
Formalization and Verification of Data Auction
Mechanism Based on Smart Contract Using CSP

Yingjia Du1,*, Yuan Fei2,*, Sini Chen1, Huibiao Zhu1

1Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

2College of Information, Mechanical and Electrical Engineering,
Shanghai Normal University, Shanghai, China

Abstract—Nowadays, the utilization of online auction platforms
is becoming increasingly prevalent. Online auction provides a
common and practical way for global buyers to compete fairly.
Nevertheless, the anonymous environment may bring collusion
among entities with effects on results. Compared with traditional
mechanisms which rely on third-party platforms, the data auction
based on smart contract can create a decentralized environment
to avoid the occurrence of collusion. Meanwhile, there exists few
research on the verification of its reliability and safety which is
worth investigating from the perspective of formal methods.

In this paper, we apply Process Algebra CSP in modeling the
data auction communicating system among five key entities. In
addition, we use Process Analysis Toolkit (PAT) to realize the
mechanism and verify five crucial properties, including dead-
lock freedom, data reachability, data correctness, anti-collusion
capability and data security. The verification results indicate
that the architecture of data auction based on smart contract
can satisfy all the above requirements. Especially, the design of
asymmetric encryption for the fundamental information ensures
the non-occurrence of collusion in the auction. Additionally, the
digital signature generated by private key attached to the message
guarantees the safety of the interaction.

Index Terms—Data Auction Mechanism; Smart Contract;
Process Algebra CSP; Modeling; Verification

I. INTRODUCTION

In the era of information, the demand for high-quality
data, resistant to conventional pricing methods [1] has brought
enormous popularity and prosperous landscape in the field of
data auction.

The online data auction mechanisms have been proliferating
[2]. Despite that, existing mechanisms, which excessively
rely on third-party platform, can lead to information leakage
[3], challenges of distrust between entities and other issues
urgently to be addressed.

Meanwhile, the blockchain technology has obtained grow-
ing attention [4] as a promising solution for secured and
traceable record which can be applied in the auction process.
Xiong et al. [5] proposed the decentralized anti-collusion data
auction mechanism based on smart contract, which enables
secured and immutable record of the process [6] and invokes
automated condition evaluation program.

As demonstrated in Fig.1, the mechanism based on smart
contract is decentralized in data exchange. The smart contract

*Corresponding Authors. E-mail address: yuanfei@shnu.edu.cn (Y. Fei).
yingjiadu@stu.ecnu.edu.cn (Y. Du).

replaces the role of auctioneers and result announcement in
the traditional system [7]. Data providers can upload data to
the smart contract and potential buyers can make confidential
bids. Once the auction is over, smart contract will make the
result public to participants and the buyer with the highest
bid will gain ownership of the auctioned data. Details of
the transaction are recorded and traceable [8]. Additionally,
anyone involved in the auction can access the results. Thus,
security and truthfulness of the data auction mechanism based
on smart contract are crucial and formal methods can provide
a systematic and rigorous approach to analyzing it.

Fig. 1. Data Auction Mechanism Based on Smart Contract

In this paper, we formalize the model of the anti-collusion
data auction mechanism [5] based on smart contract utilizing
Communicating Sequential Process (CSP) [9]. Besides, with
the aid of Process Analysis Toolkit (PAT) [10], we verify
the following crucial properties, including Deadlock Freedom,
Data Reachability, Data Correctness, Anti-collusion Capabil-
ity. Meanwhile, we simulate the scenario with the presence
of an intruder and establish a model to express its behavior
of decrypting and faking messages. We can infer from the
verification results that the mechanism is stable and reliable.

The remainder of the paper is organized as follows. We
deliver a brief introduction to the architecture of the data
auction and the basic knowledge of CSP in Section II. The
subject of Section III is the formalized model of the system.
Moreover, Section IV presents verification process and results.
We discuss the conclusion and future work in Section V.

