
Mining the Relationship between Object-Relational
Mapping Performance Anti-patterns and Code

Clones
Zeshan Xu†‡, Jie Zhu†‡, Li Yang∗†, Chun Zuo§

†Institute of Software, Chinese Academy of Sciences, Beijing, China
‡University of Chinese Academy of Sciences, Beijing, China

§Sinosoft Co.,Ltd., Beijing, China
{xuzeshan21, zhujie212}@mails.ucas.ac.cn

yangli2017@iscas.ac.cn
zuochun@sinosoft.com.cn

Abstract—The use of Object-Relational Mapping (ORM) in
software development has become increasingly popular due to
its superiority to simplify database interactions. Despite the
prosperous development of ORM code smells detection tools for
general code smell problems related to coupling and cohesion,
these tools do not capture issues that are specific to ORM code
statement context. In this work, we fill the gap wit h the potential
performance anti-patterns of repetitive ORM code by heuristic
analysis and code clone analysis on 6 open source ORM systems
in Java and Python (Saler, Wagtail, Zulip, Taiga, Protal, and
Roller). For each occurrence of this code smell, we distinguished
problematic instances that potentially require further fixes among
justifiable ones. Through our research, we identified four anti-
patterns associated with repetitive ORM code and proposed
fix strategy for each of these anti-patterns. Additionally, our
study delves into the relationship between repetitive ORM code
anti-patterns and code clone, which reveals that a substantial
proportion of repetitive ORM statements can be found in cloned
code. Experiments show that repetitive ORM code can lead to a
waste of system performance. This research highlights the impact
of ORM code context on the proper use of ORM frameworks and
emphasizes that copying ORM code without context evaluation
can be detrimental to system performance.

Index Terms—code clone, anti-pattern, code smell, object-
relational mapping, static analysis, empirical study

I. INTRODUCTION

As a well-established programming technique, Object-
Relational Mapping (ORM) has emerged as a solution to
the problem of Object-Relational Impedance Mismatch [1],
practitioners employ ORM frameworks to close the divide
between databases and applications by handling the tasks of
data mapping and persistence [2], [3]. However, traditional
static code analyzers are insufficient in capturing the unique
attributes of ORM code and thus unable to identify potential
issues within ORM code [4]. Rahman et al. reported that
76 of 77 projects don’t follow the rule recommendations
of Hibernate architecture [5]. Rahman et al’s latest study
identified and defined a greater number of code smells within

∗Corresponding author.
DOI reference number: 10.18293/SEKE2023-161

Instances of Raw ORM Code

public List<Bonus> findAllByUsername(String username) throws DataAccessException {
...
return this.entityManager.createQuery(
"SELECT o FROM Bonus o WHERE o.user.username = :username ORDER BY o.id DESC")
...
}

public List<Bonus> findByUsername(String username) throws DataAccessException {
...
return this.entityManager.createQuery(
"SELECT o FROM Bonus o WHERE o.user.username = :username ORDER BY o.id DESC")
...
}

Fig. 1. A repetitive ORM code example. The ORM framework part of the
code is marked in blue, and the differences are marked in red.

the field of ORM [6]. However, previous approaches are still
coarse-grained and only consider the appropriateness of ORM
statement only, while operations involving ORM persistent
objects, such as querying, saving, modifying, and deleting, all
entail contextual information [3]. In other words, we consider
that utilizing ORM statements requires taking into account
the contextual information of code. Although each ORM
statement may be innocuous on its own, duplicating it without
considering the context is likely to result in unnecessary
performance overhead of the new context. Fig 1 shows an
example of repetitive ORM code from Saler. The developer
defined the exact same ORM statement in both interfaces, but
used different interface names. findByUsername sounds from
the name to find a single piece of data through Username,
while findAllByUsername finds all data through Username.
When the developer only wants to obtain a piece of data, using
the findByUsername interface will lead to a lot of unnecessary
query data, resulting in a waste of ORM system performance.

To help developers improve ORM practices, in this paper,
we focus on studying repetitive ORM statements. We con-
ducted heuristic analysis on 6 open source ORM systems
written in Java and Python. Our investigation revealed four
repetitive ORM code anti-patterns.

