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Abstract—Context: There has been a growing research focus 
in conventional machine learning techniques for software 
effort estimation (SEE). However, there is a limited number 
of studies that seek to assess the performance of deep 
learning approaches in SEE. This is because the sizes of SEE 
datasets are relatively small. Purpose: This study seeks to 
define a threshold for small-sized datasets in SEE, and 
investigates the performance of selected conventional 
machine learning and deep learning models on small-sized 
datasets. Method: Plausible SEE datasets with their number 
of project instances and features are extracted from existing 
literature and ranked. Eubank’s optimal spacing theory is 
used to discretize the ranking of the project instances into 
three classes (small, medium and large). Five conventional 
machine learning models and two deep learning models are 
trained on each dataset classified as small-sized using the 
leave-one-out cross-validation. The mean absolute error is 
used to assess the prediction performance of each model. 
Result: Findings from the study contradicts existing 
knowledge by demonstrating that deep learning models 
provide improved prediction performance as compared to 
the conventional machine learning models on small-sized 
datasets. Conclusion: Deep learning can be adopted for SEE 
with the application of regularisation techniques.      

Keywords—Deep learning; Conventional Machine 
learning; Software effort estimation; Small-sized; Optimal 
spacing theory. 

 

1. INTRODUCTION 

A. Background and Motivation 
In software engineering, the use of data for setting up predictive 
models is vital in estimating the effort required for projects. 
This data comprises features extracted from at least one 
software project and a collection of related sets for the various 
components of the project(s). To set up an SEE predictive 
model, such datasets are considered for the training and 
validation needs of the given x model developed, before 
considering the estimated effort for new project instance(s).  

It is known that deep learning works best for relatively 
large-sized datasets and has been considered effective for 
estimating the target or dependent variable when setting up 
classifiers and predictive models [1]. The key motivating 

question worth investigating is, can it work best for relatively 
small-sized dataset(s)? We seek to explore this issue in 
software engineering specifically in the domain of SEE. A 
leading question that also arises is that, how can we define 
small-sized data from a given dataset? We consider Eubank’s 
optimal spacing theorem [2] a plausible solution for addressing 
the small-sized issue raised and move on to perform a 
comparative study considering a sample of deep learning versus 
conventional machine learning techniques for our investigation.  

B. Overview of Software Effort Estimation (SEE) 
SEE deals with predicting the relevant effort in relation to 
project cost and resource allocation to enable timely production 
and delivery of software projects within budget [3]. When 
project effort is overestimated or underestimated, it can result 
in devastating consequences for the given company. For 
example, a company may face wastage of resources and 
contract loss in the case of effort overestimation, and poor 
project development quality or uncompleted projects in the case 
of underestimation. The estimation of software effort is done at 
the beginning of the project [4]. Accordingly, the precise effort 
of a software project is mostly determined when the project 
closes.  
      Deep learning methods have been successfully applied in 
various fields, including computer vision, speech recognition, 
software defect prediction, financial analysis but has not been 
adequately explored in SEE. Perhaps this is because, deep 
learning methods perform better on relatively large-sized 
datasets [5]. Yet, the ability to obtain relatively large datasets in 
SEE is a challenge because owners of such datasets are reluctant 
to share and provide mainly due to privacy issues. Thus, 
researchers use the available data considered small for 
estimating the effort [6]. There is the need to investigate a 
feasible approach for determining relatively small-sized data 
and investigating the performance of deep learning on small-
sized data in SEE.  