II. BACKGROUND

In this section, we start with an overview of the proposed
data auction system based on smart contract by Xiong et al.
[5]. We also give a brief introduction to process algebra CSP.

DOI reference number: 10.18293/SEKE2023-172

A. Data Auction Mechanism Architecture
As demonstrated in Fig.2, the framework of the mechanism

based on smart contract is decentralized to improve the effi-
ciency and is comprised of five entities as below.

Fig. 2. The Data Auction Framework

• Data Seller (DS): It owns the data and the revenue.
• Data Buyer (DB): It intends to acquire auctioned data.
• Data Trading Centre (DTC): It is the institution where

copies of transaction can be properly stored.
• File System (FS): It provides safe storage for the data.
• Smart Contract (SC): It plays a crucial role in recording

the information and managing the transaction.
The data auction system based on smart contract adopts

a single-round sealed-bid auction architecture. Only one data
seller and multiple data buyers are allowed to take part in
the same auction. The auction process can be divided into
three steps: Preparation, Process and Conclusion, which
are illustrated in Fig.3. The definitions of key variables and
functions are given as follows.
• Sealed Price spi: It is the price proposed by the seller

as the minimum transaction price and i stands for its id.
• Sealed Bid sbj: The variable shows true bid of the buyer

sealed in the process and j stands for the buyer’s id.
• Bid Mask bmj: It is required to be larger than the

corresponding sb and is public to disguise the true bid.
• paySDeposit(): The function records the information of

the seller and deduct a deposit from its account.
• payBDeposit(): It is activated when a buyer is willing to

take part in the auction. Moreover, it depicts the behaviour
of paying deposit to get the admission to the auction.

• dataAuction(): It checks whether the transaction meets
the condition spi ≤ sbj ≤ bmj .

• payBid(): This function withdraws corresponding bid
price from the account of the winning buyers.

• verifyInfo(): It is used to check whether a certain buyer
is on the winning buyers’ list to authenticate its identity.

Next, we will present detailed steps of the data auction.
1. The Data Seller i sends the reserved price spi to the

Smart Contract with some supplementary basic information.
2. The Data Seller informs the Data Trading Centre and

Data Buyer of the auctioned data information.
3. The Data Buyer decides whether to participate in the

current auction. If the answer is yes, it pays the deposit to the
Smart Contract. Otherwise, it quits.

4. The Data Seller and Data Trading Centre receive the list
of participants in the auction from the Smart Contract.

5. The qualified Data Buyer j submits a sealed bid sbj ,
which is based on evaluation of the auctioned data to Smart

Contract and broadcasts a bid mask bmj , which is a disguise
of the true bid.

6. The Smart Contract forwards the same bid information
to the Data Trading Centre.

7. The Smart Contract executes the auction program and
make the highest Data Buyer accessible to the auctioned data.

8. The Smart Contract broadcasts the list of winner(s) to
the Data Seller, the Data Trading Centre and all Data Buyer.

9. The winning buyer pays for the bid to the Smart Contract.
10. The Smart Contract confirms that it has received the

currency from the Data Buyer.
11. The Smart Contract generates a token randomly.
12. The Smart Contract provides the winning Data Buyer

with a created token to download the auctioned data.
13. The Data Buyer shows its id for File System to validate.
14. The File System downloads the auctioned data by token.
15. Data is accessible to the winning Data Buyer.
16. The File System sends confirmation to the Data Trading

Centre and Data Seller.

Fig. 3. The Data Auction Flow Chart (adapted from [5])

B. CSP

Communicating Sequential Processes (CSP) is a represen-
tative process algebra based on logic [9]. The definition of the
syntax of CSP used in this paper is given as below.

P , Q ::= SKIP | c?u → P | c!v → P | P�Q |
P ||Q | P [|X|]Q | PCBBQ

• SKIP stands for that the process which does nothing,
but terminates immediately.