Intuitively, repetitive ORM statements could be related to,



or are even a consequence of code clones. During software
development, developers are often tasked with performing
unfamiliar programming tasks [7]. When confronted with these
challenges, developers frequently resort to online searches or
scouring through project code. In the search results, code
snippets are the ideal resources for developers to leverage
during the development process [8], especially for unfamiliar
tasks. A code snippet refers to a segment of code that achieves
one or multiple specific programming objectives [9]. Code
snippets can be directly reused by copy-pasting [10], which
may contain repetitive ORM code statements.

Fig 2 presents the overall framework of our research. We
examined 177 open source ORM systems written in Java and
Python, using a Criticality Score [10] metric to guide our
choices, and performed detailed heuristic inspections on six
of them (Saler, Wagtail, Zulip, Taiga, Protal, and Roller) to
identify recurring ORM anti-patterns. To further investigate
the relationship between repetitive ORM fragments and code
clone, we used NiCad [5], a code clone detection tool, to
analyze each revision of these 6 projects. Combined with our
heuristic analysis, we found that code clone resulted in a large
number of repetitive ORM fragments. These results suggest
that code clone may be a significant contributing factor to the
presence of repetitive ORM fragments in software systems.

Specifically, we make the following contributions:
• We uncovered four new ORM performance anti-patterns

through a comprehensive heuristic analysis of over 1K
instances of repeated ORM code statements in six open-
source ORM systems with suggested fixes for each anti-
pattern.

• We found that code clone can lead to performance anti-
patterns in ORM systems, and the majority of problematic
repetitive ORM code anti-patterns (90.2%) were found to
exist in cloned code fragments.

• We discovered that 73% of the instances of the repetitive
ORM code anti-patterns that were not detected by code
clone detection tools were actually from microcloned
fragments. This finding highlights the need for future
studies to investigate the negative impact of microclone
on system performance.

• We found that reckless code clone can lead to perfor-
mance anti-patterns for ORM frameworks and discovered
153 ORM performance anti-patterns in six large open
source systems.

All data are publicly available1.

II. RELATED WORK

A. Empirical Studies on ORM System

Several studies have investigated Object-Relational Map-
ping (ORM) systems [4], [11], with Chen et al. [4] examining
open source ORM systems and highlighting the hidden mainte-
nance costs of using ORM frameworks. Meanwhile, SAddAR
et al. [11] conducted empirical research on the performance
of ORM frameworks. These studies have shown that although

1https://figshare.com/s/e5a20d2267b08a39018e

Fig. 2. The overall process of our study. AP refers to four repetitive ORM
code anti-patterns.

there are several benefits of using an ORM framework, main-
taining ORM code can pose certain challenges. Specifically,
Chen et al. [4] found that ORM code undergoes more frequent
changes than regular code and lacks automated verification
and detection methods, based on their analysis of different
revisions of open source systems. In contrast, our study
focuses on repeated ORM statements and code clone in the
system, incorporating context (i.e., surrounding code) to find
and identify methods for addressing ORM code issues.

B. Code Smells and Anti-patterns

Code smells and anti-patterns can be indicators of poor
design and implementation of code, which can adversely affect
the maintainability [11]–[14], understandability [15], [16], and
performance [17] of a software system. To address their
effects, several studies have proposed detecting code smells
and anti-patterns [18]–[20]. In the context of the ORM system
that we investigated, Holder et al. [21] proposed a metric suite
to measure the complexitAy of ORM mapping code, while
Silva et al. [5] suggested a set of rules to verify whether
Hibernate entity code follows the JPA [22] specification. Loli
et al. [23] surveyed previous research [24]–[26] and proposed
ORM code smells in the literature, which surveyed developers’
agreement on the definition of smell. The findings indicated
that most developers agreed with the definition and severity
of the smells.

Code clone, or repetitive code, is a code smell that can arise
when a developer copies and pastes a piece of code from one
place to another [27]. This code clone method may lead to
software quality problems [28]–[30], and there are some works
in previous research committed to detect and solve these odors
through various methods [5], [6], [16], [31].

III. METHODOLOGY

In this section, we will describe our methodology, which
includes two parts: (1) How we identify repetitive ORM



statements in existing open source ORM systems for heuristic
research and (2) How we conduct heuristic research to investi-
gate which code repetitive ORM statements have anti-patterns.

