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Abstract

Modern real-time system development methodologies
describe a stage in which application tasks are deployed
onto an execution platform. The deployment process is di-
vided into two steps: (i) task placement on processors and
(ii) task scheduling to determine their execution order. The
overall performance of the deployment model depends on
the two steps, which are interdependent. In this paper, a
new method based on reinforcement learning techniques,
called PSRL, is proposed. PSRL explores all the feasible
placements in the first step. In the second step, an optimal
schedule is considered for each feasible placement. PSRL
generates the optimal deployment, which corresponds to
the placement and scheduling that minimize task response
times. Application to case studies shows the applicability
and quality of the obtained solutions when compared to re-
lated work.

1 Introduction
Today, embedded systems can be found in a wide range

of applications, including avionics, trains, and medical
equipment. Embedded systems are frequently real-time as
they must perform certain tasks in a specific amount of
time (i.e., deadline); failure to satisfy the timing constraints
might be essential for human safety [1]. Currently, real-time
embedded systems are becoming more complex, requiring
more computational power. As a result, to be executed, a
system’s functionalities (i.e., tasks) may be distributed on
different execution units called processors.

The development of Real-Time Embedded Systems
(RTES) requires the definition of the deployment model.
The deployment stage involves two main steps: placement
and scheduling [2]. The task placement problem is con-
cerned with task-to-processor mappings. The scheduling
problem, on the other hand, aims to define the execution or-
der of tasks in each processor. To guarantee the respect of
real-time properties, design-time verification using sched-
uleability analysis techniques [3] is typically employed.

Producing a deployment model has been proved to be
NP-hard problem even for small-size systems [3]. Due to
their inherent complexity, placement and scheduling prob-

lems should be automated by solving an optimization prob-
lem with respect to real-time constraints. This problem has
been largely considered in the literature. Some works con-
sider partially the problem by concentrating solely on the
placement or scheduling issue. In [4], the authors use ge-
netic algorithms (GA) to solve the task placement prob-
lem in distributed systems to minimize communication cost.
The authors in [5] provide a Mixed Integer Linear Pro-
gramming (MILP)-based technique to minimize the block-
ing time between tasks in the placement phase. Produc-
ing the optimal scheduling of tasks is not considered in this
work; however, the authors use the Rate-Monotonic algo-
rithm [6] for priority assignment and focus on minimizing
the number of tasks to improve the overall performance of
the system. The scheduling problem is addressed in [7]
where a new algorithm based on Reinforcement Learning
(RL) is proposed for global fixed-priority task assignment in
multi-processor real-time systems. In [8], the authors pro-
pose a new scheduling algorithm that maximizes the mag-
nitude of safety margins while respecting the engineering
constraints. In [9], new scheduling policies are proposed
for heterogeneous platforms equipped with a hardware ac-
celerator. When dealing with both problems (i.e., placement
and scheduling), studies in the literature consider, in gen-
eral, sub-optimal staged approaches. Existing approaches
use optimization techniques to optimize independently the
placement and the scheduling steps. For instance, in [2],
the authors propose a GA-based approach where they min-
imize the number of processors in the placement step and
the response time of tasks in the scheduling step. However,
the authors claim that the obtained solution is near-optimal
since the optimization performed in the first step can hide a
better solution in the second phase.

To address this problem, we propose in this paper an RL-
based technique called PSRL (i.e., Placement and Schedul-
ing using Reinforcement Learning). The PSRL method de-
fines two steps: The first stage involves an exhaustive RL-
based search of all feasible placements and which serves as
input to the second stage. The second step determines an RL
optimal scheduling for each placement. The global optimal
scheduling is then the best among all the alternatives. The
optimal scheduling in this paper is the one that optimizes
the response time of tasks. The placement and scheduling
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problems are thus modeled as a Markov Decision Problem
(MDP) [6] and the Q-learning algorithm [10] is used in the
placement and scheduling steps. The originality of this pa-
per is the use of Q learning algorithm, typically used to gen-
erate an optimal solution, in the placement phase to conduct
an exhaustive search of feasible solutions through the ex-
ploitation of the Q table. As a result, the scheduling step
explores all the optimal solutions without being constrained
by a given placement, thus avoiding producing sub-optimal
solutions.

