
mTrader: A Multi-Scale Signal Optimization Deep
Reinforcement Learning Framework for Financial

Trading
Zhennan Chen, Zhicheng Zhang, Pengfei Li, Lingyue Wei, Shibo Feng, Fan Lin∗

School of Informatics, Xiamen University, Xiamen, China
{znchen, zczhang, lpfei, 31520211154091, fengshibo1024}@stu.xmu.edu.cn, ∗iamafan@xmu.edu.cn

Abstract—It is universally acknowledged that the financial
trading is a thorny issue in time-series scenarios. On the one
hand, due to the great randomness and instability in financial
markets, the existing machine learning methods are inadequate
for modeling high-frequency financial data. On the other hand,
it remains a challenge to identify the validity of transaction
actions to avoid high fees. To address these issues, we propose
a novel trading framework, namely mTrader, to offer suitable
trading strategies automatically. We creatively design a multi-
scale signal matrix to describe the temporal trends of markets.
On this basis, Vector Quantized Variational AutoEncoder (VQ-
VAE) was introduced to capture discrete latent variables. In
addition, an offline Action Optimizer (AO) based on Proximal
Policy Optimization (PPO) could help filter out sub-optimal
trading action. Extensive experiments have shown that our model
achieves state-of-the-art performance on many popular stock
markets.

Keywords—Multi-Scale, VQ-VAE, Proximal Policy Optimiza-
tion (PPO), Financial Trading

I. INTRODUCTION

Financial trading aims to obtain optimal returns while avoid-
ing market fluctuations. During the past few decades, traders
have proposed many trading strategies [4], [14], but poor
usability resulted in these traditional strategies only helping
traders to trade at a fixed time or in a fixed market. Due to
the huge demand for funds, new intelligent trading algorithms
have been proposed to help traders adapt to different market
changes.

Processing financial transaction data is considered to be one
of the most challenging tasks due to the evolutionary and
nonlinear nature of financial markets. As the global financial
market gradually becomes large and complex, the number of
statistical models [2] and sophisticated models [21] has risen
during the recent years. However, traditional models show
insufficient processing ability while facing with large input
states. Thus methods based on Deep Reinforcement Learning
(DRL) have become the preferred choice. For instance, deep
Q-network (DQN) [12] is proposed to learn policies from high-
dimensional inputs, in order to suit the situation approaching
real-world complexity. Jiang et al. [5] use the model-free Deep
Deterministic Policy Gradient (DDPG) to deal the portfolio

∗Corresponding author
DOI reference number: 10.18293/SEKE2023-168

management problem with a deep learning solution. Schul-
man et al. [16] present Proximal Policy Optimization (PPO)
to hedge a portfolio of derivatives against market frictions.
Despite numerous attempts to apply DRL in financial markets,
unpredictable factors can still affect prediction results, leading
to highly non-stationary time series that make it challenging
to observe real markets with extreme volatility. Additionally,
the input states often contain a large amount of noise that
interferes with the selection of subsequent actions.

To address these challenges, we propose a novel deep
reinforcement learning framework, mTrader, which models the
financial trading process as a Partially Observable Markov
Decision Process (POMDP) [6]. In our framework, we design
a multi-scale signal optimization approach to describe features
of different markets using a sparse signal matrix, which helps
to capture the temporal trends of markets. We then employ
a Vector Quantized Variational AutoEncoder (VQ-VAE) [19]
to observe current market states precisely. Moreover, we
introduce an offline Action Optimizer (AO) based on Proximal
Policy Optimization (PPO) to filter out sub-optimal trading
actions, enabling the framework to maximize returns even in
the presence of market fluctuations. Our proposed framework
achieves state-of-the-art performance on various popular stock
markets. Our main contributions are summarized as follows:
• We proposed mTrader, a novel multi-scale signal op-

timization framework, which can automatically make
suitable decisions during financial transaction process.