A. Studied Systems

We manually analyzed six of open source ORM system
in table I. To generate a practical dataset, We combined the
dataset of 77 projects mentioned in previous research on ORM
systems [5], [6] with 100 open source projects using ORM on
github. we used the open source project importance score2

to screen and evaluate projects. To eliminate the relationship
between the ORM framework and the programming language,
we collected not only Java projects but also Python projects,
primarily those using the Django and Hibernate framework.

B. Define Repetitive ORM Statements

In this paper, we define repeated ORM statements as state-
ments with the same conditional call structure within the ORM
framework. For instance, we consider the two ORM statements
below to be duplicates:

Product.objects.filter(vector = None).

prefetch_related(“data”).order_by()
Product.objects.filter(document = “”).

prefetch_related(“addresses”).order_by()

C. Identify Repetitive ORM Statements.

We employed static analysis to analyze the source code. We
defined ORM statements as an abstract combination of models,
methods, and parameters, which can exhibit various forms of
queries, additions, deletions, and modifications based on their
intended purposes. We excluded repetitive ORM statements
used for model building and extracted parameter information,
such as table and column names, to facilitate heuristic analysis.

IV. ANTI-PATTERNS OF REPETITIVE ORM CODE

Similar to previous research on anti-patterns, we con-
sider repetitive ORM anti-patterns as "superficial indicators
of deeper problems in the system" [32]. The presence of
repeated ORM code may indicate an underlying problem that
requires attention. However, not all instances of repetitive
ORM code are problematic. We categorized each repetitive
ORM statement as either problematic or reasonable to ignore
based on the context of the repetitive ORM code (i.e., the
surrounding code). Our research can help developers improve
their ORM coding practices and inspire future research in this
area.

In total, we examined 393 groups of repetitive ORM
statement pairs, constituting more than 1K ORM statements
in aggregate. Each group comprised two or more ORM
statements with matching conditional call structures. In total,
we discovered 153 problematic instances in the ORM code,
featuring four recurring anti-patterns: 1) Selecting superfluous
data (Select All), 2) Retrieving related data that remains

2https://github.com/ossf/criticality_score

unused (Associated Object), 3) Employing redundant sorting
procedures (Order Waste), and 4) Repeatedly fetching non-
updated data (Cache Waste). It is noteworthy that a single
set of repetitive ORM code pairs could encompass multiple
issues. Specifically, we observed these recurring anti-patterns
occurring 138, 26, 14, and 10 times, respectively.

Table II displays the number of instances of each anti-
pattern that we identified manually. We will provide a com-
prehensive discussion of each anti-pattern and propose suitable
solutions below.

Select all. In our investigation, we discovered that when a
repeated ORM query statement selects entity objects from the
DBMS, the original query selects all columns of an object,
while the cloned repeated ORM statement only uses a small
number of columns. For instance, let us consider the Proxy
class. If the code cannot use all the columns of the Proxy,
it is recommended to add filter column conditions before the
query statement. As the ORM framework lacks knowledge
about the required data, it selects all columns by default,
leading to avoidable performance degradation. Fix Strategy:
Customize the specific parameters of the ORM query based
on the context, and include the appropriate column tag in the
statement.

A = ProxyModel.objects.filter(

cluster_name = “A”, dc = “lf”, service = “nsq”)

ip, port = A.ip,A.port

A = ProxyModel.objects.filter(

cluster_name = “A”, dc = “lf”, service = “nsq”)

ip = A.ip

Associated object. This anti-pattern indicates that associ-
ated object data has been queried unnecessarily. The problem
with this anti-pattern is that it retrieves unnecessary tuples
from other database tables. When using the ORM framework,
developers can specify the relationship between entity classes,
such as one-to-one, one-to-many, many-to-one, and many-to-
many. The ORM framework provides different optimization
techniques to specify how to obtain associated entity objects
from the database. For example, in the code, if only the Users
information is needed, but the ORM framework retrieves the
associated Books data, then it causes unnecessary overhead
in terms of performance. Retrieving users together with asso-
ciated objects can be expensive, particularly when there are
many Books in Users. Previous studies have shown that ORM
frameworks often use SQL connections to obtain too much
data, which can significantly reduce system performance [33].
Different ORM frameworks provide different methods to solve
this redundant data problem, and our approach can provide
developers with guidance to address such issues. Fix Strategy:
Instead of directly utilizing the duplicated old model, establish
a new model to access the necessary table.