The rest of the paper is organized as follows: Section
2 gives the system formalization. Section 3 describes the
proposed PSRL method and details RL algorithms. Section
4 illustrates experimentation, and Section 5 concludes the
paper and discusses future directions.

2 System formalization
The placement problem considers as inputs: (i) the task

model that we denote by τ in this work. We assume that
this model is composed of n synchronous, periodic, and in-
dependent tasks (i.e.,τ = {T1, T2 . . . Tn}). Each task Ti is
characterized by static parameters Ti = (Ci, pri, di) where
Ci is an estimation of its worst case execution time, pri
is the activation period of the task Ti, and di is the deadline
that represents the time limit in which the task Ti must com-
plete its execution, (ii) and the hardware model that we de-
note by P , represents the execution platform of the system.
We assume that this model is composed of m homogeneous
processors (i.e., P = {P1, P2, . . . , Pm}).

The placement step produces a set of possible place-
ments that we denote PM . Each placement PMk ∈ PM
defines a way to place tasks among the different processors
in the hardware model. For RTES, the placement model
PMk must be feasible. Feasibility means that the place-
ment of the real-time tasks on the different processors must
guarantee respect for the timing requirements of the sys-
tem. In that context, Audsley [3] developed a necessary and
sufficient schedulability test. This test is based on the com-
putation of the processor demand factor Up and is defined
as follows:

Up =

n∑
i=1

Ci

di
≤ n(2

1
n − 1) (1)

For each feasible placement, PMk, the scheduling step
defines, in each processor, the execution order of tasks to
which they are assigned. As a result, a deployment model
DMk is produced. We denote by DM the set of deploy-
ment models produced in the scheduling step. Each task
Ti in the deployment model DMk ∈ DM will be mapped
to a particular processor and will be assigned a priority pi.
Priority assignment in the scheduling stage must guaran-
tee the feasibility checked in the placement step. Real-time
feasibility at this level guarantees that the response times
of the different tasks are lower or equal to their deadlines

(i.e., ∀Ti ∈ τ,RTi ≤ di). The response time of a task Ti

is given in [3], and is computed according to the following
expression:

RTi = Ci +
∑

s∈hp(i)

⌈
RTi

prs

⌉
Cs (2)

Where hp(i) refers to the tasks with priorities higher or
equal to the priority of the task Ti

An optimal deployment model DM∗k is one that mini-
mizes the Sum RT-ratio defined by [9] as a measure of per-
formance for scheduling models, which is computed as fol-
lows:

n∑
i=1

RTi

di
(3)

We identify by DM∗ the deployment model that has the
lowest Sum RT-ratio among all produced DM∗k, such as∑

Ti∈DM∗

RTi

di
= min

DM∗k∈DM

∑
Ti∈DM∗k

RTi

di
(4)

3 PSRL description
In this section, we describe the proposed method for real-

time task placement and scheduling. The PSRL method is
schematically described in Figure 1; the specific steps are
shown in Algorithm 1. The PSRL technique considers as
entries: (i) the task model, which describes the applica-
tion functions, and (ii) the hardware model, which describes
the execution processors. The initial stage is to generate
possible feasible placements to the given problem. After
producing all solutions, the second phase iterates on each
placement to define the optimal scheduling. In fact, the sec-
ond phase generates one deployment model DM∗k for each
placement PMk which minimizes the Sum RT-ratio (see ex-
pression 3). Once all of the deployment models for each
placement have been generated, the PSRL algorithm selects
the optimal solution from among those generated (DM∗)
(as defined in the expression 4).

3.1 Step 1: Generate feasible placement models

As previously mentioned, the objective of this step is
to produce placement models for a given task and hard-
ware models. As shown in Figure 1, when no solution is
found, the designer has to adjust the parameters of the entry
models. Otherwise, this step generates all feasible place-
ment models. In this step, we are particularly referred to
the Q learning algorithm (i.e., a free model RL algorithm)
for the exploration of the design space. Indeed, during its
processing, Q learning generates a Q table as a workspace
where it stores all its knowledge about the task placements.
At the end of the agent learning, the Q table is used to gen-
erate a unique solution, the optimal one. In this paper, since



Figure 1: PSRL overview

Algorithm 1: PSRL Algorithm

Input: τ : List of tasks
P: List of processors

Output: DM∗: The optimal deployment model
Notations:
PM : Feasible placement models
DM : Optimal deployment models
DM∗ : Best deployment model
PM← Generate feasible placement models (τ ,P);
foreach PMk ∈ PM do

