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Abstract—With the rapid development of the Internet of 

Things (IoT), a massive amount of transient data is transmitted 

in edge networks. Transient data is highly time-sensitive, such 

as monitoring data generated by industrial devices. Due to their 

inefficiency, traditional caching strategies in edge networks are 

inadequate for handling transient data. Thus, to improve the 

efficiency of transient data caching, we construct a freshness 

model of transient data and propose a maximum entropy Actor-

Critic based caching strategy, TD-MEAC—which can improve 

the freshness of cached data and reduce the long-term caching 

cost. Simulation results show that the proposed TD-MEAC 

achieves a higher cache hit rate and maintains a higher average 

freshness of cached transient data compared with the existing 

DRL and baseline caching strategies. 

Keywords—Internet of Things; edge networks; transient data 

caching; maximum entropy Actor-Critic 

I. INTRODUCTION  

The Internet of Things (IoT) development has caused 
exponential device growth and generated vast data at the edge 
network. The data generated by IoT devices are used in 
extensive applications across various domains. Most IoT data 
is transient, with short-lived, time-sensitive, and dynamic 
characteristics. For example, some health monitoring sensors 
produce specific health parameters only valid for a few 
minutes. The invalid data can affect the reliability and 
accuracy of application decisions.  

Caching transient data at the edge network can accelerate 
response times and reduce network traffic, thereby improving 
Quality of Service (QoS) and Quality of Experience (QoE)[1]. 
For instance, in a vehicle traffic monitoring system, collecting 
and timely updating the status data of the monitoring objects 
is crucial. Caching this valid status data at the edge nodes 
eliminates the need for IoT devices to respond to data requests, 
thereby reducing the load on the return path. Additionally, for 
some latency-sensitive applications, such as intelligent power 
distribution monitoring systems, responding to requests by 
edge nodes can more quickly isolate device failures[2]. 

Most edge caching studies only apply to data that remains 
valid in the long term. Researchers [3]-[6] propose 
corresponding caching schemes for different caching 
scenarios suitable for long-term valid data. However, due to 
IoT data's transient nature, the data gradually becomes 
obsolete and invalid. 

The main challenges transient data poses to existing 
caching strategies are summarized as follows: 

• Data freshness. The caching of transient data needs to 
consider data freshness, which depends on the 
application's timeliness and lifecycle requirements. 
Data becomes stale with time, resulting in freshness 
loss. Thus, caching transient data requires balancing 
caching benefits and freshness loss. 

• Frequent replacements. Compared to long-lived data, 
the caching of transient data requires more frequent 
cache replacements, which may increase the energy 
consumption of edge nodes. 

 Therefore, caching strategies for long-lived data are not 
suitable for transient data.  

Some studies have sought to improve traditional caching 
strategies to adapt to the transient data. A cache replacement 
strategy based on data freshness is proposed in [7], which 
selects data with the shortest remaining lifespan for 
replacement when cache replacement occurs. Reference [8] 
suggested the expected validity of data lifecycles, which 
predicts the number of requests received by cached data in the 
remaining lifespan and evicts data with the lowest expected 
number of requests for cache replacement. References [9][10] 
investigate transient data caching in vehicular networking and 
transient data caching on routers, respectively. And [11] used 
the least recently used replacement strategy and considered 
the transient nature of the data to determine whether to cache 
it by setting a freshness threshold. 

Although these methods consider data transience, they 
require prior knowledge, such as popularity and network 
topology. However, edge networks are dynamic, with the 
position, connection status, resource distribution, application 
scenarios, and demands of IoT devices constantly changing, 
making it challenging to provide prior knowledge. 

Deep reinforcement learning (DRL)[12] has recently 
attracted widespread attention as a new machine learning 
paradigm. DRL uses deep neural networks to represent and 
process high-dimensional state space, improving decision-
making capabilities in large-scale state space. Without prior 
knowledge and state features of edge networks, DRL can 
generate a series of mappings between network states and 
caching actions through multi-round interactions with edge 
networks, making DRL an excellent method for solving the 
caching problem of transient data in edge networks. 