• c?u → P denotes that the process receives a value
through the channel c, assigns it to variable u and behaves
as P .

• c!v → P indicates that the process sends message v
through the channel c. Then it performs as process P .

• P�Q represents that the process behaves like either
process P or Q, determined entirely by the environment.

• P ||Q refers to the concurrent execution of P and Q. Same
events in a common alphabet require synchronization.

• P [|X|]Q describes the concurrent execution of P and Q
on the set of channels X .

• PCbBQ stands for the condition. When Boolean variable
b is true, it will perform as P . Otherwise, it will behave
like Q.

III. MODELING
In this section, we give the formalized model of the system

of data auction [5] using CSP. We begin by the definition of
sets, messages and channels. Then, we formalize the architec-
ture described in Section II by modeling entities respectively.

A. Sets, Messages and Channels
The whole architecture is rather complicated. Thus, we

divide the involved elements into sets as the basic components
of the model according to their types and functionalities. We
give an introduction to the sets as below.
• Entity involves Data Seller (DS), Data Buyer (DB),

Data Trading Centre (DTC), File System (FS) and Smart
Contract (SC) mentioned in Fig.2.

• ID defines serial number of DB and DS. ID=BID∪SID.
• Account consists DB and DS’s funding.

Account = BAccount ∪ SAccount.
• Price includes sealed price sp of DS, sealed bid sb and

bid mask bm of DB. Price=SPrice ∪ SBid ∪ BMask.
• Key contains public and private keys belonging to Entity.

Key =kpub ∪ kpri
kpub =df {bkpub, skpub, sckpub, fkpub, tkpub}.
kpri =df {bkpri, skpri, sckpri, fkpri, tkpri}.

• Sig is composed of the identification of Entity.
Sig =df {bsig, ssig, scsig, fsig, tsig}.

• Par is composed of DB’s participations.
In addition, E and D describe message encryption and

decryption while G and V refer to digital signature generation
and verification using kpub, kpri in blockchain.
• E (kpub,msg) signifies kpub is used to encrypt msg.
• D (kpri, E(kpub,msg)) shows that kpri is able to decrypt

msg encrypted by corresponding kpub.
• G (kpri, sig) denotes kpri can be used for generating sig.
• V (kpub, E(kpri, sig)) shows that kpub can be utilized to

recognize identification sig generated by kpri.
Moreover, we classify and abstract the messages transferred

between entities as tuples to reduce redundancy.
Tuples1 = [sid.sname.stype.slink]

Tupleb1 = [bid.par] Tupleb2 = [bid.baddress]

Tupleb3 = [bid.baddress.bm]

Tupleb4 = [bid.baddress.baccount.par]

MSGreqs=df{Msgreqs1.Tuples1.G(k1, sig),
Msgreqs2.Tuples1.saccount.G(k2,sig).E(k3, sp)|
sid ∈ SID, sname ∈ Name, stype ∈ Type,

slink ∈ Link,sp ∈ Price,saccount ∈ SAccount

k1, k2 ∈ kpri, sig ∈ Sig,k3 ∈ kpubsp ∈ Price}

e.g. Msgreqs1 = sid.sname.stype.slink.G(kpri, sig).
Similarly, we omit the remaining conversion process.
MSGreqb=df{Msgreqb1.Tupleb1.G(k1, sig),

Msgreqb2.Tupleb3.G(k2, sig).E(k3, sb),

Msgreqb3.bid.G(k4, sig),

Msgreqb4.Tupleb4.G(k5, sig)|
bid ∈ BID, baccount ∈ BAccount,par ∈ Par,

baddress ∈ BAdress, bm, sb ∈ Price,

k1, k2, k4, k5 ∈ kpri, sig ∈ Sig,k3 ∈ kpub}
MSGreqc=df{Msgreqc.G(k1, sig), E(k2, token)|

k2 ∈ kpri, sig ∈ Sig, k2 ∈ kpub}
MSGreqd=df{Msgreqd.data.G(k1, sig)|

data∈Data,k1∈kpri,sig∈Sig}
MSGcheck=df{Msgcheck.Tupleb2.G(k1,sig).E(k2, token)|

bid ∈ BID, k1 ∈ kpri, sig∈ Sig,

k2 ∈ kpub, baddress ∈ BAddress}
MSGack =df{Msgack.content | content ∈ ACK}
MSGreq=dfMSGreqs∪MSGreqb∪MSGreqc∪MSGreqd