DM∗k ← Generate Optimal Scheduling (PMk);
DM ← Update(DM∗k);

end
DM∗ ← Select Best Solution (DM );
return DM∗;

optimal placement does not guarantee an optimal deploy-
ment model, we propose to use Q learning for an exhaustive
search of the feasible placements (the optimal and the sub-
optimal ones). In fact, we believe that sub-optimal place-
ments can hide good scheduling, even the optimal one. As
a result, we use the Q table to extract all the placement mod-
els. The final states in the Q table refer to possible place-
ment models that may be feasible or not following the ini-
tial designer-specified constraints. Application of RL tech-
niques to the placement problem requires the refinement of
its key elements as the following:

State : It is a snapshot of the system state at time step t,
it is represented by the collection of tasks already placed on
the processors with respect to their deadlines, as well as the
list Lt of tasks that have not yet been placed

Decision epoch : Matches the placement of all the tasks
on the different processors

Agent : It is the decision maker, it has to be learned and
then used to decide a processor for a given task

Reward (R) : It is the award given by the system to the
agent in return to the agent’s action and it is computed as
Equation 5.

R =

 Uj − Ui When there is enough
space on Pj to support Ti,

−n Otherwise
(5)

Where Uj denotes the utility of processor Pj and Ui =
Ci/di, denotes the utility of the task Ti. Algorithm 2 de-
scribes the first step. As an initial step, the algorithm builds
the Q table then the agent starts its learning through the as-
signment of a given task to a processor. If the assignment
helps to yield a feasible placement, the agent is rewarded; if
not, it is penalized. Equation 5 summarizes the reward com-
pute. The process of placement selection is iterated until the
Q table values become invariable. At this step, the totality
of the system’s states are visited, and the majority of solu-
tions are built in the Q table final states, i.e states where
all the tasks are placed. Note that a feasible placement is
one in which each task from the task model is assigned to
a processor with respect to the processor utility constraint
(see equation1).

3.2 Step 2: Generate Optimal Scheduling

The set of possible placement models generated in the
first stage is used as input for the second. Q learning is then
reused in the second stage to build an optimal deployment
model DMk for each placement PMk. For the scheduling
problem, key RL elements are also refined as the following:

State: At a time step t a system state St is represented by
the set of tasks already ordered and the ones waiting for a
priority assignment

Decision epoch: Matches the ordering of all the tasks on
a given processor

Agent: The decision maker, it chooses the action to move
from St to St+1 will maximizing its reward following a pol-
icy π

Reward (R): The bonus that the agent attempts to
maximize or the penalty that the agent attempts to avoid
following the execution of an action. In the scheduling
problem, the agent must select the job that generates the
minimum Sum RT-ratio (see equation3). However, because
the agent seeks to maximize R, R is defined as the inverse
of the RT-ratio and is calculated as:

R =

{
1

RTi
di

, when RTi ≤ di

−m Otherwise
(6)



Algorithm 2: Step1: Generate feasible placement models

Input: τ : List of tasks; P: List of processors;
Output: PM: The feasible placement models
Notations:
α: The learning rate
ϵ: The ϵ-greedy value
γ: The discount factor
ϵ decease factor: The ϵ degradation factor
Q : The Q-table
Lt : List of unplaced tasks
PMt : The placement model at time step t (i.e., list of

(processor, tasks) pairs)
S : The state at the time step t
S′ : The state at the time step t+ 1
States← Generate PlacementStates (τ , P);
Actions← Generate PlacementActions (τ , P);
Q← Create Q-table (States, Actions);
while Q(S, a) still moving do

reset S;
while Lt is not empty do

a← Select Placement (ϵ, Lt);
Take Action a then Compute (R) ; /* compute
reward using expression 5 */

Observe Q(S′, a′);
Q(S, a) =
Q(S, a) + α[R+ γmaxa′Q(S′, a′)−Q(S, a)] ;
/* Bellman’s equation [10] */

Update Q(S, a);
Remove (Ti, Lt) ; /* remove Ti from Lt */
S ← S′;

end
ϵ←max(ϵ - ϵ decease factor, 0);

end
PM← Extract feasible final states from Q ;
return PM;

The RL model for the scheduling stage is described in the
Algorithm 3. After creating the scheduling Q table, the
agent is trained how to select the task to be ordered with
the aim to maximize its profit as described in the expres-
sion 6. This phase is repeated for each processor in the cur-
rent PMk to finally produce the optimal deployment model
DM∗k.

