
Formal Specification and Verification of an Autonomous Vehicle Control System
by the OTS/CafeOBJ method

Yifan Wang Masaki Nakamura Kazutoshi Sakakibara Yuki Okura

Toyama Prefectural University, Toyama, Japan

Abstract- The autonomous vehicle control system is a typi-
cal kind of hybrid system that combines both continuous and
discrete behavior. Formal specification and verification tech-
niques help us to verify desired properties of given systems. In
this study, we propose a way to describe a formal specification
of an autonomous vehicle control system in CafeOBJ algebraic
specification language. The control system is a hybrid system
with continuous variables of time, velocity, and position con-
trolled by discrete pedal actions including acceleration, brak-
ing, and no-operation. We also verify the safety property of
the autonomous vehicle control system by a theorem proving
technique called the proof score method *

Keywords-Autonomous vehicle; Hybrid system; Formal veri-
fication; Observational transition system; Proof score method

I. Introduction

A hybrid system is a dynamic system that includes
both continuous and discrete dynamic behavior. The au-
tonomous vehicle has both continuous behaviors (velocity
and position) and discrete behaviors (pedal actions), there-
fore, in order to design and verify an autonomous vehicle
control system we model it as a hybrid system. There are
many techniques used to test and simulate autonomous ve-
hicles, such as CarMaker † and SUMO ‡, but only testing
and simulation just provide some kinds of limited or prede-
termined paths, it is far from enough for safety. We need
formal specification and verification techniques to make
sure safety of the autonomous vehicle control system.

Formal verification is an approach to verify that a given
specification satisfies some desired properties formally.
One approach of formal verification is model checking.
In our previous work [1], we proposed a way to describe
and verify an autonomous vehicle group control system by
Maude model checker and showed Maude is useful to de-
sign the system with the safety property. Although model
checking is fully automated, the state space is limited where

*DOI reference number: 10.18293/SEKE2023-170.
This work was supported by JSPS KAKENHI Number JP19K11842.
†https://ipg-automotive.com/cn/products-solutions/software/carmaker/
‡https://www.eclipse.org/sumo/

we choose a time sampling strategy instead of dense time.
The other approach of formal verification is theorem

proving where mathematical proofs are made by the inter-
action of humans and computers, it is semi-automated but
applicable to infinite state space and it supports continuous
variables. CafeOBJ supports specification execution based
on a rewrite theory for theorem proving. The OTS/CafeOBJ
method is a formal method in which a system is modeled as
an observational transition system (OTS), its specification is
described in CafeOBJ, and properties are verified formally
based on the specification execution, called the proof score
method [2].

There have been several case studies of the OTS/-
CafeOBJ method which deal with systems with only dis-
crete behaviors ([2] and so on). In [3], the OTS/CafeOBJ
method is applied to distributed real-time systems, which
are kinds of hybrid systems with only one continuous vari-
able of time. In [4], the OTS/CafeOBJ method is applied to
multitask hybrid systems, which includes only a simple hy-
brid system for explanation’s sake. In [5], the safety prop-
erty of an autonomous vehicle intersection traffic control
system by the OTS/CafeOBJ method is shown, where the
system includes only one continuous variable of real-time.

In this study, we propose a way to describe a formal
specification of an autonomous vehicle control system in
CafeOBJ algebraic specification language. The control sys-
tem is a hybrid system with continuous variables of time,
velocity, and position controlled by discrete pedal actions
including acceleration, braking, and no-operation. We also
verify the safety property of the autonomous vehicle con-
trol system by a theorem proving technique called the proof
score method.

II. Hybrid automaton

Hybrid automata are models of hybrid systems which
contain the discrete and continuous behavior and we give
a model of an autonomous vehicle control system as a hy-
brid system according to the literature [6]. In this article, we
consider a hybrid automaton of a single autonomous vehicle
control system, represented in Figure 1. The system con-

sists of a single autonomous vehicle with three locations:
acceleration, nothing, and brake. The pedal states of accel-
eration, brake, and no-operation (nothing) can be selected
freely.

Figure 1. A hybrid automaton of an autonomous vehicle
control system

We assume that there will be an obstacle at a certain posi-
tion and the vehicle must jump into the brake mode and the
pedal state is fixed to the braking to prevent to crash when
the vehicle is close to the obstacle which is represented in
Figure 2.