The remaining sections of the paper are organized as 
follows: Section 2 presents size of the SEE datasets considered 
for the study and the central limit theory. Section 3 presents the 
Eubank’s optimal spacing theorem. Section 4 details the 
methodological procedure, dataset description, data pre-
processing, experimental setup, model selection and 
performance evaluation metrics. Section 5 presents the 
experimental results and discussion. Lastly, Section 6 
concludes the study. 
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2. SIZE OF SEE DATASET & CENTRAL LIMIT THEOREM 
Due to the relatively high cost of data collection, and 
unwillingness of companies to share software project data (due 
to privacy issues) [6], it has led to relatively small sizes of SEE 
datasets (L. Song et al., 2018). As a result of these challenges, 
historic or archival SEE data in the public domain are mostly 
used.  
     The definition of a small SEE dataset is ambiguous since 
different researchers have different perspectives of the 
definition (Song et al., 2019). Mostly, researchers failed to 
justify considering a particular type of dataset as small-sized. 
Evidence from the central limit theorem shows that a sample 
size greater than 30 is sufficient for the central limit theorem to 
apply. Hence, sample sizes less than or equal to 30 may be 
considered small. Yet, this statistical definition cannot be 
adopted for this study because SEE datasets with project 
instances greater than 30 have been described as small-sized 
(Song et al., 2019). This makes it imperative for this study to 
define the conditions for a small-size dataset that is appropriate 
for this investigation.  

3. EUBANK’S OPTIMAL SPACING THEOREM 
In a study by Eubank [2], a density quantile function method 
was introduced to address the optimal spacing selection 
problem for linear estimation of a given interval. This approach 
makes use of a quantile function over a given interval, [p,q] ⸦ 
[0,1] to enable a successful estimation of location and scale 
parameters for a censored set of order statistics. Optimal 
asymptotic spacings are generated from the quantile function. 
The optimal asymptotical spacing can be considered as a 
threshold value for the spacing selection over the interval. The 
density quantile function 𝑄(𝑢) is defined in (1). 
 

 𝑄(𝑢) = 𝐹!"(𝑢), 0 ≤ 𝑢 ≤ 1 (1) 
 
where 𝐹 is considered as the censored set distribution function 
and 𝑢  is regarded as the location parameter for defining the 
asymptotic optimal spacing. 

The theorem was considered to discretize the rankings of the 
studied datasets into three main classes. The theorem uses the 
density quantile function to discretize the rankings of the 
frequency instances per each dataset into three classes. Class 1 
is regarded as the first-class (Q1), class 2 as the second-class (Q2 
and Q3), and class 3 as the third-class (Q4). Datasets ranked with 
total number of instances less than or equal to first class are 
classified as small-sized datasets. Alternatively, all datasets 
with ranks greater than or equal to the third class are classified 
as large-sized datasets, and the remainder as medium-sized 
datasets, that is in-between the first and third classes. 

4. EMPIRICAL FRAMEWORK 

A. Dataset Description 
The study selected 22 publicly available datasets from the 
PROMISE and GitHub repositories. The ranking of the data 
sizes was based on the total number of instances for the studied 

datasets. The project dataset with the minimum number of 
instances was ranked the lowest (one) and the project with the 
maximum number of instances was ranked highest (22).  
Six out of the 22 datasets were classified as small-sized based 
on the classification scheme provided in Section 3. Thus, these 
6 datasets were adopted for the study’s empirical and 
comparative analysis. The number of project instances, project 
features, description of project type, the mean and standard 
deviation of all 6 datasets (Albrecht, Atkinson, Cosmic, 
Kemerer, Finnish, and Telecom1) are presented in Table 1. 
A maximum threshold of 43 project instances based on 
Eubank’s optimal spacing theory is defined for classifying a 
given SEE dataset as small-sized. 
The discretization scheme classified the Java software project 
dataset [6], Tukutuku dataset, Bielak dataset, dataset 1[12], 
USP05 dataset and China dataset as large-sized. Similarly, a 
minimum threshold of 147 project instances is defined for 
classifying a dataset as large-sized. Datasets with project 
instances within the range of 44 to 146 inclusive are classified 
as medium-sized. Thus, 10 datasets, namely (Miyazaki94, 
Miyazaki, Qi et al.’s [6] Web data, Nasa, Cocomo81, Maxwell, 
Lopez-Martin’s [12] Data 2, Desharnais, Nasa93 and 
Kitchenham dataset).  
In addition to the small-sized datasets, two relatively large 
datasets, namely the ISBSG and China datasets [13] were also 
used. These relatively large-sized datasets were added to test 
the assertion that, deep learning models perform better on larger 
datasets than conventional machine learning models for SEE. 
The ISBSG dataset release 10 which contains 4106 cross-
organisational projects was used.  
 
