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Abstract

In standard neural network training, the gradients in the
backward pass are determined by the forward pass. As a
result, the two stages are coupled. This is how most neu-
ral networks are trained hitherto. Gradient modification in
the backward pass has seldom been studied in the litera-
ture. In this paper we explore decoupled training, where
we alter the gradients in the backward pass. We propose
a simple yet powerful method called PowerGrad Transform
(PGT), that alters the gradients before the weight update
in the backward pass and significantly enhances the predic-
tive performance of a convolutional neural network. PGT
trains networks to arrive at a better optima at convergence.
It is computationally efficient, and adds no additional cost
to either memory or compute, but results in improved final
accuracies on both the training and test datasets. Power-
Grad Transform is easy to integrate into existing training
routines, requiring just a few lines of code. With decou-
pled training, our method improves baseline accuracies for
ResNet-50 by 0.73%, for SE-ResNet-50 by 0.66% and by
more than 1.0% for the non-normalized ResNet-18 network
on the ImageNet classification task.

1. Introduction

Backpropagation is traditionally used for training deep
neural networks [8]. Gradients are computed using basic
calculus principles to adjust the weights during backpropa-
gation [[7]. However, decoupling the backward pass from
the forward pass by modifying the gradients to improve
training efficiency and final convergent accuracy has hardly
been explored. In this paper we explore the landscape of de-
coupling the forward pass from the backward pass by alter-
ing the gradients and subsequently updating the network’s
parameters with the modified gradients. There are several
ways to achieve gradient modification in the backward pass.
We discuss a few techniques in Fig. [T}

Type 0: No modification: In this method, we calculate
the gradients using the standard calculus rules and use the
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chain rule to calculate the gradients of the rest of the net-
work’s parameters, also known as backpropagation as por-
trayed in Fig. [T(a). The network is then updated with the
gradient descent equation:

Wit =W - AV, (L) i=D,D—1,...,1 (1)

Type I: Independent gradient modification at multiple
points: Here the gradients are first computed using stan-
dard procedure and then individually altered as shown in
Fig. [[(b). Gradient clipping [11] and Adaptive gradient
clipping [1] are examples of such modifications. It can be
described as:

Wﬁl =

Wi =Af(Vw,(L)) i=D,D—1,...,1(2)

where the gradients Vyy, (L) are transformed using the
transformation function ‘f” before the weight update.

Type II: Gradient modification at a point very early in
the backward graph: In this type of modification, the gra-
dient is altered at a very early stage in the backward com-
putation graph and then all subsequent gradients are gener-
ated using the values obtained with the modified gradients
(Fig. [I(c)). Because of the chain rule, network parameters
whose gradients are connected to the point of alteration in
the computation graph also gets subsequently altered. It can
be described as:

W =Wh = A f(Vw, (L)) 3)
Wit =W! — AV, (L)* i=D—-1,...,1 4

where the gradient Vyy, (L) is first transformed using
the transformation function ‘f’ and then this transformed
gradient is propagated through the rest of the backward
graph. All other gradient vectors Vyy, (L)* are computed
as it is, but because of the early injection of the transformed
gradient Vyy,, (L), all other gradient vectors that are con-
nected to the transformed gradient through the chain rule
(Vw, (L)*, i=D-1,...,1), gets subsequently altered.

Type I is computationally more expensive than type II as
it requires altering the gradients of each and every parame-
ter individually. We propose PowerGrad Transform (PGT),
a type II method that modifies the gradients at the softmax
layer. The following are the major contributions of this pa-
per:
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Figure 1: Different ways of altering gradients in the backward pass. Blue blocks denote different layers. Orange blocks
indicate the backward graph with unmodified gradients. Green blocks represent transformation functions, while red blocks

indicate transformed gradients.

1. We propose PowerGrad Transform (PGT), which de-
couples the backward and the forward passes of neural
network training. PGT alters the gradients in the back-
ward pass before the update step leading to accelerated
training and a significant boost in the network’s predic-
tive performance.

2. We perform theoretical analysis of the properties of the
PGT and also show that in non-BN networks, PGT can
be used to increase the network’s convergence rate and
improve the final accuracy.