• To extract meaningful features, we use a multi-scale
sparse signal matrix for features expression and use VQ-
VAE for temporal modeling of high frequency financial
data. To our knowledge, this is the first effective appli-
cation of VQ-VAE in this field. We introduce an offline
Action Optimizer (AO) in order to identify the validity
and rationality of certain transaction behaviors.

• We perform extensive experiments to demonstrate the
advantages of our framework over other algorithms and
its versatility in different markets.

II. RELATED WORK

1) Feature Extraction: It is crucial to extract high-level
features from financial data for accurate prediction of stock
prices. Tsantekidis et al. [18] described a deep learning method

based on convolutional neural networks (CNN) to predict
the price movement of stocks. Liu et al. [9] used LSTM
recurrent neural network to extract feature values, established
a corresponding stock trading prediction model by analyzing
stock data. All in all, it turns out that CNN and LSTM
are undoubtedly the most popular feature extraction methods.
Since financial data is the sequence at regular intervals of
time and LSTM has superior performance in processing series
data, using LSTM for feature extraction is likely to be a
more suitable choice for financial data analysis and stock price
prediction.

2) Deep Reinforcement Learning: Owing to the outstanding
ability of DRL to solve complex continuous decision-making
problems, applications in financial market transactions have
emerged one after another. Some researchers have used critic-
only approach, usually DQN [11] and its variants, to solve
financial transaction tasks. Other researchers have focused on
actor-only approaches, where Moody et al. [13] creatively
proposed an adaptive algorithm using recurrent reinforcement
learning (RRL) to optimize risk for better return on invest-
ment. On the other hand, some researchers have used actor-
critic approach. For example, Yang et al. [20] utilized three
algorithms to obtain an ensemble policy that can robustly adapt
to different market situations for better learning stock trading
strategy. To sum up, in terms of the characteristics of financial
transaction tasks, the actor-critic approaches [15] can learn and
adapt to complex environments better, and is more suitable for
financial transaction tasks.

III. PROBLEM FORMULATION

In this section, we first clarify the full definition of POMDP
then formally introduce the financial trading problem in DRL.

A. POMDP

The POMDP is a realistic generalization of a Markov
Decision Process (MDP) for the financial trading problem. An
MDP is a 5-tuple M = (S,A,PT ,R, γ). S is a finite set of
states. A is a finite set of actions. PT : S × A × S → [0, 1]
denotes the state transition function. R : S × A → R is
the reward function, where R is a continuous set of possible
rewards. γ ∈ [0, 1) is the discount factor. The goal of this
process is to learn a policy π : S → A that maximizes
the expected discounted cumulative reward E

[∑∞
t=1 γ

t−1Rt

]
.

The action value function E
[∑∞

t=1 γ
t−1Rt | π

]
is used to

evaluate policy π.
In our financial trading framework, O = {Z,R} is a set

of observations that contains our constructed feature encoding
Z and reward R. B : S × A × O → [0, 1] is the observation
transition function. O and B are the remaining components of
POMDP.

At each timestep t, the agent takes action at ∈ A according
to the current environment st ∈ S. Then get st+1 through the
state transition function PT (st+1 | st, at). At the same time as
the environment st+1 is obtained, the agent will get ot+1 ∈ O
through the observation transition function B (ot+1 | st+1, at).

B. State

Previously, researchers mostly used the primitive properties
of the raw data to represent financial market signals. In this pa-
per, we perform state augmentation using technical indicators
recognized by financial scientists as helpful in observing the
market, and further process it into a multi-scale sparse signal
matrix at time t. After encoding, the state is got and input into
the DRL model.

C. Action

Like real market transactions, our action space is discrete.
The action of period t is at := {ab, ah, as}, where ab means
to buy, as means to sell, and ah means no action to buy or
sell. The amount of each action is fixed.

D. Reward

The reward of period t is the Sharpe ratio. Sharpe ratio (Sr),
a measure that considers both return and risk, is used to adjust
past or expect future performance of a portfolio for excess risk
taken by traders, defined as the average of the risk-free return
by its deviation:

Sr =
E(Rp −Rf)

σ(r)
, (1)

where Rp is the rate of return, Rf is the risk-free rate, σ(r)
is the standard deviation of returns. To accurately measure
trading action, Sr is calculated over the past n sliding windows.