Table 1. Description of selected datasets  
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Albrecht 24 7 
IBM DP Services 

Project 21.9 28.4 

Atkinson 16 12 

Builds to a large 
telecommunications 

product at U.K. 
company X 456.1 241.1 

Cosmic 42 10 N/A 4965.5 8457.1 

Finnish 38 6 

Data collected by the 
TIEKE organization 

from IS projects from 
nine different Finnish 

companies 7678.3 7135.3 

Kemerer 15 5 
Large business 

application 219.2 263.1 

Telecom1 18 2 

Enhancement to a 
U.K. 

telecommunication 
product 284.3 264.7 

ISBSG 
(R10) 4106 105 

Cross-organisational 
projects compiled by 

the ISBSG 5925.5 20685.9 

China 499 17 
Data collected from 

various software firms 3921.0 6480.9 
 



Cross-organizational projects are heterogeneous in nature and 
do not share common characteristics like development policy, 
development team and programming skills. As a result, the 642 
projects from the Communication organization type were 
selected for this study. Similar to the study by Mensah et al. 
[14], the study selected the project size, development type, 
language type and development platform as the features and the 
normalised development effort as the dependent variable. 
 

B. Experimental Setup 
Seven prediction models were set up with each model trained 
on the selected datasets. The models were trained based the 
leave-one-out cross-validation (LOOCV) approach, and the 
Mean Absolute Error (MAE) was used to evaluate the 
performance. The studied datasets were pre-processed using the 
data pre-processing approach described in Section 4C. The log 
transformation technique was applied to the datasets to 
minimise the effect of skewness. Feature selection was also 
performed to select relevant features from the data for the model 
training. The early stopping technique was applied to reduce the 
overfitting of the deep learning models. This study 
implemented the early stopping regularisation technique as 
used in the work of Kalichanin-Balich and Lopez-Martin [15] 
to reduce overfitting and improve the performance of the deep 
learning models. In addition, dropout was added after each 
hidden layer to also reduce overfitting. 
 

C. Data Pre-processing 
There is the need for high quality data to improve the quality of 
mining results. Thus, pre-processing the data to achieve high 
quality is very important when training and validating machine 
learning models. To achieve high data quality (i.e., resolve 
issues of missing data values, outliers, and influential data) the 
datasets were pre-processed before setting up the prediction 
models as follows: An in-depth analysis of the datasets was 
performed to address missing data values. Columns of each 
project instance were examined for null or NaN values. The 
ISBSG was the only dataset that contained missing values. 
Project instances in the ISBSG that had missing entries for the 
selected features were eliminated. Data point with Cook’s 
distance measures three times more than the mean of Cook’s 
distance values were considered to be outliers. Whereas data 
points whose DFFITS were greater than one was considered 
influential [14]. 
 

D. Model Selection 
This section discusses the models selected for this study and the 
hyperparameter tuning approach used. The models are the 
Automatically Transformed Linear Model (ATLM), Bayesian 
Network (BN), ElasticNet (ENR) regression, Support Vector 
Machine (SVM), Artificial Neural Network (ANN), Deep 
Neural Network (DNN) and Long-Short Term Memory 
(LSTM). The hyperparameters of the models were fine-tuned 
using the Bayesian optimization approach. This approach 
models the generalisation performance of a prediction model as 

a Gaussian process and maintains a posterior distribution as 
observations are made on the results from running the model 
with different hyperparameters. The Bayesian optimization 
algorithm picks the hyperparameter values for the next 
experiment based on the Gaussian process upper confidence 
bound (UCB). 
 

1) Deep Learning Models 
A Deep learning model simulates human brain processes. DNN 
is made of an input layer, an output layer and multiple hidden 
layers which are made of hidden nodes called neurons. Note 
that for ANN, there is a maximum of one hidden layer. Each 
neuron receives input and process it solving a non-linear 
function of the inputs by assigning weights. Taking the weights 
assigned to the neuron as 𝑤#$  at the start of training. The 
weights are updated after each training epoch (𝑡)  to 𝑤#$

(&'") 
where the change in weights -∆𝑤#$

(&'")/ is defined in (2).  
 