Sort waste. This anti-pattern involves performing unneces-
sary sorting operations. Sorting the queried data is a commonly
used technique by developers in ORM. There are two ways to



TABLE I
PROJECTS IN OUR RESEARCH

System About Total lines
of code Language Stars Commits Version

Saler Saleor Core: The high performance, composable, headless commerce API 435882 Python 18.2k 20284 3.12.3
Wagtail A Django content management system focused on flexibility and user experience 198763 Python 13.4k 14805 4.2.1
Zulip Open-source team chat that helps teams stay productive and focused 258309 Python 17.4k 50313 6.1.0
Taiga Agile project management platform. Built on top of Django and AngularJS 113156 Python 5.8k 4164 1.0.0
Protal Devproof Portal - Available modules Blog, Articles, Downloads, Boomarks 53725 Java 14 971 1.0.0
Roller Java-based open-source blog server that uses Hibernate for database interactions 96954 Java 116 4722 1.0.0

sort data in ORM: using the order_by() method or specifying
the sort order when defining the model. The default is ascend-
ing order, but it can be changed to descending order using
the desc() method. And the column name for sorting could
also be customized. Studies have shown that sorting operations
can significantly degrade SQL performance [41], particularly
when sorting tables that do not contain indexes. To further
investigate this issue, we analyzed the time consumption of
ORM statements with and without sorting operations using the
database Explain function (i.e., the execution plan). Our results
showed that redundant sorting operations accounted for 47%
of performance waste. This finding highlights the importance
of optimizing sorting operations in ORM coding practices. Fix
Strategy: Evaluate the need for sorting based on the context,
and remove unnecessary sorting actions.

Cache waste. Our investigation found that ORM frame-
works offer support for caching [34], which involves shar-
ing objects between transactions to improve performance.
However, striking a balance between performance and data
staleness can be challenging in distributed systems that use
caching. For instance, consider the following example:

RegionModel.objects.filter(id = 481).

update(“region” = “cn”)

...

RegionModel.objects.filter(id = 481).

valueslist(“region”)

...

RegionModel.objects.filter(id = 481).

valueslist(“region”)

The first query statement is necessary because the user data
has been updated by another query for the same primary key in
the filter clause. In contrast, the second query does not need a
second query since the data has not changed. While most ORM
frameworks provide caching mechanisms to reuse fetched data
and minimize database access, the caching configuration is not
automatically optimized for different application systems [34],
and some ORM frameworks even disable caching by default.
Even if the retrieved entity object has not been modified, this
repeated ORM statement may execute millions of times in a
short period. Although different ORM frameworks may have
distinct configurations, the issues we report are common, and
our finding can aid developers in optimizing caching. Fix

Strategy: Remove the redundant ORM code that does not
modify the data, and utilize the same object generated by the
context for accessing purposes.

TABLE II
NUMBER OF PROBLEMATIC INSTANCES FOUND BY OUR RESEARCH

System Select All Associated Object Order Waste Cache Waste

Saler 62 6 8 2
Wagtail 13 8 2 0
Zulip 32 3 0 4
Taiga 15 5 0 3
Protal 4 0 1 1
Roller 12 4 3 0

Total 138 26 14 10

In our investigation, we identified 153 instances of
ORM code anti-patterns in 1301 cloned blocks. Our
findings suggest that reckless code clones can result in
performance anti-patterns for ORM frameworks. This
highlights the importance of identifying and addressing
such anti-patterns to ensure optimal performance of
ORM systems.

V. RELATION BETWEEN REPETITIVE ORM CODE
ANTI-PATTERNS AND CODE CLONE

A. Motivation

Code clone, or duplicating code, is a development pattern
that is generally considered harmful to software maintain-
ability, understandability, and performance. Previous research
has focused on studying code clones in source code and
understanding their impact. However, since cloning is often
done in a hurry and without paying much attention to code
context, ORM-related code may be copied as well. In the
previous section, we identified four performance anti-patterns
(i.e., Select All, Associated Object, Order Waste and Cache
Waste) that can result from repetitive ORM code. However,
not all repetitive ORM code is necessarily the result of code
clone. In this section, we investigate the Relationship between
Object-Relational mapping Performance anti-patterns and code
clones. By doing so, we hope to provide developers with better
practices for ORM code and encourage further research on
code clone in this context.



