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Abstract—Medical data visualization is instrumental in assist-
ing disease diagnosis and exploring brain function and structure.
In this paper, we constructed a brain connectivity network using
changes in BOLD signals at different time intervals and identified
frequent characteristics to help doctors quickly pinpoint areas
of interest. To study the changes in connectivity between brain
regions, we visualize frequent sequences and compare them, high-
lighting important temporal features of patient brain areas. This
makes the study and analysis of fMRI data more convenient and
assists doctors in investigating abnormalities in the connections
between brain functional areas.

Index Terms—Visual analysis, temporal graph comparison,
brain connectivity data

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a brain
imaging method commonly used to study cognition in the
brain, which can explore the neural basis of cognition and
emotion [1]. This approach produced a wealth of data that
revealed patterns of hemodynamic activity throughout the
brain. It plays an important role in describing functional
connections in the brain under various clinical conditions.

Brain neurons are interconnected to form vast and complex
networks, and fMRI contains a lot of data. Some researchers
carry out feature extraction on the obtained data and apply
the data to automatic diagnosis of brain diseases and other
fields [2] [3]. However, there are relatively few researches on
the extraction of time series features, and no time attribute is
added to the data for research. Graph models and mathematical
tools are often used to describe and analyze network data. As
the scale of network data increases, the visualization method
changes from static graph to dynamic graph, and some visual
metaphor methods also appear. Some researchers present link
information by building abstract views, generating functional
link matrices and anatomical views of the brain. And linking
this information to anatomy helps neuroscientists locate spatial
representations of brain regions [4]. But this analysis lacks
comparisons of temporal features to help study changes in
brain connectivity over time. We can see that there are few
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methods for feature extraction for a large number of data,
and visual results are only represented by one view, which is
inconvenient for data exploration and comparison.

In this work, we mined time sequence features from the
constructed brain connection network, used the extracted time
series data to generate dynamic graphs, and introduced a new
visual analysis framework for comparison between dynamic
graphs. The visualization results are placed in a Web-based
GUI with an optimized nested comparison layout that al-
lows you to compare timing data without affecting the data
topology. For exploratory data analysis, we use linked views
for visualization by interactively exploring the relationships
between the different dimensions of the dataset. Instead of
relying on a priori model of complex relationships in high-
dimensional data, researchers develop an understanding of the
principles that describe the system.

In Section II, we review related research work. In Section
III, we introduce application design ideas and datasets with
temporal properties. In Section IV, we present the results of
experiments on the data. In Section V, we conclude the paper
and discuss future work.

II. RELATED WORK

The visualization of functional brain networks and feature
extraction methods in brain networks are briefly described
below.

In order to study the differences of brain networks in clinical
studies, Gleicher et al. [5] proposed to overlay and display
the adjacency matrix to facilitate visual comparison of data.
However, due to the complexity of spatial structure changes
and the extensibility of time dimension, a visual coding
may not be suitable for all visualization tasks. The above
methods are combined with the adjacency matrix visualization
method to study the brain connection data. The multi-view
hybrid visualization method can balance the advantages and
disadvantages of a single visualization technology. ”In Situ”
supports a variety of visualization techniques such as vertex
link graphs, adjacency matrices, and timelines to maximize
insight and avoid misunderstandings [6]. The connection view



is adopted in the research [7], which can interactively explore
the relationship between different dimensions of the dataset.
This method allows researchers to explore and analyze the
data. Therefore, we use the adjacency matrix overlapping to
visualize the time series. Multiple views were used to explore
and analyze changes in brain functional connectivity.

While advances have been made in disease prediction and
other applications due to the development of AI technology,
how to detect and validate specific brain connectivity features
remains challenging. F Fei et al. [8] applied multiple thresh-
old constraints to generate multiple connected networks and
extracted frequent sub-networks from the generated connected
networks. Yang et al. [9] proposed a comprehensive analysis
method to compare blocky brain networks. Different from the
previous methods, the researchers combined the two visualiza-
tion methods of node-connection graph and adjacency matrix,
used the clustering algorithm to divide the brain regions, and
improved NodeTrix [10] to design and display the block-level
brain network connection mode. On the basis of the above
research, feature extraction is performed on the constructed
brain network, and frequently changing regions are obtained
to help amateurs quickly locate the brain regions of interest.

III. MATERIALS AND METHODS

In this study, we designed a Web-based interactive visual
interface (Fig.2). The method is expected to help researchers
analyze brain connectivity data, allowing them to compare
differences between samples from multiple dimensions.

A. Dataset

In this study, time series data of brain functional connectiv-
ity were obtained by processing ADHD-200 dataset. The two
groups of data were respectively from children with normal
brain function development (TDC for short) and children with
ADHD. Subjects were all in a resting state when fMRI data
was collected. The processed time series correlated with brain
regions. Each set of data, combined with the AAL template,
was divided into 116 anatomical regions containing 172 time
series.

B. Feature Extraction

The connectivity features between brain regions are very
high dimensional, and it is expensive to verify many compu-
tational models proposed in complex brain network studies.
Therefore, we use machine learning technology to extract
features from brain connectivity data.In the frequent sequence
screening process, the same step size is set to divide the data
into a certain number of time segments, the BOLD signal
changes of nodes in adjacent time segments are calculated,
and then the nodes that have asynchronous changes of blood
oxygen concentration in the same time period and meet the
linear correlation are found. Arrange the matrix in order of
time segments to form a network of brain connections. Next,
we look for nodes that occur more frequently in the brain
connectivity network, and extract the previous node and the
last node of the node to form frequent sequences.