 ∆𝑤!"
($%&) = 𝛾∆𝑤!"$ − 𝛼

𝜕𝐿(. )
𝜕𝑤!"

 (2) 

where 𝛾 is the learning momentum, 𝛼 is the learning rate and 
𝐿(. ) is the loss function.  
This study adopted the RMSProp optimization algorithm for 
model training and the optimal learning rate (𝛼) was identified 
using the Bayesian Optimization algorithm. The Parametric 
Rectified Linear Unit (PRelu) which improves the accuracy of 
models over the Relu was used. PRelu preserves the properties 
of linear models, this makes it easier to be optimized. The PRelu 
is defined in (3). 
 
 𝑃𝑅𝑒𝑙𝑢(𝑥) = 𝑚𝑎𝑥	(𝑎𝑥, 𝑥) (3) 

where 𝑎 is the slope parameter learned by the model through 
backpropagation. Dropout and early stopping were applied to 
reduce overfitting. The efficient dropout was identified by using 
Bayesian Optimization. This study adopted the feed-forward 
neural network with the backpropagation of errors. 
The number of hidden layers used in this study varied between 
two and five. Also, Bayesian optimization was used to identify 
the optimum learning rate 𝛼 and the dropout for the models. 
The LSTM has been demonstrated to be efficient in modelling 
time-series data. Considering that software project starts and 
ends at distinct time points, software effort data can be 
classified as pseudo time series data and hence makes the 
LSTM suitable for this study. Also, considering that no study 
had considered it in traditional effort estimation, it was adopted. 
The LSTM is a variant of recurrent neural networks that solves 
the vanishing gradient problem [16]. It uses a loop in the 
network that allows information to persist in the network. Given 
a data (𝑋, 𝑌) with (𝑥&, … , 𝑥() ∈ 𝑋 and outputs (𝑦&, … , 𝑦() ∈ 𝑌. At 
step 𝑡 the LSTM reads input 𝑥$, the hidden state ℎ$)& and the 
previous memory 𝑐$)& to compute hidden state ℎ$. The hidden 
state ℎ$ is used to predict the output 𝑦$. The memory cell is the 
element that stores the accumulated information over time. 
The LSTM model was also set up with two LSTM layers and 
the glorot uniform kernel initializer was used. The PRelu 
activation function was used for all layers in the network. 



Dropout and early stopping were applied to reduce overfitting. 
The dropout and the learning rate (𝛼) of the model were fine-
tuned using the Bayesian optimization. The optimum values for 
the dropout and the learning rate (𝛼) for the ANN, DNN and 
LSTM models are presented in Table 2. 
 

2) Conventional Machine Learning Models 
The ATLM is a baseline model for comparative studies in SEE. 
It is based on a multiple linear regression, and it performs 
automatic data pre-processing such as log and square-root 
transformations on the data and also compares the skewness in 
the dependent and independent variables. It uses the least 
skewed data for model construction and effort prediction.  
The Bayesian network (BN) is a graphical model that encodes 
the probabilistic relationship between related variables. BN is 
determined by a pair as defined in (4). 
 
 𝐵𝑁 = (𝐺, 𝑃) (4) 

where 𝐺 is a directed acyclic graph with nodes 𝑋! and 𝑃 is the 
local probability of all variables in the network. For instance, 
given node 𝑋& connected to node 𝑋* and node 𝑋* connected to 
node 𝑌, then the conditional probability of finding 𝑌 in (5). 
 
 𝑃(𝑌 𝑋*⁄ , 𝑋&) = 𝑃(𝑌 𝑋*⁄ ) (5) 

 
The joint probability of each variable satisfies Markov’s 
condition that each variable 𝑋! is conditionally independent of 
the set of its non-descendants. The distribution is factorised in 
(6). 