Figure 2. A target model
The location Brake stands for the state where the brake

pedal is pushed (v′ = −1). The location Nothing stands for
the state where neither the brake nor the accelerator pedals
are pushed (v′ = 0). The location Accelerate stands for
the state where the accelerator pedal is pushed (v′ = 1).

The initial condition v = 0 ∧ x = 0 ∧ now = 0 for the
location Accelerate means that when the system starts,
the state of the vehicle is acceleration, the velocity and po-
sition of the vehicle are 0 respectively. We assume the ve-
hicle does not goes back and have a max velocity, that is,
we give the limitation of the velocity of vehicle between
the (0 ≤ v ≤ 4) at three locations Brake, Nothing and
Accelerate.

And there is an obstacle at position 45 and to avoid colli-
sion, the position should be less than or equal to 36 (x ≤ 36)
at locations Nothing and Accelerate. If the position is
over 36, the vehicle has to jump into location Brake only
and vehicle has to reduce the velocity (v′ = −1) and stop
before position 44 with just the brake pedal is pushed, that
is, the vehicle does not exist the position over 44 so that

prevents the crash with the obstacle. We call it the safety
property.

The operational semantics of hybrid automata is given
as a state transition system where a state is represented by
a tuple of a location and values of variables and there are
discrete jump transitions between locations and continuous
flow transitions for time elapsing (See [1] for more details).
The safety property of our system is given as follows for-
mally: for any reachable state, the position of the vehicle is
less than forty-five, that is the obstacle position.

III. OTS/CafeOBJ specification

In this section, we introduce a way to describe the OT-
S/CafeOBJ specifications of a hybrid system. We model an
autonomous vehicle control system with a single vehicle as
hybrid automata and describe them as OTS/CafeOBJ spec-
ifications. Then we give the simulation of our system and
certify that the vehicle will stop before the obstacle.

A CafeOBJ specification consists of modules, in which
sorts, operators, and equations are declared in module
LABEL, module RAT, and module VEHICLE. A module is de-
clared with module or just mod. The name of a module is
written after mod. Module elements are declared between {}.
CafeOBJ modules can be classified into tight modules and
loose modules. Tight and loose modules begin with mod!
and mod* respectively. A loose module mod* denotes all
models satisfying axioms. A tight module mod! denotes
the initial model.

A Data modules

An OTS/CafeOBJ specification consists of data modules
and a system module. We first give a data module LABEL
for the vehicle.

mod! LABEL{ [Label]

ops accel nothing brake : -> Label

pred _=_ : Label Label {comm}

var L : Label . eq (L = L) = true .

eq (accel = nothing) = false .

eq (accel = brake) = false .

eq (brake = nothing) = false .

}

The name of the module is LABEL. The module decla-
ration with mod! denotes the tight denotation, where the
module denotes only the initial model. In the initial mode,
any elements of a carrier set are represented by a term con-
structed from its signature, and no two elements of a car-
rier set are equivalent unless the corresponding terms can
be shown to be equal using its axioms.

We set a tight data module LABEL specifying three con-
stant operators accel, nothing, and brake of Label, a
binary predicate = , and a variable is declared with the

keyword var. And we define the equality predicate, which
takes two labels and returns true if they are the same, other-
wise false.

B System modules : Signature

A system module is given as a behavioral specification
of CafeOBJ. A behavioral specification has a special sort,
called a hidden sort, and special operations called behav-
ioral operations, whose arguments include the hidden sort.
A behavioral operation whose returned sort is not hidden is
called an observation and whose returned sort is hidden is
called a transition. Two elements of the hidden sort are ob-
servationally equivalent if their observed values are equiv-
alent for each observation. An OTS/CafeOBJ specification
is a restricted behavioral specification, where observational
equivalence is preserved by transitions. The following is an
OTS/CafeOBJ specification of an autonomous vehicle sys-
tem:

mod* VEHICLE{

pr(LABEL + RAT) *[Sys]*

op init : -> Sys bop loc1 : Sys -> Label

bops a b n : Sys -> Sys

bops x1 v1 now : Sys -> Rat

bop tick : Rat Sys -> Sys

op c-tick : Rat Sys -> Bool

var S : Sys vars V A X T Y Z : Rat

The loose module VEHICLE imports module LABEL and
RAT with the protecting mode, where a model of the im-
porting module includes a model of the imported module as
it is. Hidden sort Sys is declared, which denotes the state
space of a system to be specified.