3. We find that PGT improves the performance for a vari-
ety of models (non-BN and BN ResNets, SE-ResNets)
using the ImageNet dataset. We empirically conclude
that PGT helps a network to improve by locating a
more optimum convergence point.

2. Related Works

Gradient Clipping is a gradient modification method
that involves clipping/altering the gradients with respect to
a predefined threshold value during backward propagation
through the network and updating the weights using the
clipped gradients [15]][[13]. By rescaling the gradients, the
weight updates are likewise rescaled, significantly reduc-
ing the risk of an overflow or underflow [10]. GC can be
used for training networks without batch-normalization. At
larger batch sizes, the clipping threshold in GC becomes
highly sensitive and requires extensive finetuning for vari-
ous models, batch sizes, and learning rates. Adaptive Gra-
dient Clipping [1]| is developed to further enhance back-
ward pass gradients than what is performed by GC. It takes
into account the fact that the ratio of the gradient norm to
the weight norm can provide an indication of the expected
change in a single step of optimization. Label smoothing,
introduced by Szegedy et al. [14], utilizes smoothing of the
ground truth labels as a method to impose regularization on
the logits and the weights of the neural network. AGC per-
forms better than GC in non-normalized networks. How-
ever, we show that PGT outperforms both in networks such
as ResNets.

Knowledge distillation (KD) [3]] is a process in which
two networks are trained with hard and soft labels alter-
natively. Variants of knowledge distillation include self-
distillation [[16], channel distillation [3]. Even though both
PGT and KD require probability manipulation, the key dif-
ference is that in the latter the transformation is applied in
the forward pass, while PGT is a backward pass modifica-
tion only. PGT differs from self-knowledge distillation as
it neither introduces any additional sub-modules nor cre-
ates different ensembles to improve the performance of the
model. PGT follows the standard neural network training
mechanism with modified gradients.

3. PowerGrad Transform

A neural network with parameters W generates C' log-
its denoted by z for every input vector z. z is given as
z = Wx. Then a set of probability values p; are generated
from the logits using a softmax function which is defined as

p; = ZC =5 Di and z; represent the predicted probabil-
=1

ity values and the logits for the i*”* class respectively. If the
loss function is cross- entropy loss, then the value of the loss
is givenas L = — ZZ 1 ¢: log (p;) where g; is the ground
truth label of the i*" class for a particular training exam-
ple. By standard gradient update rule, we can calculate the
gradient of the loss with respect to the logits (%L,i =Di — G-

The PowerGrad Transform technique is now described.
We introduce a hyperparameter «, which takes a value be-
tween [0, 1] and regulates the degree of gradient modifica-
tion. The PowerGrad Transform method modifies the pre-
dicted probability values in the backward pass as follows:

> j=1P§

The above transformation changes the gradient of the

loss with respect to the logits as follows:

LC 0<a<l (5

oL
9z, Di — G (6)

The rest of the backward pass proceeds as usual.



3.1. Properties of the PowerGrad transformation

We use the same setup as described in section [3} To ex-
plore the properties of PGT, we start by investigating the
effect of the transform on the softmax probabilities.

Lemma 1. For any arbitrary probability distribution P
with probability values given by p; fori = 1,...,C, the
corresponding transformed probability values p) given by

1
[Eq. [5]| has a threshold (Zle p?) “~" and
c
P> pi ifp; < (Zp?)
j=1

c
. a—1
P < pis ifpi > (ZP?)
=1

We call this threshold, the stationary threshold. The sta-
tionary threshold is that value of p; that does not change
after the transformation. However, when p; is greater than
the stationary threshold, p); < p;.

Proposition 1. At o = 0, the stationary threshold equals
1/C and all values of the transformed distribution p] re-
duces reduces to the uniform distribution for: = 1,...,C..

Proof. From Eq. (7)), we see that the stationary threshold
at « = 01is 1/C. Also, following from the definition of the
transformed probabilities (Eq. [5) we conclude that if oo = 0,
then all values of p} are 1/C. Therefore the transformed
distribution at o = 0 is a uniform distribution.