 
𝑃(𝑋&, … , 𝑋() =B𝑃C𝑋!D𝜋(𝑋!)F

(

!+&

 
(6) 

where 𝜋(𝑋!) is the set of nodes directly connected to 𝑋! . The 
Bayesian network takes into account the probability effect of 
each input variable on the dependent variable. 
The ElasticNet (ENR) performs regularisation and feature 
selection to get rid off highly correlated estimator variables 
before developing the model. Given a set of input data with 𝑁 
observation pairs (𝑥! , 𝑦!)  and an approximated regression 
function 𝐸(𝑌|𝑋 = 𝑥) = 𝛽, + 𝑥-𝛽, the ENR finds the optimal 𝛽 
by solving the problem defined in (7). 
 

 
𝛽 = 𝑚𝑖𝑛

(.!,.)∈1"#$
N
1
2𝑁QC𝑦! − 𝛽, − 𝑥!-F

* + 𝜆𝑃2(𝛽)
3

!+&

S 
(7) 

 
where 𝑃2 is the elastic net penalty given by  

 𝑃2(𝛽) = T
1
2
(1 − 𝛼)𝛽"* + 𝛼D𝛽"DU 

(1) 

 
For 𝑗 = 1,… , 𝑝. The 𝑃2 is used in finding highly correlated input 
variables. 𝛼  is the hyperparameter tuned for the study. The 
value of 𝛼 resulting in the best performance for each dataset is 
presented in Table 2. 
The SVM is a supervised learning approach for classification 
that has been extended for regression problems as ε-SVM. The 
ε-SVM uses Lagrange multipliers to find a function 𝑓(𝑋!) that 
has a deviation of at most ε from the dependent variable and 

then produces a final solution from a combination of cases from 
the dataset. The kernel function of the SVM allows the ε-SVM 
to handle datasets that are of non-linear and complex. The 
kernel is treated as a hyperparameter. The best performing 
kernel for the SVM on each dataset is recorded in Table 2. 
 
Table 2. Optimal Hyperparameter values for each Model 
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Albrecht 0.0294 0.0327 0.0732 0.0092 0.092 0.035 0.9996 RBF 
Atkinson 0.2438 0.0064 0.0732 0.0092 0.169 0.028 0.1956 Sigmoid 
Cosmic 0.2081 0.072 0.0732 0.0092 0.209 0.068 0.0285 Polynomial 
Finnish 0.2081 0.072 0.2081 0.0720 0.102 0.087 1.3e-07 Linear 
Kemerer 0.2081 0.072 0.0732 0.0092 0.216 0.057 0.0074 Linear 
Telecom 0.2081 0.072 0.0732 0.0092 0.208 0.055 0.0157 Sigmoid 
ISBSG 0.2000 0.001 0.2000 0.001 0.200 0.001 0.0001 Polynomial 
China 0.2000 0.001 0.2000 0.001 0.200 0.001 0.0018 Linear 

 

E. Performance Measure 
MAE is a robust, effective and reliable performance metric for 
assessing SEE models and measuring the average error 
magnitude. The MAE is an unbiased error estimator. It has been 
considered in the evaluation of estimation accuracy and thus it 
was considered for this study. The MAE is defined in (8). 
 

 
𝑀𝐴𝐸 =

1
𝑛QD𝐸4% − 𝐸5%D

(

!+&

 
(8) 

 
where 𝐸4 is the actual effort of a project case or instance and 𝐸5 
is the estimated effort of a project instance with 𝑛 number of 
instances. A single performance evaluation measure was used 
to avoid the ambiguity associated with the conclusion 
instability issue. 
Cliff’s δ effect size was used to assess the practical significance 
of the model. The effect size is less affected by the sample size 
than other statistical significance tests such as Yuen’s [18]. The 
effect size provides an objective measure of the importance of 
an experimental effect and in this empirical study, it was used 
to measure the magnitude of the difference between the actual 
effort (𝑦) and the predicted effort (𝑦). It is defined in (9). 
 

 𝛿 =
𝐶𝑂𝑈𝑁𝑇(𝑦! > 𝑦!) − 𝐶𝑂𝑈𝑁𝑇(𝑦! < 𝑦!)

