using
a two-stage synthesis network for MRC.

IMM: IMM [13] is an iterative multi-source mutual knowl-
edge transfer framework for MRC.

MADE: MADE [14] is to model multi-dataset question
answering with an ensemble of single-dataset experts, by
training a collection of dataset-specific adapter modules that
share an underlying Transformer model.

SingleSource-T: We use BERT to train a MRC model on
single-source dataset, and then transfer the trained model to
target domain and fine-tune it with target dataset.

MultiQA: MultiQA [2] is a BERT based MRC model,
which is trained on merged multi-source dataset, and then
transfer the trained model to the target domain.

SingleSource-M: We use MAML to learn meta knowledge
on single-source dataset, and then transfer the meta knowledge
to target domain and retrain it with target dataset.

MultiQA-M: We use MAML to learn meta knowledge
on merged multi-source dataset, and then transfer the meta
knowledge to target domain and retrain it with target dataset.

C. Experimental Setup

In the experiments, for each target domain and each baseline
model, only 300 labeled samples are used for domain adap-
tation. For the MRC task, it can be seen as a low-resource
scenario, because a few hundreds of samples are insufficient to
learn a robust model. In the MADE [14], all the 300 examples
are used to fine-tune the adapters. In the meta-learning, the
300 samples are divided into support set and query set. The
number of the support set and the query set are set to 280
and 20 respectively. We implement our model based on the
Transformers released by Hugging Face, running on a TITAN
RTX GPU. The reported experimental results of our model
are average of 5 runs. Following the settings of MultiQA [2],
we set the training batch size to 24 and three learning rate
α, β, γ uniformly to 3e-5. We set maximum length of input
sequence to 384. The length of some documents exceeds the
limitation, thus we tailor the original document into pieces
with the sliding window size of 384 and sliding stride of
128. All models adopt Adam with β1 = 0.9, β2 = 0.999 for
optimization and generally converge after 2 epochs.

D. Overall Performance

In order to evaluate the effectiveness of the proposed
method, we test various baselines on five target datasets. Table
I presents the main experimental results. From Table I, we can
make three important observations.

First, the models whose knowledge transferred from mul-
tiple source datasets perform better than those transferred
from the single dataset in most cases. For the BERT-based
(non-meta) knowledge transfer methods, MultiQA performs
consistently better than NewsQA-T, HotpotQA-T and SQuAD-
T, on EM and F1 respectively. For the meta knowledge transfer
methods, MultiQA-M achieves a notable performance gain
against NewsQA-M, HotpotQA-M and SQuAD-M. This is in
accordance with our intuition, which indicates that there are

TABLE I: Exact Match and F1 Score on Five Target Datasets
with Different Methods. For Each Target Dataset and Each
Evaluation Metric.

Model Drop WikiHop ComQA ComplexQ BoolQ
EM F1 EM F1 EM F1 EM F1 EM F1

BERT 46.51 54.04 19.29 22.27 12.25 14.37 23.31 27.41 64.83 65.75
XLM 48.16 57.94 16.20 21.22 12.96 15.76 28.22 37.46 66.64 67.47
XLnet 44.00 53.20 16.14 19.16 8.24 10.02 30.06 38.18 64.50 64.50
Roberta 48.05 56.51 17.04 20.11 10.01 11.95 15.34 20.74 62.17 62.17

NewsQA-T 46.92 55.06 20.86 24.72 21.44 27.30 39.26 44.54 67.13 67.80
HotpotQA-T 47.19 55.24 21.88 26.01 22.03 27.80 39.26 43.68 67.40 68.18
SQuAD-T 48.54 56.48 21.33 25.41 27.56 34.38 38.65 44.74 66.94 67.27
MultiQA 51.07 58.17 21.94 26.30 30.98 37.48 42.94 49.85 69.45 69.92
SynNet 37.03 45.82 19.98 21.71 29.75 31.23 40.38 46.83 64.08 64.14
IMM 40.29 48.73 20.00 23.82 23.20 29.56 34.97 43.32 64.34 64.51
MADE 48.65 56.69 31.06 39.12 43.62 52.13 46.20 55.38 66.36 66.69