MSG =df MSGreq ∪ MSGcheck ∪ MSGack

Furthermore, we use channels for communication, as de-
picted in Fig.4 and Fig.5. Each channel in the model is bi-
directional and can only transfer one message at a time.
• Channels between truthful components are called

Com Path:
ComDSS, ComDBS, ComDSF, ComDST, ComDBT
ComTS, ComTF, ComDBF, ComDBDS

Fig. 4. Internal Channels of the Data Auction Architecture
• Channels involving interception and messages faking are

named Intruder Path: InterceptDB, FakeSC

Fig. 5. Internal Channels of Faking Messages

B. Overall Modeling

We first formalize the model System0 of the proposed
mechanism without interception and forgery. We then take
the situation in which intruder exists into account to establish
a complete model. Due to the page limitation, we omit the
modeling process of DataTradingCentre and FileSystem.

As illustrated in Fig.3, the system has three stages: Prepara-
tion, Process and Conclusion executed sequentially. Further-
more, in accordance with the base of data auction, the message
transmission process needs to comply with rules of blockchain.
The sender should encrypt message with kpri and generate

a digital signature by G(kpri, sig) as mentioned in Part A.
Similarly, the receiver can call verifySig (kpub, E(kpri, sig))
to verify the sender’s identity by kpub.

System0 =df DataBuyer || DataSeller || FileSystem ||
SmartContract || TradingCentre

System =df System0[|Intruder Path|]Intruder
C. DataSeller Modeling

DataSeller is responsible for providing data information and
proposing the sealed price sp as the reserved auction price
which is not exposed to others until the auction ends.

DataSeller =df
encryptInfo(sckpub, sp)→ ComDSS!Msgreqs2 →
paySDeposit(sid)→ ComDST !Msgreqs1 →
ComDBDS!Msgreqs1 → ComDSS?Msgreqb1 →
verifySig(sckpub, G(sckpri, sig))→ DataSeller
C(sig == scsig)B fail→ DataSeller


C (state == Preparation)B ComDSS?Msgreqb3.bid.G(sckpri, sig)→

verifySig(sckpub, G(sckpri, sig))→(
ComDSF?MSGack → DataSeller

)
C(sig == scsig)B fail→ DataSeller


C (state == Conclusion)B fail→ DataSeller

In the preparation stage, we define encryptInfo(k, sp)
to disguise the lowest price. paySDeposit(sid) is designed
to deduct the deposit from the DataSeller’s account to
avoid bought-in. We express the behaviour of delivering
basic information Msgreqs1, Msgreqs2 to SmartContract
and DataTradingCentre respectively. verifySig(k, sig) re-
turns the decrypted sig using the corresponding public key.
We compare the result with the original sig from the ex-
pected SmartContract to check the sender’s identity. If the
result is true, the system performs smoothly. Otherwise,
the identity verification fails and the transaction terminates.
The variable par is defined to record the participation of
DataBuyer. In the conclusion step, DataSeller is informed of
the winner from SmartContract and obtains the revenue as
Step 8 in Fig.3. The specific contents are given as below.
Msgreqs1 =[sid.sname.stype.slink.G(skpri, sig)].

Msgreqs2 =[Tuples1.saccount.G(skpri,sig).E(sckpub, sp)].

Msgreqb1 =[bid.par.G(sckpri, sig)].