E. Assumptions

In our model, there are two general assumptions: 1) Taking
action will not have an impact on the market. Markets for
financial transactions are resilient, and the impact of agency
investment on the market will recover before the next step.
2) Immediate execution of the market. We assume that the
agent’s behavior can be implemented directly, that is, there is
no delay in each investment.

IV. PROPOSED METHOD

The overview architecture of mTrader is shown in Figure 1.
In this section, we will introduce our model, mTrader, which
is designed to solve decision-making problems in financial
trading.

A. Multi-Scale Signal Modeling

1) Multi-Scale Signal Metrics: The special mode of the
sparse signal matrix makes it have strong feature expression
ability in financial data. According to the results of past
research [1], [8], we have selected 32 indicators that can reflect
market trends best, such as RSI, MACD, KDJ etc. In order to
eliminate irrelevant or strongly correlated features among the
32 technical indicators while expanding the data expression
ability to the greatest extent, we use Least Absolute Shrinkage
and Selection Operator Algorithm (LASSO) [17] for further
feature selection to ensure that each indicator can contribute to
the final result. In this operator, features with negative or zero
coefficient values can be removed from the feature subset, and

VQ-VAE
Encoder

Actor FC

Critic FC

Multi-Scale Signal Metrics

𝑀𝑀𝑠𝑠

𝑀𝑀m

𝑀𝑀𝑙𝑙

𝑉𝑉𝜋𝜋(𝑠𝑠t)

Discrete Encoder Deep Reinforcement Learning

𝑋𝑋𝑡𝑡

𝑍𝑍𝑡𝑡

...

Multi-scale Signal Modeling Offline Action Optimizer based on PPO

𝐺𝐺𝑡𝑡

𝑀𝑀𝑡𝑡 𝑃𝑃s

𝑃𝑃ℎ2

𝑃𝑃ℎ1

𝑃𝑃b

Offline Action Optimizer

sell

hold

buy

LSTMC

𝜋𝜋𝜃𝜃(𝑠𝑠𝑡𝑡)

Fig. 1: The overview of mTrader. Xt is the original data. Gt is the processed sparse signal matrix. M l, Mm, Ms are signals
of three scales. c⃝ is concatenation. Mt is encoded by VQ-VAE to generate discrete encoding Zt. The right part is the DRL
algorithm. Ps, Pb, Ph1 and Ph2 set boundaries to optimize actions. πθ (st) is the generated policy and vπ (st) is the value
function.

finally the most common feature is taken as the most important
feature. Its estimated value is defined as follows:

β̂α = argmin
β

 n∑
i=1

yi −
∑
j

xijβj

2

+ α

p∑
j=1

|βj |

 ,

(2)
where β ∈ Rp and represents the coefficient of each feature,
α is an adjustable penalty parameter, and some inactive
components of β̂α can be precisely set to 0.

The input raw data Xt = {XO, XH , XL, XC} =
[xt1, ..., xtk] includes the opening price indicator XO, the
highest price indicator XH , the lowest price indicator XL and
the closing price indicator XC . We judge each technical index
after feature screening, and treat Xt as a sparse signal matrix
Gt containing only -1, 0, 1. We introduce multi-scale infor-
mation. For Mt of sliding window, Ms

t describes the strong
correlation of transactions, Mm

t focuses on descriptiveness,
and M l

t shows trend. Mt is defined as follows:

Mt =


...

...
...

(Ms
t)j · · · (Mm

t)j · · ·
(
M l

t

)
j

...
...

...

 . (3)

2) VQ-VAE Encoder: VQ-VAE [19] is a self-supervised
model that includes an encoder that maps observations to
a sequence of discrete latent variables, and a decoder that
reconstructs observations from these discrete variables. VQ-
VAE is more effective than traditional encoding methods for
modeling financial discrete signals because it maintains the
consistency between the input and output in a discrete format,

allowing it to capture the sequential nature of financial data
and model complex patterns more effectively.