NewsQA-M 47.91 55.93 21.49 25.91 21.08 26.07 34.97 41.51 64.56 66.21
HotpotQA-M 47.52 55.40 21.78 25.79 24.26 29.88 34.97 40.23 69.39 69.78
SQuAD-M 48.65 56.09 23.31 27.64 28.15 35.23 39.26 47.58 60.98 66.31
MultiQA-M 52.99 60.34 25.45 29.98 33.45 41.10 43.56 50.95 69.45 69.92

Ours 59.68 65.92 25.67 30.15 36.98 46.51 44.17 52.03 73.06 74.28

shared abilities required to answer questions across different
datasets, and exploring the shared abilities from multiple
source datasets instead of the single one is helpful to improve
the performance of the target-domain MRC.

Second, MultiQA-M performs better than the fine-tuned
methods, including BERT, XLM [15], XLNet [16] and Roberta
[17], and also outperforms the traditional knowledge transfer
methods, including SynNet, IMM and MultiQA. The reason
for the unsatisfactory results of fine-tuned methods mainly lies
in the lack of sufficient training data for the target domain, and
high-capacity parameters of the pre-training models. In gen-
eral, pre-trained representations improve generalization, but
their effect is moderate when the training data is insufficient.
Besides, due to the meta-knowledge over multiple source
domains promoting the fast convergence and adaptation to
the target domain, transferring meta-knowledge is superior
to the traditional knowledge. It suggests that meta-learning
over multiple source domains is good at capturing the shared
knowledge regardless of the data imbalance and different
focus.

Third, our model achieves the best performance on all
target datasets, and outperforms the baselines by a large
margin. It indicates that not only the meta-knowledge but
also the domain-specific meta-knowledge contribute to the
effectiveness of our model. From the experimental results,
we can infer that, in view of the meta-knowledge, there is
still a gap between source domains and target domains. And
correspondingly, the proposed adaptive meta-learning strategy
is effective to fill the gap. Because different meta-knowledge
can be obtained in the direction of different target domain
under our design, the domain-specific meta-knowledge is well
adapted to each target domain. In general, our design takes
both generality and individuality into account, which is more
appropriate for multi-source domain adaptation in MRC.

As shown in Table I, our model and MADE model have
different strengths on the target domain datasets. In fact, the
two models follow two different technique lines, thus having
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different expertise. Specifically, MADE is based on adapters,
which provide a parameter-efficient alternative for the full
fine-tuning in which we can only fine-tune lightweight neural
network layers on top of pre-trained weights. However, our
method is based on meta-learning, which helps optimize pa-
rameters to give better predictions in shorter time. Though the
performance of two models is almost comparable, our method
has two advantages. First, our method is model-agnostic and
can be easily equipped with various machine learning models,
including but not limited to pre-trained language models.
Second, our method can train a more generalized model, which
facilitates the learning of a novel task. For example, MADE
performs better on WikiHop, ComQA and ComplexQuestion,
but performs dramatically worse on Drop and BoolQ. Maybe
it is because the former ones are all collected from Wikipedia,
resulting in the similar question answering process, whereas
Drop is crowd-sourced and adversarially created, and BoolQ
provides quite different question type. By contrast, our method
performs relatively stable among these datasets.

Besides, it is worth noting that the results in Table I are
lower than those reported in the Leaderboards. The reasons lie
in two aspects. First and foremost, the goal of our work is not
to design a highly complicated model or pre-processing tech-
nique to significantly surpass the existing methods. Instead,
we hope to explore a direction for MRC domain adaptation
and other similar transfer learning problems. In fact, some
of the top ranked models on the Leaderboards are based
on super large-scale language models, e.g., T5 and GPT3.
Due to the limitation of computational capacity, we finally
adopt the widely used Bert-base as our backbone model, but
the proposed cross-domain method can be easily combined
with the existing models. Second, the datasets used for the
manuscript and the Leaderboards are different. In our work,

for each target domain, only 300 labeled samples are used
for domain adaptation, while for the Leaderboards all labeled
samples could be used.