D. DataBuyer Modeling
DataBuyer is the crucial component of the data auction

architecture. The set of buyers make decisions on whether
to take turns to participate and make public bid mask bm
to hide true bid sb. We firstly model the behaviour of a
single DataBuyer and integrate multiple buyers as a whole.
The variable DB stands for the number of participants.

In the first period, in Step 2 in Fig.3, DataBuyer re-
ceives Msgreqs1 from DataSeller and checks its signature
to confirm that the message is from the specified sender.
DataBuyer decides individual participation which is defined
by the variable par. If the value equals to true, DataBuyer
shows its willingness to make bid on the data. Then, it pays
for the required deposit. In the second step, DataBuyer takes
part in broadcasting bm and applies encryptInfo(k, sb) in
disguising sb from entities except for the SmartContract in

Step 5. Finally, it gets the result of the data auction in
Msgreqb3. We define the comparison between DataBuyer’s
id is with the winner’s as a condition statement. If it is
true, winning buyer pays for the bid according to sb and
receives the token to download data encrypted by its pub-
lic key. decryptInfo(k, token) serves to obtain the token
generated by SmartContract and encrypts it to FileSystem to
obtain the data in Steps 11-13. Winning DataBuyer receives
Msgdata in the end if the result of verification is true.
Msgreqb21 =[bid.address.bm.G(bkpri,sig).E(sckpub, sb)].
Msgreqb4 =[bid.address.account.par.G(bkpri,sig)].
Msgreqc =[G(sckpri,sig).E(bkpub, token)].
Msgcheck =[bid.G(bkpri, sig).E(fkpub, token)].
msg1 = E(bkpub, token). msg2 = E(G(fkpri, sig)).

DataBuyer’i =df

ComDBDS?Msgreqs1 →
verifySig(skpub, G(skpri, sig))→ ComDBS!Msgreqb4 →

payBDeposit(bid, baccount)→
DataBuyer′i C (par == true)B
fail→ DataBuyer′i


C(sig == ssig)B fail→ DataBuyer′i


C (state == Preparation)B(

encryptInfo(sckpub, sb)→
ComDBS!Msgreqb21 → DataBuyer′i

)
C (state == Process)B

ComDBS?Msgreqb3.bid.G(sckpri, sig)→
verifySig(sckpub, G(sckpri, sig))→

payBid()→ ComDSS?MSGack →
ComDBS?Msgreqc →
verifySig(skpub, G(skpri, sig))→

decryptInfo(bkpri,msg1)→
ComDBF !Msgcheck →
encryptInfo(fkpub, token))→
ComDBF?Msgdata.data.msg2 →
verifySig(fkpub, G(fkpri, sig))→
DataBuyer′i C (sig == fsig)B
fail→ DataBuyer′i


C(sig == ssig)B fail→ DataBuyer′i


C(sig == scsig ∧ bid ∈ winner)B

Skip→ DataBuyer′i


C (state == Conclusion)B fail→ DataBuyer′i

DataBuyer’ =df |||i : {0..DB − 1}@DataBuyer’i
Allowing for the existence of intruder, shown in Fig.5, we

use symbol {|c|} to denote the set of all interaction over the
channel c. DataBuyer is defined via renaming as below.
DataBuyer =df DataBuyer’[[
ComDBS?{|ComDBS|} ← ComDBS?{|ComDBS|},
ComDBS?{|ComDBS|} ← InterceptDB?{|InterceptDB|}]]

E. SmartContract Modeling
SmartContract is the basis of the mechanism. It defines

rules for other entities to follow, selects winning buyer(s) and
broadcasts the list of winner(s).

At the beginning, as Step 1 in Fig.3 denoted, DataSeller
sends Msgreqs2 to inform it of the overview of the auc-
tioned data. SmartContract then conducts validation of the
identity of sender in verifySig(k, sig). It collects the de-
posit and shows the auction participation to DataSeller.