B. Method

We use NiCad to detect clones, which has high precision
(95%) and recall (96% identical). NiCad detects all major
types of clones, including exact (type 1) and near-miss (types
2 and 3) clones, and is actively maintained (with the latest
version released in November 2020). Clone detection results
may vary based on different detector settings, so choosing
appropriate parameters is important. In our research, we set
the granularity of source code units to block level and used
NiCad to detect block clones with a minimum size of 10
LOC and a similarity threshold of 70%, as recommended in
a previous study [35]. This approach provided better clone
detection results in terms of precision and recall.

We utilized NiCad to perform experiments on the open-
source systems of the six studies mentioned earlier. Subse-
quently, we analyzed the clone detection results and compare
the locations of clones with those of problematic instances.
If two or more cloned snippets contained the same set of
instances, we regarded those instances as related to the clone.
Through manual screening and analysis, we classified the
results of code clone into two categories: clone blocks that
involved database calls and those that did not. To mitigate the
impact of false negatives, we conducted additional heuristic
research on all instances that NiCad failed to identify as
clones. Our focus was on blocks of code that surrounded ORM
statements and exceeded a threshold of 10 lines, which was
the same as that of the clone detection tool.

C. Result

TABLE III
NUMBER OF PROBLEMATIC INSTANCES OF REPETITIVE ORM CODE

ANTI-PATTERN DETECTED AS CLONES BY NICAD

System Clone Blocks Select All Associated Object Order Waste Cache Waste

Saler 566 62/62 5/6 3/8 1/2
Wagtail 232 13/13 8/8 2/2 0
Zulip 61 32/32 3/3 0 0/4
Taiga 209 15/15 3/5 0 0/3
Protal 92 4/4 0 1/1 0/1
Roller 141 12/12 0/4 3/3 0

Total 1301 138/138 19/26 11/14 0/10

As presented in table III, we identified a total of 138
problematic occurrences of repetitive ORM anti-patterns. In
comparison to the 153 instances of recurring ORM anti-
patterns discovered through heuristic analysis, it can be in-
ferred that 90% of the replicated ORM code stemmed from
code clone. Specifically, our results suggest that code clone
might be the primary cause of repetitive ORM code. Notably,
100% of Select All anti-patterns were detected in code clone,
while only one instance of Cache Waste was found in code
clone. To investigate this phenomenon further, we noted that
it may be related to the threshold (line 10) established for
code clone detection. The repetitive ORM statements belonged
to micro-codes comprising less than ten lines of code, and
prior research has indicated that microclone is also crucial for
consistency in updates [36], but they are challenging to detect
due to their limited size.

We found that code clone can lead to performance
anti-patterns in ORM systems, and the majority of
problematic repetitive ORM code anti-patterns (90.2%)
were found to exist in cloned code fragments.

Results revealed that 10% (15/153) of problematic occur-
rences of repetitive ORM code anti-patterns were identified
as non-clones by automated code clone detection tools. To
delve deeper into this issue, we scrutinized each undetected
instance and found that 73% (11/15) were, in fact, derived
from micro-cloned fragments. This observation underscores
the need for future research to explore the detrimental effects
of microclone on system performance and to develop guide-
lines for writing ORM code correctly. Our findings justify the
need for future research to investigate the negative impact of
microclone on system performance. In addition to considering
code maintenance and refactoring overhead, future studies on
code clone detection should also consider other possible side
effects of code clone. Researchers can also optimize code
clone detection methods by refining the detection of various
types of statements commonly found in ORM code to improve
its accuracy.

We found that 73% of instances of repetitive ORM code
anti-patterns that were not detected by code clone de-
tection tools were actually from microcloned fragments.

VI. CONCLUSION

ORM are widely used to solve the object-relational
impedance mismatch problem by providing an object-oriented
interface on top of a relational database, which enables easy
saving and retrieval of program objects from secondary stor-
age without mapping application data to database records.
However, the quality of ORM code is often criticized by
developers, especially its data persistence and query code. This
paper presents an empirical study that investigates anti-patterns
caused by duplication of ORM code (or code clone) in ORM
systems. The study analyzes six open-source ORM systems
(Saler, Wagtail, Zulip, Taiga, Portal, and Roller), identifies
four new ORM code anti-patterns and proposed fix strategy for
each of these anti-patterns, showing that repetitive ORM code
can lead to a waste of system performance. These findings
could serve as a valuable reference and provide direction for
future research on ORM systems and optimization of ORM
development practice standards.