To better measure the impact of randomness on the dataset,
we have additionally compared the randomly sampling 100K
data with intentionally selected 100K data from the multi-
source dataset. Specifically, the intentionally selected 100K
samples are ranked alphabetically. Figure 3 presents the com-
parison results. As seen from Figure 3, our model performs
basically equal on two kinds of datasets. It proves that our
proposed method is less susceptible to the randomness on the
quality of the combined multi-source dataset, to some extent.

E. Ablation Study
The main highlight of our work is the application of adaptive

adversarial training in meta-learning for multi-source domain
adaptation of MRC. To evaluate the effect of adaptive adver-
sarial training, we compare our framework with its following
variants: (1) Meta-learning without adversarial training. (2)
Meta-learning with traditional adversarial training, i.e., the
perturbations are added in the direction of the source domain.
(3) Meta-learning with adaptive adversarial training, i.e., the
perturbations are added in the direction of the target domain.

Owing to the limitation of space, Figure 4 only illustrates
the comparison results on four target datasets. From Figure
4, we can observe that compared with general meta-learning,
the introduction of traditional adversarial training does not
improve performance. In fact, the effectiveness of adversarial
training mainly owns to its ability of local smoothness around
data points, and pushing decision boundary away from data
points. However, the generated examples surround the original
examples, which has only limited ability to fill the domain
gap. In order to guide the direction of generating adversar-
ial examples from source domains towards target domain,



we further propose adaptive adversarial training. Moreover,
traditional adversarial training under transfer scenario may
further widen the gap between the source domain and target
domain, thus resulting in a performance drop. Overall, it is
surprising to find that meta-learning with adaptive adversarial
training significantly outperforms the meta-learning with or
without traditional adversarial training. The reason is that the
proposed adaptive adversarial training can guide the generation
of adversarial examples to the direction of the target domain,
then the model trained with these adversarial examples can
boost the adaptation ability.

IV. RELATED WORK

a) Transfer learning for MRC: MRC is a challenging
Natural Language Processing research field with wide ap-
plications [18]. To address the low-resource MRC problem,
previous studies usually use pre-trained language models to
enhance the performance of MRC models, such as BERT.
Meanwhile, many efforts have been made to use transfer
learning methods to improve MRC performance in target
domain via datasets in source domain, among which fine-
tuning is the most common technique [19].

Recently, [20] presented an alternate meta-learning frame-
work for complex question answering over knowledge bases,
which jointly and alternately optimized a retriever to select
questions, and a programmer to produce an answer. However,
this framework is designed for the scenario of question dis-
tributional bias within the same dataset instead of learning
shared knowledge among different datasets. Differently, we
aim to learn and transfer the shared knowledge among multiple
MRC datasets through adaptive meta-learning. MADE [14]
and our work share the similar motivation, but lie in different
technique lines. MADE is based on adapter, which can be used
as a parameter-efficient alternative to fine-tuning. We provide
a investigation of meta learning combined with adaptive ad-
versarial training, which is a missing part in the literature.

b) Meta-Learning: Meta-learning exploits inherent
structures in data to learn more effective learning rules for
fast domain adaptation [21]. To make the model sensitive to
the new task, one popular direction of meta-learning is to
train a meta-learner to learn how to update the parameters of
the target model. [3] proposed Model Agnostic Meta-Learning
(MAML) that constrains the learning rule for the model and
uses stochastic gradient descent to quickly adapt networks to
new tasks. This pattern has been widely used to adapt deep
networks to resource-poor environments. S2A [22] first trained
a retriever and a programmer separately, and then established a
meta-learning task for questions and employed MAML to fine-
tune the programmer, based on the similar samples found by
the retriever. Unlike the above works, we apply MAML to the
multi-domain MRC task with an adaptive adversarial training
in its framework, and it encourages the learned knowledge to
fit each target domain well.

V. CONCLUSION

In this work, we propose an adaptive meta-learning frame-
work for multi-source domain adaptation of MRC. With this
framework, we can learn the meta-knowledge, which implies
the shared abilities of reading comprehension, across multiple
source datasets. Furthermore, an adaptive adversarial training
strategy is devised to obtain domain-specific meta-knowledge,
which fills the gap between source and target domains. Exten-
sive experiments demonstrate that our framework establishes
a state-of-the-art baseline for low-resource MRC.
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