The proposed algorithms (Algorithm 2 and Algorithm
3) have some initialization parameters, such as α, which
represents the learning rate to moderate the speed of learn-
ing and the update of Q-values we assume α = 0.5), and γ,
which represents the discount factor that quantifies the im-
portance given to future rewards (in our approach we con-
sider that future task placement are important thus we at-
tribute an enough great value to γ = 0.9). To choose an ac-
tion (i.e., for the placement or scheduling), Q-learning uses
an ϵ-greedy policy [11]. ϵ-greedy policy is an efficient ran-
dom approach that selects with a probability ϵ a random
action and with a probability (1- ϵ) the action with the high-
est estimated reward Q(S, a). An ϵ of zero means that the
agent will never explore new states (i.e., choose action with

Algorithm 3: Step2: Generate Optimal Scheduling

Input: PMk: A feasible placement model
Output: DM∗k: The optimal deployment model for the

placement PMk

Notations:
L: The list of tasks to be scheduled in the processor Pj ; α: The

learning rate; ϵ: The ϵ-greedy value; γ: The discount factor
ϵ decease factor: The ϵ degradation factor
Q : The initial Q-table for the processor Pj

Lt : List of unscheduled tasks
Scht : The scheduling model at time step t
S: The state at the time step t
S′ The state at the time step t+ 1
foreach Pj ∈ PMk do

S ← Generate SchedStates (PMk);
A← Generate SchedActions (PMk);
Q← Create Q-table (S, A);
while Q(S, a) still moving do

reset S;
while Lt is not empty do

a← Select Scheduling (ϵ, Lt, Scht);
Take Action a then Compute (R); ; /* compute
reward using expression 6 */

Observe Q(S′, a′);
Q(S, a) =
Q(S, a)+α[R+ γmaxa′Q(S′, a′)−Q(S, a)]
; /* Bellman’s equation [10] */

Update Q(S, a);
Remove (Ti, Lt) ; /* remove Ti from Lt */
Scht ← Update (Scht) ; /* schedule Ti */
S ← S′;

end
ϵ←max(ϵ - ϵ decease factor, 0);

end
DM∗k ← Update (DM∗k) ; /* ADD Scht to DM∗k
*/

end
return DM∗k;

the best Q-value), whereas an ϵ of one forces the agent to
only explore (i.e., choose only random action). As a result,
a well-studied value of ϵ is necessary to capture a trade-off
between exploration and exploitation.

4 Evaluation
This paper considers two case studies to assess the ap-

plicability and effectiveness of the proposed PSRL method.
The first is a subsystem of Continental AG’s Cruise Control
System (CCS), which is used on AUTOSAR-compliant ar-
chitectures [12] and allows a car’s speed to be maintained
regardless of the surface form (flat or sloping) on which it
is driving. The second case study is the Unmanned Air Ve-
hicle (UAV), which is an autonomous plane with a camera
dedicated to dynamically defined waypoints that was con-
structed as part of the AMADO project [13].

It is expected that the two case studies will run on two
processors, P1 and P2. Based on the data set defined in
[14], Table 2 and Table 1 describe, respectively, the related
task models composed of eight periodic tasks for CSS and



Table 1: UAV Taks model description

Task Ci (m) pri (m) di (m)
T1 1 100 10
T2 1 25 25
T3 1 30 30
T4 5 125 80
T5 1 50 7

five periodic tasks for UAV with their real-time parameters.