The study also investigates the relationship between the
repetitive ORM code anti-pattern and code clone. The results
indicate that most problematic instances of repetitive ORM
code occur in code clones, which are more likely to be
microclones that are difficult to detect using existing code
clone detection tools. This research highlights the impact of
ORM code context on the proper use of ORM frameworks,
emphasizing that copying ORM code without context eval-
uation can be detrimental. Therefore, future research should



consider code context when providing guidance for ORM
practices, and richer contextual information is required to
construct new excellent ORM research data.

VII. ACKNOWLEDGEMENTS

We sincerely appreciate the valuable feedback from the
anonymous reviewers.This work was supported by the Chinese
Science and Technology Aid Project to Developing Countries
(KY201906007) and the National Key R&D Program of China
(No.2021YFC3340204).

REFERENCES

[1] A. Torres, R. Galante, M. S. Pimenta, and A. J. B. Martins, “Twenty
years of object-relational mapping: A survey on patterns, solutions,
and their implications on application design,” information and software
technology, vol. 82, pp. 1–18, 2017.

[2] G. Vial, “Lessons in persisting object data using object-relational map-
ping,” IEEE software, vol. 36, no. 6, pp. 43–52, 2018.

[3] A. Torres, R. Galante, M. S. Pimenta, and A. J. B. Martins, “Twenty
years of object-relational mapping: A survey on patterns, solutions,
and their implications on application design,” information and software
technology, vol. 82, pp. 1–18, 2017.

[4] T.-H. Chen, W. Shang, J. Yang, A. E. Hassan, M. W. Godfrey, M. Nasser,
and P. Flora, “An empirical study on the practice of maintaining object-
relational mapping code in java systems,” in Proceedings of the 13th
International Conference on Mining Software Repositories, pp. 165–176,
2016.

[5] T. M. Silva, D. Serey, J. Figueiredo, and J. Brunet, “Automated design
tests to check hibernate design recommendations,” in Proceedings of
the XXXIII Brazilian Symposium on Software Engineering, pp. 94–103,
2019.

[6] Z. Huang, Z. Shao, G. Fan, H. Yu, K. Yang, and Z. Zhou, “Hbsniff:
A static analysis tool for java hibernate object-relational mapping
code smell detection,” Science of Computer Programming, vol. 217,
p. 102778, 2022.

[7] H. Jiang, L. Nie, Z. Sun, Z. Ren, W. Kong, T. Zhang, and X. Luo,
“Rosf: Leveraging information retrieval and supervised learning for rec-
ommending code snippets,” IEEE Transactions on Services Computing,
vol. 12, no. 1, pp. 34–46, 2016.

[8] L. Ai, Z. Huang, W. Li, Y. Zhou, and Y. Yu, “Sensory: leveraging code
statement sequence information for code snippets recommendation,” in
2019 IEEE 43rd Annual Computer Software and Applications Confer-
ence (COMPSAC), vol. 1, pp. 27–36, IEEE, 2019.

[9] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code examples,”
in Proceedings of the 36th International Conference on Software Engi-
neering, pp. 664–675, 2014.

[10] F. Lv, H. Zhang, J.-g. Lou, S. Wang, D. Zhang, and J. Zhao, “Codehow:
Effective code search based on api understanding and extended boolean
model (e),” in 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 260–270, IEEE, 2015.

[11] T.-H. Chen, W. Shang, J. Yang, A. E. Hassan, M. W. Godfrey, M. Nasser,
and P. Flora, “An empirical study on the practice of maintaining object-
relational mapping code in java systems,” in Proceedings of the 13th
International Conference on Mining Software Repositories, pp. 165–176,
2016.

[12] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and A. Sarma,
“An empirical examination of the relationship between code smells
and merge conflicts,” in 2017 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pp. 58–67,
IEEE, 2017.

[13] D. I. Sjøberg, A. Yamashita, B. C. Anda, A. Mockus, and T. Dybå,
“Quantifying the effect of code smells on maintenance effort,” IEEE
Transactions on Software Engineering, vol. 39, no. 8, pp. 1144–1156,
2012.

[14] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and C. Jensen,
“Understanding code smells in android applications,” in Proceedings
of the International Conference on Mobile Software Engineering and
Systems, pp. 225–234, 2016.