VQ-VAE includes three parts: encoder, vector quantization
codebooks, and decoder. We define EV = [e1, .., eK] ∈ RK×D

as a collection of codebook vectors. To transform the multi-
scale sparse signal matrix Mt into a discrete variable, the
encoder first produces intermediate continuous representation
ZV
e ∈ RD. Later on, we scan through all codebooks to find

which codebook has a minimum distance between ZV
e and a

vector in EV. After the closest codebook index k ∈ {1, ..,K}
is found, we substitute latent variable ZV

t with nearest code-
book vector ek. Then, the decoder uses codebook vector ek to
reconstruct input feature Mt. The definitions are as follows:

ZV
e = C(Mt), (4)

ZV
t = V ectorQuantization(ZV

e) = ek, (5)

M̂t = D(ZV
t). (6)

Given input reconstruction across all timestep ∀t ∈ [1,T],
the VQ-VAE is trained using the following objective:

L = ∥Mt−M̂t∥22+∥sg[ZV
e]−ZV

t ∥22+φ∥ZV
e −sg[ZV

t]∥22, (7)

where sg refers to a stop-gradient. The hyper-parameter φ
scales the commitment loss. The first term is used to measure
the reconstruction loss between the original input Mt and the
reconstructed M̂t. The second and third term minimize the
distance between intermediate representation ZV

e and ZV
t .

B. Action Optimizer based PPO

The offline Action Optimizer (AO) will further analyze
the actions obtained from PPO, and discard invalid actions,
thereby avoiding losses or high fees.

1) Proximal Policy Optimization (PPO): In our trading
framework, we use the the PPO algorithm [16], which is an
actor-critic method with well-proven performance. To optimize
the policy, PPO learns the policy through iteratively sam-
pled data interacting with the environment and optimizes the
surrogate objective function using stochastic gradient ascent.
It alternates between the sampled data and optimizing the
surrogate objective function defined as follows,

LC(θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
,

(8)
LKL(θ) = Êt[(rt(θ)Ât]− βKL (πold∥πθ) , (9)

where θ is the policy parameter. The updated β is used for the
next policy update. [1− ϵ, 1+ ϵ] is the probability ratio of the
clipping region.

rt(θ) is the probability ratio,

rt(θ) =
πθ (at, st)

πθold (at, st)
, (10)

where π is the policy. PPO uses importance sampling to
prevent the new policy going far away from the old policy.
Ât is the advantage estimator,

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1, (11)

where T is the total timesteps in an episode, γ is the
discount factor, and λ is a hyperparameter to control the bias-
variance trade-off. δt = rt + γV (st+1)− V (st).

In addition, we introduce LSTM [3] into PPO, hoping that
the reinforcement learning algorithm can clarify the relation-
ship between high-frequency data. Compared with modeling
in the original data, this method has stronger expressive ability
and weaker noise features, which is particularly critical for the
subsequent selection of actions in reinforcement learning.

2) Offline Action Optimizer (AO): In order to keep agents’
actions within bounds at all times and trade in the most
efficient way, we propose an efficient offline Action Optimizer
(AO) to optimize policies with boundaries. Inspired by meth-
ods for solving reinforcement learning via convex constraints
[10], our AO allows for effective policy optimization using
reinforcement learning by constraining the space of possible
actions.

We define the AO as the boundaries, Ps, Pb are the upper
and lower boundaries, which are related to buying and selling,
respectively. Ph1, Ph2 are the limits used to control the hold
action,

Ps(i+ 1) =

n∑
i=1

pc(i+ 1)− pc(i)

pc(i)
(1 +m1), (12)

Pb(i+ 1) =

n∑
i=1

pc(i+ 1)− pc(i)

pc(i)
(1−m1), (13)

Ph1(i+ 1) =

n∑
i=1

pc(i+ 1)− pc(i)

pc(i)
(1 +m2), (14)

TABLE I: Price data ranges for three datasets.