In the Process stage, it gets the specific data of bid in
Msgreqb21. It also forwards Msgreqb22 to DataTradingCen-
tre. Then, it decrypts the message with its private key in
decryptInfo(k,msg). It calls the dataAuction() program.
Msgreqb22 =[bid.address.bm.G(sckpri,sig).E(sckpub, sb)].

dataAuction(bid, baccount, bm, sp, sb, par) =df winner.append(bid)
C(sb == high bid)B withdrawBDeposit(bid)
winner.empty()→ winner.append(bid)
C(sb > high bid)B withdrawBDeposit(bid)


C (condition)B withdrawBDeposit(bid)

condition : (par == true ∧ sb ≤ baccount ∧ sp ≤ sb ∧ sb ≤ bm)

The function dataAuction(bid, baccount, bm, sp, sb, par)
checks whether the decrypted sb meets the rules and compares
it with the recent highest bid high bid.

At last, in Step 8 in Fig.3, it broadcasts winning buyers’
id. When it confirms the payment in Msgack, it randomly
generates a token and encrypts it to ensure confidentiality.

SmartContract’ =df

ComDSS?Msgreqs2 →
verifySig(skpub, G(skpri, sig))→

ComDBS?Msgreqb4 →
verifySig(bkpub, G(bkpri, sig))→
ComDSS!Msgreqb1 →
ComTS!Msgreqb1 → SmartContract′

C(sig == bsig)B fail→ SmartContract′


C(sig == ssig)B fail→ SmartContract′


C (state == Preparation)B

ComDBS?Msgreqb21 →
verifySig(bkpub, G(bkpri, sig))→ SmartContract′ ComTS!Msgreqb22 →

decryptInfo(sckpri, E(sckpub, sp))
decryptInfo(sckpri, E(sckpub, sb))
dataAuction()→ SmartContract′


C(sig == bsig)B fail→ SmartContract′


C (state == Process)B

ComDSS!Msgreqb3.bid.G(sckpri, sig)→
ComDBS!Msgreqb3.bid.G(sckpri, sig)→
ComTS!Msgreqb3.bid.G(sckpri, sig)→
ComDBS!Msgack.ack → generateToken()→
EncryptInfo(bkpub, token)→(

ComDBS!Msgreqc → SmartContract′
)

C(bid ∈ winner)B Skip→ SmartContract′


C (state == Conclusion)B fail→ SmartContract′

SmartContract =df SmartContract’[[
ComDBS!{|ComDBS|} ← ComDBS!{|ComDBS|},
ComDBS!{|ComDBS|} ← FakeSC!{|FakeSC|}]].

F. Intruder Modeling

The intruder causes unexpected accidents by eavesdropping
and forging messages. We define a set Fact including facts it
might obtain from the interaction between truthful entities.

Fact =def {bid, address, bm,G(bkpri,sig), E(sckpub, sb)|
bid ∈ BID, baddress ∈ BAdress, bm, sb ∈ Price,

bkpri ∈ kpri, sig ∈ Sig,sckpub ∈ kpub} ∪ Entity.
The intruder can deduce new facts from the accessible Fact.

We describe the progress of deducing content of fact f from
the origin fact F by the symbol F 7→ f .

We can learn from the first rule that the intruder can decrypt
message in asymmetric encryption.