Theorem 1. For any arbitrary probability distribution P
with probability values p; for i = 1,...,C, the stationary
threshold of the transformed distribution P’ with probabil-
ity values p, = %, 0 < a < 1 is a monotonically
non-decreasing function with respect to a.

Proof. To prove monotonicity, we first compute the gra-
dient of the stationary threshold with respect to the variable
in concern, c.

)

0 - 1

« =
—_ E 2 a—1
O j=1

ipa (X pflog(py)  log (25:11’?)
! (a—1)>5_,p (a —1)?

c
1
E p? a—1 X
j=1

(a—1) Y52, ps log (p9)
= —alo ps
> e & Z j

Jj=1

®)

If ay,...,a, and by, ..., b, are non-negative numbers,
then using the log sum inequality,

we get 37 a;log ((Z—]’) > (Z?Zl aj) log (%in ZJ] )
Setting a; = p§’ and b; = 1, we get the following lower
bound

C C
> pilog () > [ D w5 | log
Jj=1 j=1

Substituting (@) in (8], we get:

1 C
=D 9

Zme X

0 - 1
—_ I I U —
Oa ;p] T ala—1)2

c
(1-a)log(C) —1log | > 1§
j=1
(10)
p® is concave, and so by Jensen’s inequality we get the
following upper bound for the second term:

1< 1<

“Sopi | = 2D (1)

0= 0=

C
= log Z < (1 —a)log(C) (12)

Substituting in (10),

0 [ .

Pl DY I (13)

Oa =

We conclude that the stationary threshold is a monotonic
non-decreasing function with respect to cv. Also the deriva-
tive of PGT function with respect to the true probabilities is
non-negative which in turn means that the transformation is
an order-preserving map. All values greater than the thresh-
old move towards the threshold after transformation and all
values below the threshold also move towards the thresh-
old, and the threshold itself moves monotonically towards
1/C as « is decreased from 1 to 0. This concludes that the
transformation smooths the original distribution.

4. Experiments

We perform experiments on different variants ResNets
using the ImageNet-1K dataset [2]]. All models are trained
on four V100 GPUs with a batch size of 1024. We uti-
lize a common set of hyperparameters for all experiments,
which are as follows: 100 epoch budget, 5 epochs linear
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Figure 2: Log-log plots of training and test accuracies and comparison with baseline of batch-normalized variants: (a)
ResNet-18 (v = 0.25), (b) ResNet-50 (v = 0.3). (¢) Training speed comparison between PGT (60 epochs) and baseline (100
epochs). They both converge to the same test accuracy (76.5%) on ImageNet-1K. PGT’s accelerated training saves 40% of

the epoch budget.

warmup phase beginning with a learning rate of 4 x 10~
and ending with a peak learning rate of 0.4, a momentum
of 0.9 and weight decay of 5 x 10~*, the SGD Nesterov
optimizer and mixed precision. In our studies, we employ
either a step scheduler (dividing the learning rate by 10 at
the 30", 60", and 90" epochs) or a cosine decay sched-
uler [9]. We find o = 0.25 and o« = 0.05 to be good choices
for ResNet-18 and ResNet-50, though larger values such
as o = 0.3 also have good performance as well. We use
a = 0.3 for Squeeze-and-Excitation variant of ResNet-50
i.e. SE-ResNet-50 [6]. The experimental results are shown
in Table[1] [

With consistent improvements in training and test accu-
racies across all cases, we conclude PGT helps networks
learn better representations and arrive at better optimas dur-
ing convergence. Per epoch training and test accuracy plots
of ResNet-18 and ResNet-50 (both with and without PGT)
are shown in Fig. a,b). Practioners can also choose to
accelerate training and save as much as 40% of the epoch
budget [Fig. 2c)].