𝑛𝑚  (9) 

 
where 𝑦# is the actual effort and the 𝑦$ is the predicted effort of 
each dataset. The number of project cases in the actual and 
predicted classes are denoted by 𝑛 and 𝑚 respectively. 
Kampenes et al. [18] provides interpretation for the cliff’s delta 
effect size as follows: (1) negligible  refers to δ < 0.112, small 
is 0.112 ≤ δ < 0.276, medium is 0.276 ≤ δ ≤ 0.427 and large 
refers to δ ≥ 0.428. This study makes use of an effect size 
threshold of negligible (δ < 0.112), with the argument, that the 
difference in magnitude between the actual and predicted effort 
should be negligible. 



5. RESULT AND DISCUSSION 
The result as presented in Table 3 show that the deep learning 
models (DNN and LSTM) recorded the best prediction 
accuracy for five datasets. The ANN, which is a shallow neural 
network recorded the best prediction accuracy for two datasets 
and the baseline ATLM also recorded the best prediction 
accuracy for one dataset. 
The ANN had the best prediction accuracy for the Albrecht 
dataset with negligible practical significance difference 
between the predicted and actual efforts. DNN and LSTM 
models also produced prediction accuracies better than the 
conventional machine learning models on the Albrecht dataset.  
The results of the models using the Atkinson dataset as 
presented in Table 3 shows the DNN model as having the best 
prediction accuracy. The DNN recorded a mean absolute error 
(MAE) of 0.0018 with a 0.0102 Cliff’s δ effect size (signifying 
low practical significance difference). The LSTM and ANN 
also produced an impressive prediction accuracy with MAE of 
0.002 and 0.0036 respectively. The results for the Atkinson 
dataset showed that the deep learning models outperform the 
conventional machine learning models. This accounted for the 
conventional machine learning models recording higher MAEs 
(poor performance). 
For the Cosmic dataset, the LSTM model recorded the best 
prediction accuracy with an MAE of 0.0075. Again, the ANN 
and DNN also achieved high prediction accuracy as compared 
to the conventional machine learning models. The high MAE 
measured for the conventional machine learning was as a result 
of more variations in the absolute values of the model’s 
prediction on the cosmic dataset. 
 
Table 3. Performance Evaluation of Models 
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Albrecht 

MAE 0.352 0.014 0.024 0.006 0.239 0.248 0.186 
Cliff's 

δ 0.004 0.017 0.010 0.031 0.010 0.010 0.004 

Atkinson 

MAE 0.052 0.002 0.002 0.004 0.038 0.034 0.031 
Cliff's 

δ 0.000 0.010 0.000 0.010 0.010 0.010 0.010 

Cosmic 

MAE 0.549 0.020 0.008 0.013 0.516 0.475 0.467 
Cliff's 

δ 0.001 0.005 0.001 0.002 0.002 0.001 0.007 

Finnish 

MAE 0.001 0.012 0.009 0.013 0.001 0.002 0.001 
Cliff's 

δ 0.002 0.002 0.007 0.002 0.002 0.009 0.002 

Kemerer 

MAE 0.206 0.009 0.024 0.014 0.196 0.173 0.161 
Cliff's 

δ 0.000 0.031 0.031 0.020 0.020 0.020 0.000 

Telecom 

MAE 0.206 0.009 0.003 0.003 0.216 0.199 0.128 
Cliff's 

δ 0.004 0.004 0.013 0.022 0.004 0.013 0.031 

ISBSG 

MAE 0.014 0.005 0.004 0.004 0.014 0.014 0.350 
Cliff's 

δ 0.001 0.000 0.000 0.000 0.001 0.001 0.006 

China 

MAE 0.006 0.005 0.005 0.007 0.007 0.007 0.174 
Cliff's 

δ 0.000 0.000 0.002 0.000 0.000 0.000 0.000 

The values in bold represent the best performance measure for each dataset 
across the learners – ATLM, DNN, LSTM, ANN, BN, ElasticNet (ENR) and 
SVM 
δ - Cliff’s delta effect size 
 