The second rule shows that when set F is the subset of F ′,
intruder can deduce f not only from F but also from F ′.
(1){kpri, E(kpub, c)} 7→ c (2)F 7→ f ∧ F ⊆ F ′ =⇒ F ′ 7→ f

We define the function getInfo(msg) to imply the knowl-
edge which the intruder intercepts from the process.

getInfo(msgreqb2.bid.address.bm.G(bkpri,sig).E(sckpub, sb)

=def {bid, address, bm,G(bkpri,sig), E(sckpub, sb)}
We define a channel Deduce to deduce new facts:

Channel Deduce : Fact.P (Fact)

Then, we give a formalized model of Intruder′ as follows.
Intruder′(F) =df

�msg∈MSGFakeDB?msg → Intruder′(F ∪ getInfo(msg))

��msg∈MSG,getInfo(msg)⊆FFakeSC!msg → Intruder′(F)

��new∈Fact,new/∈F,F 7→new → Deduce.new.F

→

 {Data Faking Success == true} →
Intruder′(F ∪ {new})
C(new == sb)B Intruder′(F ∪ {new})


The intruder adds getInfo(msg) to its current knowledge

when intercepting msg. It can decrypt msg from DataBuyer
and change the content of msg to send it to SmartContract. If
the msg cannot be identified from an unauthorized user and
is received, it means that the intruder successfully modifies
the content of the message and completes an attack. Then,
we assign true to faking flag. Now we give the model of
Intruder. The parameter BK is its basic knowledge.

Intruder =df Intruder′(BK),

BK =df Entity ∪ kpub ∪ {sckpri}

IV. VERIFICATION AND RESULTS

In this section, we analyze and verify five properties of the
constructed model in the model checker PAT [10] to evaluate
the reliability of anti-collusion data auction mechanism.

A. Properties and Analysis

• Deadlock Freedom:
Deadlock represents the situation when no entity can
interact with each other normally in the system. PAT has
a primitive to describe it.

#assert System() deadlockfree;

• Data Reachability:
Reachability ensures that all valid data can be transferred
between subjects in the process until the end. We assign
the defined Boolean variable data reachable flag to true
when the process obtains the expected target data.

#define Data Reachable reachable flag == true;

#assert System() reaches Data Reachable;

• Data Correctness:
Correctness describes the ability ensuring that the final
displayed price is consistent with the price proposed by
the buyer. It also indicates that the mechanism can draw
the correct conclusion. We assign the defined Boolean

variable data correct flag to true when receiving the true
result with no mistakes.
#define Data Correct data correct flag == true;

#assert System() reaches Data Correct;

• Anti-collusion Capability:
Collusion stands for the situation in which data buyers
can observe others’ prices to make adjustment to their
own bid price to keep winning price as low as possible.
We should avoid its occurrence to make the auction
fair. In the supposed situation, the buyer intercepts the
message in order to get sealed bid to influence the result.
The variable current bid represents the data transferred
on the channel, which has the risk of being intercepted.
Moreover, the variable true bid stands for the true bid
price from the corresponding buyer. We focus on com-
paring current bid with true bid to verify the property.

#define Anti F lag current bid ! = true bid;

#assert System() reaches Anti F lag;

• Data Security:
Security refers to the situation where the intruder can-
not forge data successfully. Supposing there exists an
intruder, we define the Boolean variable faking flag to
record the effect of attack. We assign it to true when the
intruder successfully changes the value and has influence
on the auction result to check whether the system is safe.

#define Data Faking Success faking flag == true;

#assert System() reaches Data Faking Success;

B. Verification Results

We use PAT to simulate the behaviour of the constructed
model. Then, we verify the above properties. The invalid result
of Data Faking Success equals to the confirmation of Data
Security. The result is illustrated in Fig. 6, implying that the
system can always satisfy five properties, including Deadlock
Freedom, Data Reachability, Data Correctness, Anti-collusion
Capability and Data Security.

Fig. 6. Verification Results of the Model

The verification results indicate that the auction mechanism
can avoid deadlock. At the same time, it can obtain the target
data from an authorized user and achieve proper result. More-
over, it can protect messages from interception and tampering
in the process by encrypting bid price and generating digital
signatures which intruder is unable to fabricate.