4.1. Empirical studies on networks without Batch
Normalization

We examine issues that occur in non-normalized net-
works (networks without BN layers). We use ResNet-18
[4] as the foundation model trained on ImageNet-1K [12].
Deeper networks such as ResNet-34 and ResNet-50 are im-
possible to train without Batch Normalization courtesy of
the increased depth and so we solely focus on ResNet-18.
Throughout the training process, we monitor variations in
the the per-filter L2-norm of each layer’s weights. In Fig.
Eka), some filters of layer 11 achieve a norm of zero dur-
ing training. We refer to this event as ‘Zeroing Out’ (Fig.
M), and it occurs when one of the channels (or filters) of a

Reproducible code, training recipes, checkpoints and training logs are
provided at: https://github.com/skalien/power-grad-transform

Table 1: Results and comparison table for networks trained
on ImageNet-1K. Best training and test accuracies are high-
lighted in red and blue respectively. Accuracy differences
are highlighted in yellow.

PGT Train Train Test Test
Model Scheduler Method (@) Acc.(%) Diff(%) Ace.(%) Diff(%)

SE-ResNet-50  Cosine Bfg;ne 03 8821‘;157 +0.97 ;xéﬁ +0.734
ResNet-50  Cosine Bz;fg}ne 005 ;3;2 +0.5 7776_'25166 +0.656
ResNet-50 Step Bz;gl}ne 0.;)5 ;ggz +0.57 7765.;19974 +0.524
ResNet-101  Cosine le‘jél}ne 03 8823"219 +0.81 ;Sgg +0.362
SE-ResNet-18  Cosine Bfg}ne 0.5 7711'1,,2 +0.18 7711';‘(;96 +0.346
ResNet-18 Step Bfg’l}m 0.5 6796_935 +0.35 22:;22 +0.14
ResNet-18 Cosine Ba:g}ne 0.-25 ;ggg +0.15 ;gigg +0.09

weight tensor gets fully filled with zeros and such filters do
not contribute at all to determine the input-output relation-
ship of a dataset, as the feature tensor it produces is also
filled with zeros for the corresponding filter. When a filter
once zeroes out, it does not recover with further training, as
all gradients that it receives in future iterations are all zeros.

Fig. 3c) is the plot of the final conv layer’s filters (layer
19) and the features output of final global average pooling
(GAP) layer respectively. We observe a number of filters
and features in the final layer completely zeroing out. Gra-
dient modification methods such as PGT can alleviate the
zeroing out phenomena as we observe that the number of
zeroed out filters has considerably reduced [Fig. b, d)].
The feature vector after the GAP layer [Fig. [3[e)] directly
interfaces with the fully connected layer. Therefore any ze-
roed out features leads to permanent information loss, as it
does not contribute to the learning of decision boundaries
in the fully connected layer. Also, zeroed out weights ten-



(a) Layer 11 - baseline (b) Layer 11 - PGT (c) Layer 19 - baseline

(f) GAP features
baseline PGT

(d) Layer 19 - PGT (e) GAP features

Figure 3: Norm vs iter. plots demonstrating layer characteristics (the zero out phenomena) and the efficacy of PGT over
baseline. Each colour represents a different filter or feature vector of a particular layer of a non-BN variant of ResNet-18.

sors lead to zeroed out gradients hence stopping training for
all subsequent iterations leading to a collapse in training for
the affected layers. With large batch sizes, it is possible that
an entire layer zeroes out as shown in the figure below. The
final feature tensor [Fig. Ekf)] with PGT enabled, does not
contain any zeroed out regions indicating that information
loss is mitigated as the features pass on from the feature
extracting layers to the fully connected layer.

In Table 2] we find that the baseline performance for
high batch sizes (1024) is drastically inferior to base-
lines for other batch sizes. PGT helps regain some of
the lost performance by 0.682% (65.498% vs. 64.816%).
At a batch size of 512,
invoking PGT improves
the training accuracy
baseline by 1.48% and
the test accuracy base- Lows
line by 0.684%, while at
a batch size of 256, the
improvement in train-
ing and test accuracies T e,
are 1.11% and 1.018%
respectively. In com-
parison, the test accu-
racy improvements ob-
tained by GC and AGC
at batch size of 256 is much less at 0.27% and 0.5%, re-
spectively. On the training accuracy front, since we get a
significant boost (1.48% at batch size of 512 and 1.11% at
batch size of 256), it leads us to infer that when PowerGrad
Transform is used, the network fits the training dataset more
tightly and the convergence optima is significantly superior.
When AGC and PGT are combined, we see a tremendous
increase in test accuracy of over 2.06% over the baseline.