In [13], DRL was first used to solve the caching problem 
of transient data in edge networks. An Actor-Critic method is 
trained in an asynchronous and parallel manner, allowing 
caching decisions to be made without a priori knowledge. 
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Researchers [14] proposed a hierarchical network 
architecture caching system, formulating the problem as a 
Markov decision process (MDP) and designing a policy 
optimization solver to obtain the optimal policy. Reference 
[15] considered the limited caching capacity and used a 
distributed proximal policy optimization (DPPO) algorithm to 
optimize the allocation of cached data and improve training 
speed. 

Unlike the above methods, this paper proposes a transient 
data cache strategy based on the Maximum Entropy Actor-
Critic, TD-MEAC, which is based on the traditional Actor-
Critic algorithm and considers the randomness of cache 
actions. It improves the exploration ability and can better 
adapt to the dynamic edge environment. The main 
contributions of this paper are as follows: 

• A caching strategy for transient data is proposed, 
considering the data lifecycle and propagation delay to 
construct a freshness model for the data. A cost 
function that balances the freshness loss of the data and 
the cost of acquiring data items is also presented, 
which can reduce the long-term acquisition cost of 
transient data. 

• Considering the practical limitations of the caching 
scenario, the caching replacement problem for 
transient data is formulated as MDP. The freshness of 
data items is viewed as a part of the state space, and the 
efficiency function is applied to the reward function. 
The Actor-Critic algorithm with maximum entropy 
interacts with the environment and finds the optimal 
caching decision. 

This paper compares the TD-MEAC with other 
approaches, including classical and DRL-based caching 
strategies. Simulation results show that the proposed TD-
MEAC achieves a higher cache hit rate and maintains a higher 
average freshness of cached transient data. 

II. SYSTEM MODEL 

A. Network Architecture 

This paper considers a centralized caching scenario for a 

group of IoT devices covered by edge nodes in edge networks, 

as shown in Fig. 1. This scenario consists of IoT devices, 

applications, and edge nodes. 

Edge nodes randomly distribute N IoT devices within 

their coverage area, with each IoT device capable of 

generating only one data item type. The corresponding edge 

node can cache these data items. When an IoT application 

sends a data request, the edge node checks its cache unit to 

see if there is a related data item. If there is, and the freshness 

of the data item meets the requirements, the edge node 

responds to the request. Otherwise, the edge node forwards 

the request to the corresponding IoT device, which generates 

a new data item and answers via the return link. 

B. Freshness model of data items 

Freshness reflects the staleness of transient data, and a 
lower freshness indicates a more stale data item. Worn data 
items can reduce the accuracy and timeliness of applications. 
Different applications have additional requirements for data 
freshness. Factors that affect data freshness include data 
collection and processing time, transmission delay, and 
timeliness of data processing. 

 

 

Fig. 1 The network architecture of edge caching 

 

Fig. 2 data item is valid 

 

Fig. 3 data item is invalid 
A static content identifier CID uniquely identifies the IoT 

data items. IoT data item i has a timestamp field 𝑡𝑔𝑒𝑛
𝑖  and a 

lifecycle field 𝑡𝑔𝑒𝑛
𝑖 . For a given time t, the age of the data item 

i is defined as 𝑡𝑎𝑔𝑒
𝑖 = 𝑡 − 𝑡𝑔𝑒𝑛

𝑖 . The response delay of the edge 

node 𝑡𝑑𝑒𝑙
𝑖  consists of two parts: the delay of caching and 

retrieval after receiving the data request and the propagation 
delay of the data item from the edge node to the IoT 
application. The freshness of the data item i, denoted as 

𝑓𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠𝑖 , is defined as follows： 
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As shown in Fig. 2, the data item is still valid and can be 
used to respond to the request. In contrast, in Fig. 3, the cached 
data item has expired, and the carried information is invalid, 
thus cannot be used as a response to the request. 

C. Cost Function 

The caching of transient data at edge nodes results in a lag, 
causing the cached data to have a non-zero data age compared 
to directly acquired data from IoT devices.  Consequently, the 
cache results in a loss of data freshness. The cost of freshness 
loss for a newly generated data item from IoT devices can be 
considered zero, while the cost of freshness loss for a cached 
data item i is related to its data age. Therefore, the cost of 
freshness loss denoted as  𝐶𝑜𝑠𝑡𝑙𝑜𝑠𝑠, is defined as follows: 
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The acquisition cost of data denoted as 𝐶𝑜𝑠𝑡𝑔, depends on 

where the data is obtained. The cost of acquiring data from an 
edge node is denoted as 𝐶𝑜𝑠𝑡𝑔1, while the cost of acquiring 

data from IoT devices is denoted as 𝐶𝑜𝑠𝑡𝑔2. The generation of 

data items by IoT devices consumes device energy, and there 
is a transmission delay from IoT devices to edge nodes. Thus, 
it is generally true that 𝐶𝑜𝑠𝑡𝑔1<𝐶𝑜𝑠𝑡𝑔2. 