(a) (b)

Fig. 1: The arrow in (a) points to the direction of time change,
that is, the direction of the four fingers of the left fist. The
black nodes in (b) represent the divided brain regions. The
number of each node corresponds to the serial number of
the partition in the AAL template. There are two overlapping
squares on the connection line between them. When the color
of the square is green, it means that the two regions are
connected at a certain time, where the outer square is the
patient time series data, and the inner is the control group.

In order to verify whether the extracted features are dis-
criminant, SVM was used to classify the extracted features.
The results showed that there were significant differences in
feature distribution between normal subjects and patients.

C. Visual Design

1) Colorwall: We do a motion picture comparison in the
Colorwall area. In this view we filter the data based on
embedded visualization techniques and also add a design to
assist comparison. For data visualization, choose a method
where two squares overlap. By choosing the same hue on
both squares, the user can easily compare the mapping values
between the squares by observing only the difference in
brightness between the inner and outer areas of the squares.
Because of the time series data, we use the arc of the curve
to represent the direction of time(Fig.1).

As dynamic networks become more complex, we need to
design the layout. Grouping nodes visually simplifies the page
and facilitates the analysis of the data. In order to ensure that
the visual dynamic graph can avoid visual confusion, we group
the time series data. Nodes in a group are deployed in Force
mode to prevent node overlap. Layout allows users to intervene
and adjust, further preventing overlapping of data visualization
results.

2) Anatomy: In this panel, we generate anatomical images
of the brain, and we can study and analyze the connectivity
between brain regions in three dimensions. We processed the
time sequence data to generate a functional connection matrix,
and drew a 3D brain corresponding to the aal template. A dot
is drawn to mark the corresponding location of each functional
area, and the lines between functional areas indicate the degree
of correlation between brain functional areas. Part of the region
connection is based on the clustering results in Colorwall
region.

3) List: This area contains options such as sample switch-
ing, brain region selection, and layout adjustment. Frequent



areas were listed in descending order of occurrence, allowing
the researchers to focus on more diverse areas.

4) Plot: In this view, we draw line plots that represent the
changes in the BOLD signal. We decomposed the time series
data to get the trend items of the two groups of data, and then
smoothed the trend items to reduce the influence of outliers.
Calculate the absolute value of the difference between the two
groups of data to get the curve difference.

IV. RESULTS

Attention-deficit hyperactivity disorder (ADHD) is one of
the most common developmental disorders in children, and
children often have symptoms such as impulsiveness, inatten-
tion and hyperactivity [11], [12]. In recent years, cognitive
functional magnetic resonance imaging (fMRI) and resting-
state fMRI have been widely used to examine abnormal
brain function. The detection of abnormal conditions in the
resting state can be applied to mental and developmental
disorders such as ADHD, Alzheimer’s disease and depression.
In some literature studies, it has been shown that the functional
connectivity of the default mode network (DMN) in ADHD
patients can either increase or decrease.

In this study, we were able to select the regions of the
brain we were interested in and get the visualizations. Among
them, the related regions of cerebellum are one of the most
different regions in our feature mining results. The visual-
ized results were obtained by selecting the functional brain
regions mentioned above. As is shown in Fig.3. Number 110
corresponds to the Vermis 3 area in the AAL template. It can
be seen from the colorwall region in the figure that there is
connectivity between this region and the other four regions,
and there is a large connectivity difference between patients
and normal people. Taking the time sequence data between
Vermis 1 2 (No. 109) and Vermis 3 (No. 110) as an example,
the time direction is from Vermis 3 to Vermis 1 2. In the
process of time change, ADHD patients were connected at
the first four time points, while TDC were more connected
at the later time points. In the Plot area, by comparing
the trend curve and observing the difference curve, we can
find that there are also large differences in values between
samples. We can intuitively see the difference in BOLD signal
between patients and normal people(Fig.3d). This difference
can also be identified simultaneously in the anatomical view,
which shows that functional connectivity in the brains of
ADHD patients is generally lower than that of TDC. As
described in reference [13], cerebellar functional connectivity
disorders may be one of the pathological and physiological
causes of ADHD cognitive impairment. At the same time,
we found significant connectivity differences in the cerebellar
region between ADHD patients and the control group in our
comparative study.

V. CONCLUSION AND FUTURE WORK

In this study, we mainly designed an application for visual
comparison of fMRI data. By processing the time series data
generated by fMRI for visualization, we can study the changes

of dynamic graphic data and highlight the difference between
two sets of different data. We use AI technology to classify
brain diseases, mine frequent features, highlight important
time series features in patients’ brains, and assist doctors in
diagnosing diseases. Our work then suffers from some defi-
ciencies in the handling of complex networks, manifested in
the removal of excessive features to simplify the content, and
the possibility of obscuring highlighted points by connecting
lines in anatomical views. In the future, optimized algorithms
will be used to reasonably filter temporal information and
better visualize the connectivity of anatomical views.
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Fig. 2: Interactive interface overview.

(a) Colorwall (b) ADHD (c) TDC

(d) Plot

Fig. 3: (a) Comparison of the dynamic graphs of ADHD patients and TDC. (b) and (c) are 3D brain maps of ADHD patients
and TDC, respectively. (d) Plot.
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