Dataset Training Period Testing Period
Bitcoin 2018-05-01 to 2018-08-01 2018-08-01 to 2018-09-01
Tesla 2021-05-01 to 2021-08-01 2021-08-01 to 2021-09-01
CATL 2021-02-01 to 2021-06-01 2021-06-01 to 2021-07-01

Ph2(i+ 1) =

n∑
i=1

pc(i+ 1)− pc(i)

pc(i)
(1−m2), (15)

where m1 and m2 are margin parameters within window size
n. pc(i) is the closing price on day i. Once the action given
by the model exceeds the bounds set by AO, it means that
action needs to be optimized. If the Ps boundary is crossed
upwards, the trading action needs to be optimized to sell. In
the same way, if the Pb boundary is crossed down, the trade
action needs to be optimized to buy. The middle boundary is
set to prevent frequent invalid transactions. If the action given
by the model cannot break through the Ph1, Ph2 boundary,
we hope to continue to hold it, otherwise the cost of handling
fees will be huge.

V. EXPERIMENTS

In this section, we back-test mTrader in three completely
different markets, define evaluation metrics, compare with
other baselines, and evaluate its performance.

A. Experimental Setup

1) Datasets and Baselines: We selected the most repre-
sentative five-minute datasets from three different markets:
Bitcoin, Tesla, and Contemporary Amperex Technology Co.
Limited (CATL) to verify the generalization and robustness of
our model, as shown in Figure 2. The training and test datasets’
period division is illustrated in Table I. The three datasets
represent the cryptocurrency market, and it should be noted
that their overall trends are completely different, which can
better test the model’s capability. We compared our proposed
mTrader with three baselines, DQN [12], DDPG [5], and PPO
[16].

(a) Bitcoin. (b) Tesla. (c) CATL.

Fig. 2: Closing price variation of Bitcoin, Tesla and CATL.

2) Metrics: Four commonly used metrics are used in
our experiments, including Annualized Sharpe Ratio (ASr),
Annualized Volatility (AVol), Maximum Drawdown (MDD),
Total Return Rate (Tr). The ASr is the average return earned
in excess of the risk-free rate per unit of volatility or total
risk. The AVol is a statistical measure of returns. In general,
greater volatility means greater uncertainty. MDD denotes the
biggest loss from a peak to a trough. Tr is the most important
objective of financial trading to make profits. Therefore, the
final accumulative value reflects the performance of models.

B. Experiment Results

The performances of all the evaluated methods in the three
testing datasets are summarized in Table II. Figure 3 shows
the cumulative returns across three datasets.

(a) Bitcoin. (b) Tesla. (c) CATL.

Fig. 3: Cumulative return rates on Bitcoin, Tesla and CATL.

From Table II, our results show that mTrader outperforms all
other models on all metrics for the Bitcoin and Tesla datasets,
achieving state-of-the-art results on the ASr and Tr metrics.
The DQN model performs best on AVol and MDD, but its
performance on Tr is much lower than the other models, so
we guess that it may be trapped in a local optimal solution.
Furthermore, we observed that the PPO algorithm outperforms
other DRL algorithms, indicating that mTrader based on the
PPO algorithm can generate higher excess returns, while other
algorithms result in losses.

In the Bitcoin dataset, the overall trend was characterized by
a rapid decline. As shown in Figure 3(a), mTrader not only
avoided the peak of the decline, but also grasped the profit
points in a short period of time when the whole market was
in a downturn. This result demonstrates that the AO plays a
crucial role in ensuring the correctness of the output action.
In the Tesla dataset, mTrader’s ASr value far exceeds DQN,
a method that has been proven to be extremely prominent in
the financial field in other papers. Figure 3(b) shows that our
method still avoided the most violent moment of fluctuation
in the middle and obtained a profit more quickly than when
it rose rapidly. In the CATL dataset illustrated in Figure 3(c),
the overall fluctuation of our model was relatively stable, and
the maximum return was reached at the last moment. The
existence of AO allows the model to avoid market declines
while limiting its performance in the rapid upward phase.