For the Finnish dataset, the conventional machine learning 
models outperformed the deep learning models. The baseline 
ATLM recorded an MAE of 0.0006. The Bayesian Network 
(BN), ElasticNet and the SVM recorded MAE of 0.0014, 
0.0021 and 0.001 respectively. The DNN, LSTM and ANN also 
recorded MAE of 0.0117, 0.0092 and 0.0125 respectively.  
The DNN proved to be the best model for the Kemerer dataset 
with an MAE of 0.0088 and Cliff’s δ effect size of 0.0306. The 
LSTM and ANN model recorded MAE of 0.0239 and 0.0143 
respectively. The SVM was the best conventional machine 
learning model with an MAE of 0.1614.  
The performance of the models on the Telecom dataset showed 
the LSTM as the best. The LSTM model recorded an MAE of 
0.0029 with a 0.0133 Cliff’s δ effect size. The DNN and ANN 
models also achieved MAE of 0.0086 and 0.0034 respectively. 
The SVM with an MAE of 0.1279 was the best performing 
convention machine learning model on the Telecom dataset. 
The baseline ATLM produced an MAE of 0.206.  
For the ISBSG, which is a large-sized data, the artificial neural 
network recorded the best performance with an MAE of 0.0038 
and Cliff’s delta effect size of 0.0001. The two deep learning 
models recorded better performance than the conventional 
machine learning models.  
The DNN and LSTM models recorded MAEs of 0.0049 and 
0.0044 respectively compared to the MAEs of the ATLM, 
Bayesian network, Elastic Net and SVM which were 0.0136, 
0.0136, 0.0136 and 0.3503 respectively.  
Also, for the other large-sized dataset, the China dataset, the 
LSTM recorded the best MAE, 0.0048 with Cliff’s delta effect 
size of 0.0017. The DNN model also recorded an MAE of 
0.0049 with Cliff’s delta effect size of 0.0001. These two deep 
learning models with the artificial neural network outperformed 
the conventional machine learning models on this dataset. The 
conventional machine learning models recorded MAEs of 
0.0061, 0.0068, 0.0068 and 0.1738 as shown in Table 3.  
The magnitude of Cliff’s δ effect size measurement for all 
models were negligible (δ < 0.112) as defined by Kampenes et 
al. [18]. This means there was little difference between the 
magnitude of the actual effort values and the predicted effort 
estimations of each model. 

6. CONCLUSION AND FUTURE WORK 
In this study, a threshold for defining a small-sized dataset using 
Eubank’s optimal spacing theory is introduced in SEE. Twenty-
two datasets were selected from recent SEE studies. The 
classification scheme based on these 22 datasets classified six 
datasets as small-sized and defined a threshold of 43 project 
instances for a small-sized dataset. The six datasets were 
selected for the empirical study in addition to two large-sized 
datasets. The classification scheme was constructed using 
Eubank’s optimal spacing theorem [2]. This is due to the 
advantage of splitting a given interval into optimal sizes or 
thresholds.  
The empirical study investigated the prospects of deep learning 
in SEE by comparing the performance of the ATLM, SVM, 
Bayesian network, ElasticNet, ANN, DNN and LSTM models. 
The leave-one-out cross-validation (LOOCV) was applied in 



this study for the training and validation needs of the selected 
models, and performance evaluation was done using MAE. 
The results showed the selected deep learning models 
outperformed the conventional machine learning models on the 
Atkinson, Cosmic, Kemerer and Telecom datasets. The ANN, 
which is a shallow neural network, outperformed the deep 
learning models on the Albrecht dataset, and likewise the 
ATLM on the Finnish dataset. Also, findings from the study 
show that deep learning models have better performance on 
large-sized SEE datasets than conventional machine learning 
models.  
The study concluded from the results that deep learning should 
be adopted for software effort estimation. However, it 
recommends techniques like dropout and early stopping to 
reduce overfitting in the deep learning models. 
In future, the empirical study will be extended to evaluate the 
computational cost of running the deep learning and 
conventional machine learning models in the software 
engineering field. This will guide researchers and practitioners 
on the trade-offs that can be made in choosing either a 
conventional machine learning or deep learning model.  
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