Constant init is declared as an initial state. Observa-
tion loc1 observes a location where the term loc1(s) rep-
resents the current location in state s of the vehicle control
system. Transition a, b, and n change a system, where term
a(s) represents the state s obtained after changing. Ob-
servation x1 and v1 observe the current position and speed.
The clock observer now observes the current time. The term
tick (X,S) represents the state s obtained after advancing
time by X. The operation c-tick specifies that a sequence
of Rat and Sys is a term of Bool. Variables used in equa-
tions can be declared beforehand. A variable S is declared
with the keyword var as a system. Plural variables of the
same sort such as V, A, X, T, Y, and Z can be declared with
the keyword vars as a rational number.

C System modules : Axioms

The initial state of the current time (now), velocity (v1),
and position (x1) are defined as zero respectively, the ini-
tial state of the location (loc1) is defined as acceleration
(accel) by the following equations.

eq now(init) = 0 . eq v1(init) = 0 .

eq x1(init) = 0 . eq loc1(init) = accel .

The transitions of a, b, n, and tick are specified as
O(τ(S)) = S when O = x1, v1, now and τ = a, b, n, which
means the values of now, v1 and x1will not change with the
pedal actions. The following equations specify the updated
values of location after the pedal actions.

eq loc1(a(S))= accel. eq loc1(b(S))= brake.

eq loc1(n(S))= nothing.

Next, we specify the continuous transition. Time ad-
vancing tick is described as follows:

ceq now(tick(T,S)) = now(S) + T if c-tick(T,S) .

ceq loc1(tick(T,S)) = loc1(S) if c-tick(T,S) .

The first equation specifies the updated value of now is
set to T time later, that is, now+ = now + T if the effec-
tive condition is satisfied. The second equation specifies
the variable loc is unchanged if it satisfies the c-tick.

In the OTS/CafeOBJ method, we describe an equa-
tion like x(tick(T,S)) = rhs (right-hand side) if
c-tick(T,S). x is the observation for a continuous vari-
able. The term tick(T,S) stands for the result state
by applying tick(T,) to the state S, that is, the state
after time advancing by T from S. The left-hand side
x(tick(T,S)) of the equation stands for the value of x for
the state tick(T,S). By this equation, the value of obser-
vation (tick(T,S)) is defined as the right-hand side when
c-tick(T,S) is true. The value of x after T is obtained
from the flow condition of the hybrid automaton.

Let v1(t) be the value of v1 at time t. From the
flow condition v′1 = a where a is a constant (a = -1, 0,
1), the value v1(T) of v1 at the state after T is calculated
as follows: v1(T) = v1(0) +

∫ T
0 adt = v1(0) + [at]T

0 =

v1(0) + a ∗ T where the value of v1(0) is the value of
v1 at S. Thus, the right-hand side of the equation whose
left-hand side is v1(tick(T,S)) can be written as v1(S)
+ a1(loc1(S)) * T, where a1(accel) = 1, a1(brake) =
-1 and a1(nothing) = 0. To describe the equation, we
introduce an operation nextv(V,A,T) which calculates the
value of v1 after T from the state whose value of v1 is V and
acceleration value is A.

eq nextv(V,A,T) = V + A * T .

ceq v1(tick(T,S)) = nextv(v1(S), a1(loc1(S)), T)

if c-tick(T,S) .

Similarly, x1(t) is the value of x1 at time t. From the
flow condition x′1 = v, the value x1(T) of x1 at the state
after T is calculated as follows: x1(T) = x1(0) +

∫ T
0 v(t)dt =

x1(0)+[v0+at]T
0 = x1(0)+v0∗T+ 1

2∗a∗T 2, where the value of
x1(0) is the value of x1 at S. Thus, the right-hand side of
the equation whose left-hand side is x1(tick(T,S)) can

be written as x0 + v0 ∗T + 1
2 ∗ a1(loc1(S)) ∗T 2. To describe

the equation, we introduce an operation nextx(X,V,A,T)
which calculates the value of x1 after T from the state whose
value of x1 is X and acceleration value is A.

eq nextx(X,V,A,T) = V * T + 1/2 * A * T * T + X .

ceq x1(tick(T,S)) =

nextx(x1(S), v1(S), a1(loc1(S)), T) if c-tick(T,S).