Furthermore, the system can provide users with a way of
recording the origin data and maintain data copies permanently
which cannot be modified by intruders owing to digital sig-
nature authentication. The intruder can decrypt sealed sb and
modify it by acquired sckpri when the data leakage occurs.
However, it cannot imitate the signature of the DataBuyer. As a
result, SmartContract receives msg from Intruder and verifies

its certification which msg cannot pass. Hence, the attack is
invalid and has no effect on the auction result.

Thus, we can come to the conclusion that anti-collusion
auction mechanism based on smart contract can guarantee high
truthfulness, safety and reliability.

V. CONCLUSION AND FUTURE WORK
In this paper, we adopted process algebra CSP to model the

communication process of this architecture of the proposed
[5] decentralized data auction scheme. It is based on smart
contract which can solve the problem of collusion. We verified
five properties: Deadlock Freedom, Data Reachability, Data
Correctness, Anti-collusion Capability and Data Security with
the assistance of the model checker PAT. As demonstrated
in the verification results, it satisfies all properties, indicating
the distributed mechanism is of great reliability, confidentiality
and security under any circumstances. It guarantees to return
the valid result of the data auction by encrypting vital infor-
mation. Besides, it creates digital signatures attached to the
message transferred in the system to ensure the safety.

In the future, we will put forward analysis on security
strategies of smart contract and take the system of multiple
sellers into consideration. Meanwhile, we will also introduce
more types of attack into authentication process, such as replay
attack and reentrancy attack.

VI. ACKNOWLEDGEMENTS

This work was partially supported by the “Digital Silk
Road” Shanghai International Joint Lab of Trustworthy Intelli-
gent Software (No. 22510750100), Shanghai Trusted Industry
Internet Software Collaborative Innovation Center, and the
Dean’s Fund of Shanghai Key Laboratory of Trustworthy
Computing (East China Normal University).

REFERENCES

[1] Jun Du, Erol Gelenbe, Chunxiao Jiang, Zhu Han, Yong Ren: Auction-
Based Data Transaction in Mobile Networks: Data Allocation Design
and Performance Analysis. IEEE Trans. Mob. Comput. 19(5): 1040-
1055 (2020).

[2] Wolfgang Jank, Shu Zhang: An Automated and Data-Driven Bidding
Strategy for Online Auctions. INFORMS J. Comput. 23(2)CCF B: 238-
253 (2011).

[3] Shashank Pandit, Duen Horng Chau, Samuel Wang, Christos Faloutsos:
Netprobe: a fast and scalable system for fraud detection in online auction
networks. WWW 2007: 201-210.

[4] Anup Kumar Paul, Xin Qu, Zheng Wen: Blockchain-a promising so-
lution to internet of things: A comprehensive analysis, opportunities,
challenges and future research issues. Peer-to-Peer Netw. Appl. 14(5):
2926-2951 (2021).

[5] Wei Xiong, Li Xiong: Anti-collusion data auction mechanism based on
smart contract. Inf. Sci. 555: 386-409 (2021).

[6] Bhabendu Kumar Mohanta, Soumyashree S. Panda, Debasish Jena: An
Overview of Smart Contract and Use Cases in Blockchain Technology.
ICCCNT 2018: 1-4.

[7] Baoyi An, Mingjun Xiao, An Liu, Yun Xu, Xiangliang Zhang, Qing Li:
Secure Crowdsensed Data Trading Based on Blockchain. IEEE Trans.
Mob. Comput. 22(3): 1763-1778 (2023).

[8] Shuangke Wu, Yanjiao Chen, Qian Wang, Minghui Li, Cong Wang,
Xiangyang Luo: CReam: A Smart Contract Enabled Collusion-Resistant
e-Auction. IEEE Trans. Inf. Forensics Secur. 14(7): 1687-1701 (2019).

[9] C. A. R. Hoare: Communicating Sequential Processes. Prentice-Hall,
1985.

[10] Jun Sun, Yang Liu, Jin Song Dong: Model Checking CSP Revisited:
Introducing a Process Analysis Toolkit. ISoLA 2008: 307-322