Table 2: CCS Taks model description

Task Ci (m) pri (m) di (m)
T1 3 125 20
T2 3 125 80
T3 2 125 20
T4 4 125 80
T5 2 125 20
T6 4 125 80
T7 3 125 80
T8 2 125 80

Since the objective of the first step is to perform an ex-
haustive search of feasible placements, we perform, as a
first evaluation, a sensibility analysis of the number of fea-
sible placement models. We maintain a set of experiments
on the epsilon value (ϵ in Algorithm 2), which guides the ex-
ploration/exploitation process to fill the Q table and subse-
quently identify the feasible placements. While the value of
epsilon is increased at each step, the placement generation
algorithm (Algorithm 2) is run and the number of feasible
placement models is tracked. We remark that the number of
placement models increases from one step to another until it
converges and reaches a maximum value (i.e., the number of
feasible placement models for the considered application).
However, this comes at the expense of the number of iter-
ations required for the agent to reach convergence. In fact,
a low epsilon value forces the agent to rely on its limited
experience, decreasing the possibility of many states in the
Q table being visited and, as a result, reducing the number
of feasible solutions generated. A large epsilon value allows
the agent to visit more states in the Q table, but also causes
the time of convergence to be delayed. A trade-off between
the episode number and the epsilon value is required to gen-
erate the set of possible placement models in a reasonable
number of iterations.

Figure 3 and Figure 2 show the evaluation results for re-
spectively the UAV and the CCS case study. Figure 3 shows
two curves. The green corresponds to the feasible place-
ment models number for various epsilon values, whereas
the blue corresponds to the total number of placement pos-
sibilities (i.e., feasible and non feasible placement models).
As the number of placement models is the same for ep-
silon ∈ [0.6..1], it is unnecessary to run PSRL with epsilon

Figure 2: CCS placement models

greater than 0.6 for the UAV case study. An epsilon value
greater than 0.6 results in more useless episodes. We also
note that the number of feasible placement models is close
to 1200, which is relatively low when compared to the to-
tal number of placement models. Indeed, this is explained
by the fact that, due to the real-time parameters considered
for the UAV case study, solutions that result in tasks run-
ning in one processor (P1 or P2) are all rejected. Figure
2, in contrast to Figure 3, shows only one curve. Indeed,
for the CCS case study, the real-time parameters considered
lead to a scenario in which all possible placement models
are feasible. This explains why we get the same curves.

Figure 3: UAV placement models

We conduct a second set of experiments on the two case
studies, where we set the epsilon value to 0.6 for the UAV
and to 0.5 for the CCS, respectively (i.e., results of the first
experiments). The goal of this evaluation is to compare the
quality of the derived optimal model to the approach de-
scribed in [2], where the deployment model is generated in
two steps: the first seeks to minimize the number of pro-
cessors, while the second aims to decrease task response
time. Figures 4 and 5 demonstrate, for the CCS and UAV
case studies, the set of deployment models represented by
the Sum RT-ratio values for all viable placement models,
with extreme values matching the best schedule if it is a
global minimum and the worst one if it is a global maxi-
mum. The figures show that the optimal solution for both
case studies is far from matching the processor number min-
imization [2], thus a thorough search of all conceivable



Figure 4: CCS Deployment Models

placement is quite important for absolute optimal schedule
generation. For the UAV case study, the optimal deploy-
ment model produced by the PSRL method is DM∗ =
{P1{T3, T1, T5, T2}, P2{T4}}, where T1, T2, T3, and T5

are assigned to the processor P1 and T3 has the highest pri-
ority value, however T2 has the lowest one. T4 in turns is as-
signed to the processor P2. For the CCS case study, the op-
timal deployment model produced by the PSRL method is
DM∗ = {P1{T1, T2, T7, T6}, P2{T4, T3, T5, T8}}, where
T1, T2, T6, and T7 are assigned to the processor P1 and
T1 has the highest priority value, however T6 has the lowest
one. Tasks T3, T4, T5, and T8 are placed in the processor P2

where T4 is assigned the highest priority and T8 the lowest
one.

Figure 5: UAV Deployment models

5 Conclusion
In this paper, we propose a new method called PSRL

for real-time task placement and scheduling. The proposed
solution was based on reinforcement learning techniques,
particularly the Q-learning algorithm, to solve the deploy-
ment problem for real-time systems in two stages. In the
first stage, placement, an exhaustive search for all feasible
solutions was performed. For each feasible placement, the
scheduling stage produces the deployment model, which
minimizes the response times of tasks. The best solution
among all the ones generated is considered an optimal de-
ployment for the given problem. PSRL was tested on two
case studies with different properties, and the results prove

the efficiency of PSRL compared to related work. In future
work, we aim to extend the proposed approach by consid-
ering more complex systems. In addition, we intend to con-
sider other optimization techniques. Thus, an extension of
this technique to be multi-objective will be addressed.
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