The above conditional equations have c-tick(T,S) as
their conditions. The effective condition c-tick(T,S)
is given by invariants of the hybrid automaton which eq
c-tick(T,S) = invb and inva and invn.

Invariants in hybrid automata should always hold, which
means that time cannot advance if the invariants do not
hold. Thus, the effective condition c-tick is given as the
conjunction of all invariants. For example, the invb equals
(loc1(S) = brake implies (0 <= nextv(v1(S),

a1(loc1(S)), T) and nextv(v1(S), a1(loc1(S)),

T) <= 4))) means that 0 ≤ nextv ≤ 4 holds after tickx

whenever the location is the braking state. The effective
condition of tickx should check invariant loc1(S) by the
updated value of nextv and nextx. In other words, if future
values violate invariants, time cannot advance.

ceq tick(T,S) = S if not c-tick(T,S) .

IV. Verification of hybrid system

A single reduction can prove a simple equation. More
complex properties are proved by combining several reduc-
tions, which is called a proof score. First, we give a state
predicate inv1(S) such that the vehicle does not exist over
the position of 45 at the state S.

eq inv1(S) = (x1(S) < 45) .

If we prove inv1(S) for all reachable states from the ini-
tial state and get the result is true, the safety property holds.
As the induction basis, we apply the reduction command to
inv1(init) to prove the initial state to satisfy inv1.

open INV .

red inv1(init) .

close

CafeOBJ interpreter returns true, which implies the induc-
tion basis holds, that is, inv1 holds at the initial state.

To complete the proof, we need to prove not only the
safety property inv1 but also a lemma inv2. We make two
lemmas and 12 proof passages, all of which return true. Be-
cause of the page limitation, we omit the induction part of
inv1, an introduction of a lemma inv2 and its proof. The
codes of them can be found in our GitHub page §.

§https://github.com/evan-jaaapan/SEKE2023.git

V. Conclusion

We described an observational transition system of an
autonomous vehicle control system as an example of a hy-
brid system, and verified the safety property by the proof
score method.

One of our future works is to apply the proposed
method to practical applications of multitask hybrid sys-
tems with multiple autonomous vehicles. There are several
related work on formal verification for hybrid system, e.g.
SpaceEx¶ and KeYmaera X∥. Another one of our future
work is to compare them with our approach and combine
them to obtain more efficient formal verification.

References

[1] Wang Y, Nakamura M, Sakakibara K. Modeling an Au-
tonomous Vehicle Group Control System as a Hybrid Au-
tomaton and its Specification and Verification in Rewrit-
ing Logic. In2021 36th International Technical Conference
on Circuits/Systems, Computers and Communications (ITC-
CSCC) 2021 Jun 27 (pp. 1-4). IEEE.

[2] Ogata K, Futatsugi K. Proof scores in the OTS/CafeOBJ
method. InFMOODS 2003 Nov 19 (Vol. 3, pp. 170-184).

[3] Ogata K, Futatsugi K. Modeling and verification of real-time
systems based on equations. Science of computer program-
ming. 2007 Apr 30;66(2):162-80.

[4] Nakamura M, Sakakibara K, Okura Y, Ogata K. Formal ver-
ification of multitask hybrid systems by the OTS/CafeOBJ
method. International Journal of Software Engineering and
Knowledge Engineering. 2021 Dec;31(11n12):1541-59.

[5] Igarashi T, Nakamura M, Sakakibara K. Formal Verifica-
tion of the Lim-Jeong-Park-Lee Autonomous Vehicle Con-
trol Protocol using the OTS/CafeOBJ Method.(2022): 574-
579.

[6] Doyen L, Frehse G, Pappas GJ, Platzer A. Verification of
hybrid systems. Handbook of Model Checking. 2018:1047-
110.

¶http://spaceex.imag.fr/
∥https://keymaerax.org/publications.html