[15] C. Chapman, P. Wang, and K. T. Stolee, “Exploring regular expression
comprehension,” in 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 405–416, IEEE, 2017.

[16] S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “The effect of
lexicon bad smells on concept location in source code,” in 2011 IEEE
11th International Working Conference on Source Code Analysis and
Manipulation, pp. 125–134, Ieee, 2011.

[17] X. Xiao, S. Han, C. Zhang, and D. Zhang, “Uncovering javascript
performance code smells relevant to type mutations,” in Programming
Languages and Systems: 13th Asian Symposium, APLAS 2015, Pohang,
South Korea, November 30-December 2, 2015, Proceedings 13, pp. 335–
355, Springer, 2015.

[18] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using change
history information,” in 2013 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 268–278, IEEE, 2013.

[19] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, A. T. Nguyen, and T. N.
Nguyen, “Detection of embedded code smells in dynamic web applica-
tions,” in Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, pp. 282–285, 2012.

[20] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and refactoring
code smells in spreadsheet formulas,” Empirical Software Engineering,
vol. 20, pp. 549–575, 2015.

[21] S. Holder, J. Buchan, and S. G. MacDonell, “Towards a metrics
suite for object-relational mappings,” in Model-Based Software and
Data Integration: First International Workshop, MBSDI 2008, Berlin,
Germany, April 1-3, 2008. Proceedings, pp. 43–54, Springer, 2008.

[22] S. P. R. Katamreddy and S. S. Upadhyayula, “Working with jdbc,” in Be-
ginning Spring Boot 3: Build Dynamic Cloud-Native Java Applications
and Microservices, pp. 101–118, Springer, 2022.

[23] S. Loli, L. Teixeira, and B. Cartaxo, “A catalog of object-relational
mapping code smells for java,” in Proceedings of the XXXIV Brazilian
Symposium on Software Engineering, pp. 82–91, 2020.

[24] T.-H. Chen, “Improving the quality of large-scale database-centric
software systems by analyzing database access code,” in 2015 31st IEEE
International Conference on Data Engineering Workshops, pp. 245–249,
IEEE, 2015.

[25] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and
P. Flora, “Finding and evaluating the performance impact of redundant
data access for applications that are developed using object-relational
mapping frameworks,” IEEE Transactions on Software Engineering,
vol. 42, no. 12, pp. 1148–1161, 2016.

[26] P. Węgrzynowicz, “Performance antipatterns of one to many association
in hibernate,” in 2013 Federated Conference on Computer Science and
Information Systems, pp. 1475–1481, IEEE, 2013.

[27] F. Rahman, C. Bird, and P. Devanbu, “Clones: What is that smell?,”
Empirical Software Engineering, vol. 17, pp. 503–530, 2012.

[28] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?,” in 2009 IEEE 31st International Conference on Soft-
ware Engineering, pp. 485–495, IEEE, 2009.

[29] C. J. Kapser and M. W. Godfrey, ““cloning considered harmful” con-
sidered harmful: patterns of cloning in software,” Empirical Software
Engineering, vol. 13, pp. 645–692, 2008.

[30] N. Göde and R. Koschke, “Frequency and risks of changes to clones,”
in Proceedings of the 33rd International Conference on Software Engi-
neering, pp. 311–320, 2011.

[31] T. Sotiropoulos, S. Chaliasos, V. Atlidakis, D. Mitropoulos, and
D. Spinellis, “Data-oriented differential testing of object-relational map-
ping systems,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pp. 1535–1547, IEEE, 2021.

[32] M. A. Saca, “Refactoring improving the design of existing code,” in
2017 IEEE 37th Central America and Panama Convention (CONCAPAN
XXXVII), pp. 1–3, IEEE, 2017.

[33] J. Dubois, “Improving the performance of the spring-petclinic sample
application,” 2013.

[34] M. Keith and R. Stafford, “Exposing the orm cache: Familiarity with
orm caching issues can help prevent performance problems and bugs.,”
Queue, vol. 6, no. 3, pp. 38–47, 2008.

[35] M. Mondal, C. K. Roy, and K. A. Schneider, “Spcp-miner: A tool
for mining code clones that are important for refactoring or tracking,”
in 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pp. 484–488, IEEE, 2015.

[36] M. Mondai, C. K. Roy, and K. A. Schneider, “Micro-clones in evolving
software,” in 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 50–60, IEEE,
2018.