Figure 4: Zeroing out of fea-
ture maps in the second layer
non-normalized ResNet-18.

5. Ablation Study

We conduct ablation studies to investigate the effects of
PowerGrad Transform for different values of the hyperpa-
rameter (o)), where we use the ResNet-50 architecture and
combine our proposed method with different schedulers,
regularization techniques and different values of ov. We re-
port our findings in Table 3] First we examine the effect of

Table 2: Results for non-normalized ResNet-18 on
ImageNet-1K. Best training and test accuracies are high-
lighted in red and blue respectively. Top differences in train-
ing and test accuracies are marked in yellow.

PGT Train Train Test Test

Batch Size  Method = "'\ (%) Diff(%) Acc.(%) Diff(%)
1024 Baseline - 66.27 - 64.816 -
1024 PGT 092 66.62 +0.35 65498 +0.682
512 Baseline - 6802 - 6655 -
512 PGT 025 695  +1.48 67.236 +0.684
256 Baseline - 6886 - 6679 -
256 GC . 69.04  +0.18  67.064 +0268
256 AGC - 6906  +02 67298 40502
256 PGT 025 69.97 +1.11 67814 +1.018
256 Baseline - 68.86 - 66.796 -
256 GC+PGT 025 6867 -0.19 67088 +0.292

256 AGC+PGT 0.25 70.92 +2.06  68.856  +2.06

PGT on the step scheduler baseline in order to later com-
pare it to the cosine scheduler baseline. Row-1) We begin
with the step scheduler baseline (75.97%). Row-2) PGT
improves upon the step scheduler baseline (test set) by a
substantial margin with 0.524% (76.494% as opposed to
75.97%). Row-3) Introducing the cosine scheduler yields
a 0.59% improvement (76.56% vs. 75.97%) over the step
scheduler. Row-4) After introducing label smoothing, the
test accuracy relative to the cosine scheduler baseline in-
creases by only 0.138% (from 76.56% to 76.698%). Row-
5) However, introducing PGT with o = 0.3 alone (without
label smoothing) improves the cosine scheduler baseline by
0.326% (76.886% vs. 76.56%). Row-6) Combining PGT
(av = 0.3) with label smoothing improves the performance
on the test set further by 0.408% (from 76.56% to 76.968%)
and reduces the generalization gap (from 2.54% to 1.5%).
However, the impact of combining PGT with label smooth-
ing can vary depending on the value of the hyperparam-
eter (o). Row-7) With a PGT hyperparameter value of
a = 0.05, we notice the greatest performance improvement,
1.246% over the step scheduler test baseline and 0.656%
over the cosine scheduler test baseline. Row-8) Adding la-
bel smoothing to PGT (a = 0.05) hurts performance even
though it reduces the generalization gap.



Table 3: Ablation study for ResNet-50 on ImageNet-1K.

Label PGT Train Test

#Row Scheduler o hing (0) Acc(%) Ace(%) C2P(%)
1 Step X X 7899 7597  3.02
2 Step X 03 7956 76494  3.066
3 Cosine X X 79.18 76.56 2.62
4 Cosine 0.1 X 78.81 76.698 2.112
5. Cosine X 03 7943 76886  2.544
6.  Cosine 0.1 03 7847 76968  1.502
7. Cosine X 005 79.68 77216  2.464
8. Cosine 0.1 005 77.69 7639 13

6. Conclusion

PowerGrad Transform enables a significantly better fit to
the dataset as measured by training and test accuracy met-
rics. With PGT, gradient behavior is enhanced and weights
attain better values in normalized networks and degenerate
states are avoided in non-BN networks. We provide theoret-
ical analyses of the transformation. With different network
topologies and datasets, we are able to show the potential of
PGT and explore its impacts from an empirical standpoint.
PGT helps the network to improve its learning capabilities
by locating a more optimum convergence point and simul-
taneously speeds up training.
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