The above experiments can prove that our proposed model
is capable of producing high returns while also being resistant
to market downturns in various financial markets.

C. Impact of Hyper-Parameters

To further investigate the impact of feature selection on
multi-scale signal modeling, we conducted experiments on
the m1 and m2 parameters in AO. The results of these
experiments, displayed in Figure 4, indicate that our proposed
method achieved the best performance on all three datasets
when m1 = 0.15 and m2 = 0.01. In contrast, performance
decreased when m1 = 0.10 and m2 = 0.005. In two of
the three experiments with m1 = 0.15, the performance was
higher than when m1 = 0.10, suggesting that loosening the
Ps and Pd boundaries of AO can enhance model performance.

Furthermore, the experiment on m2 demonstrated that nar-
rowing the boundary between Ph1 and Ph2 can lead to better

0

200

400

600

800

1000

1200

1400

1600

1800

m1=0.15,m2=0.02 m1=0.15,m2=0.01 m1=0.15,m2=0.05 m1=0.10,m2=0.02 m1=0.10,m2=0.01 m1=0.10,m2=0.05

Bitcoin Tesla CATL

1108

1702

1436

1308
1357

921

213

304
243 259 287

178
102

214
174 171 166

105

Fig. 4: Cumulative returns of different m1 and m2 value on
Bitcoin, Tesla and CATL.

Fig. 5: Cumulative return rates on Bitcoin.

trading outcomes. As m1 and m2 are kept within a reasonable
range, our model outperforms the trading framework without
AO, indicating that AO can effectively maximize returns and
has sufficient generalization capabilities.

D. Ablation Experiments

We conducted ablation experiments on Bitcoin to evaluate
the impact of different components of mTrader on its perfor-
mance. In particular, mTrader-VQ refers to the method with
the VQ-VAE module, and mTrader-AO refers to the method
with the AO module. The results of these experiments are
presented in Table III, and the cumulative return rates are
summarized in Figure 5. The results suggest that the AO
module significantly improves the stability of the method.
Additionally, the method with the VQ-VAE module correctly
responds to market upswings demonstrates the successful re-
moval of noise and extraction of valid signals. From Figure 5,
by leveraging the strengths of both modules, mTrader achieved
a higher cumulative return rate compared to the other two
methods for most of the time.

To further demonstrate the role of the VQ-VAE encoder, we
use a VAE encoder [7] that produces a continuous distribution
named mTrader-VAE. As shown in Table IV, each metric of
mTrader-VAE is worse than using the VQ-VAE encoder. This
means that the feature of discrete latent variables exploits the
properties of our designed multi-scale signal matrix.

TABLE II: Performance of comparison methods. The best results are marked in bold.

Models Bitcoin Tesla CATL

ASr AVol MDD(%) Tr(%) ASr AVol MDD(%) Tr(%) ASr AVol MDD(%) Tr(%)
DQN -3.37 0.59 24.27 -16.69 -0.45 0.64 10.09 1.23 9.24 1.04 3.67 5.56

DDPG -1.01 0.64 22.16 -6.98 1.56 0.71 9.90 0.82 11.62 1.49 5.91 16.45
PPO 0.01 0.35 11.49 -0.54 2.79 0.44 5.83 1.28 10.34 1.35 5.71 10.98

Long & Hold -0.89 0.65 21.77 -6.41 0.94 0.63 7.9 0.6 10.47 1.50 5.83 15.01
mTrader 2.36 0.16 2.34 3.04 3.46 0.41 5.13 2.14 14.01 1.25 5.60 17.02

TABLE III: Ablation experiments on Bitcoin.

Models Bitcoin

Asr AVol MDD(%) Tr(%)
mTrader-AO 0.15 0.12 2.87 -0.09
mTrader-VQ -1.04 0.63 21.97 -6.94
mTrader-VAE -1.41 0.68 25.69 -8.72

mTrader 2.36 0.15 2.34 3.04

VI. CONCLUSION

In this paper, we proposed a novel framework, mTrader,
which uses multi-scale signal optimization deep reinforcement
learning for financial trading. We introduced a complete fea-
ture augmentation and screening process to model minute-
level data as multi-scale sparse matrices, and used VQ-VAE to
generate discrete embeddings. We also incorporated the PPO
and LSTM to effectively capture the time-series relationship.
Our offline Action Optimizer (AO) further improved the sta-
bility of the trading framework. Our experiments on multiple
markets with different properties confirmed the superiority of
our proposed model.

We further aim to explore how to model macro financial
indicators and the interplay between multiple stocks or cryp-
tocurrencies, and even different markets. We also plan to test
the trading framework on a real financial engine and explore
the possibility of applying mTrader to other time-series tasks.

REFERENCES

[1] Agrawal, J., Chourasia, V., Mittra, A.: State-of-the-art in stock prediction
techniques. International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering 2(4), 1360–1366 (2013)

[2] Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time series
analysis: forecasting and control. John Wiley & Sons (2015)

[3] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural com-
putation 9(8), 1735–1780 (1997)

[4] Hong, H., Stein, J.C.: A unified theory of underreaction, momentum
trading, and overreaction in asset markets. The Journal of finance 54(6),
2143–2184 (1999)

[5] Jiang, Z., Xu, D., Liang, J.: A deep reinforcement learning frame-
work for the financial portfolio management problem. arXiv preprint
arXiv:1706.10059 (2017)

[6] Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in
partially observable stochastic domains. Artificial intelligence 101(1-2),
99–134 (1998)

[7] Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114 (2013)

[8] Kouatli, I., Yunis, M.: A guide to stock-trading decision making based
on popular technical indicators. In: 2021 International Conference on
Decision Aid Sciences and Application (DASA). pp. 283–287. IEEE
(2021)

[9] Liu, S., Liao, G., Ding, Y.: Stock transaction prediction modeling and
analysis based on lstm. In: 2018 13th IEEE Conference on Industrial
Electronics and Applications (ICIEA). pp. 2787–2790. IEEE (2018)

[10] Miryoosefi, S., Brantley, K., Daume III, H., Dudik, M., Schapire, R.E.:
Reinforcement learning with convex constraints. Advances in Neural
Information Processing Systems 32 (2019)

[11] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602 (2013)

[12] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Belle-
mare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G.,
et al.: Human-level control through deep reinforcement learning. nature
518(7540), 529–533 (2015)

[13] Moody, J., Saffell, M.: Learning to trade via direct reinforcement. IEEE
transactions on neural Networks 12(4), 875–889 (2001)

[14] Poterba, J.M., Summers, L.H.: Mean reversion in stock prices: Evidence
and implications. Journal of financial economics 22(1), 27–59 (1988)

[15] Pricope, T.V.: Deep reinforcement learning in quantitative algorithmic
trading: A review. arXiv preprint arXiv:2106.00123 (2021)

[16] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017)

[17] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58(1), 267–
288 (1996)

[18] Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M.,
Iosifidis, A.: Forecasting stock prices from the limit order book using
convolutional neural networks. In: 2017 IEEE 19th conference on
business informatics (CBI). vol. 1, pp. 7–12. IEEE (2017)

[19] Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation
learning. Advances in neural information processing systems 30 (2017)

[20] Yang, H., Liu, X.Y., Zhong, S., Walid, A.: Deep reinforcement learning
for automated stock trading: An ensemble strategy. In: Proceedings of
the First ACM International Conference on AI in Finance. pp. 1–8 (2020)

[21] Yoo, P.D., Kim, M.H., Jan, T.: Machine learning techniques and use
of event information for stock market prediction: A survey and eval-
uation. In: International Conference on Computational Intelligence for
Modelling, Control and Automation and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-
IAWTIC’06). vol. 2, pp. 835–841. IEEE (2005)