When an edge node responds to a request, the cost consists 
of two parts: the cost of freshness loss 𝐶𝑜𝑠𝑡𝑙𝑜𝑠𝑠, and the cost 
of acquiring data items by the edge node 𝐶𝑜𝑠𝑡𝑔1. When IoT 

devices respond to the request, there is only the cost of 
acquiring data items 𝐶𝑜𝑠𝑡𝑔2. Both costs affect the benefit of 

caching transient data. To balance the two costs, the cost 
function, denoted as Cost, is defined as follows: 

   1loss gCost Cost Cost = + + =，  () 

Where 𝜓  and 𝜚  respectively denote the weighting 
coefficients for the cost of freshness loss and the acquisition 
cost of data items.  

 To evaluate the effectiveness of caching, we define the 
benefit function U. Minimizing the cost is equivalent to 
maximizing the benefit since the cost of caching is inversely 
proportional to its benefit. To ensure that the benefit function 
is always non-negative, we define the constant 𝛼𝐶𝑜𝑠𝑡𝑔2 + 𝛽 

as the baseline benefit value. Therefore, the benefit function is 
defined as follows: 

 ( )2( ) 1g loss gU Cost Cost Cost= − + −  () 

III. PROBLEM FORMULATION 

A. Cache Replacement Model 

 The cache state of edge nodes is determined solely by the 
previous cache state and the previous caching action. 
Therefore, the cache replacement process can be represented 
as MDP. Typical MDP consists of a quintuple  {𝑆, 𝐴, 𝑃, 𝑅, 𝛾}. 
In the transient data cache model, the number of requests 
processed by an edge node in a single time step is unknown. 
If the unknown number of requests is regarded as part of the 
MDP, the complexity of the model will increase exponentially. 
Therefore, this paper regards processing a single request by an 
edge node as a decision cycle and replaces the time step with 
a decision cycle. And the quintuple for the n-th decision cycle 
can be represented as {𝑠𝑛 , 𝑎𝑛 , 𝑝(𝑠𝑛+1|𝑠𝑛 , 𝑎𝑛), 𝑟𝑛 , 𝛾}. 

 The state space S represents a finite set of states for the 
caching process of edge nodes. The state features are split into 
two parts: the data items already cached in the cache space and 
the requests from IoT applications. The cache space size is 
defined as C, and C binary tuples can represent the data item 

features 𝑑̂𝑖 = {𝐶𝐼𝐷𝑖 , 𝑓𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠𝑖} .The request is represented 

by 𝑑̂0 = {𝐶𝐼𝐷, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑇𝑖𝑚𝑒}. Thus, the state ns  for the n-th 

decision cycle can be represented as 𝑠𝑛 = {𝑑̂0, 𝑑̂1, 𝑑̂2… 𝑑̂𝑐}.  

 The action space A represents a finite set of caching 
actions for edge nodes. The action taken by the edge node in 
the nth decision cycle is represented by 𝑎𝑛. The size of the 
action space is proportional to the cache space and is related 
to the selected caching action. The larger the action space, the 
greater the computational complexity of the model. In 

resource-constrained edge nodes, to limit the size of the action 
space, it is stipulated that at most one cache replacement 
occurs in a decision cycle. The action space is represented as 
𝐴 = {0,1,2,3, … , 𝐶} . Here, 𝑎𝑛 = 0 represents skipping the 
cache replacement process while 𝑎𝑛 = 1… 𝑐  represents 
replacing the new data item with the 𝑎𝑛-th data item in the 
cache space.  

 The state transition probability 𝑃(𝑠𝑛+1|𝑠𝑛 , 𝑎𝑛) represents 

the probability of the following decision cycle state 1ns +  

given the state-action combination {𝑠𝑛 , 𝑎𝑛}.  

 The reward function 𝑅 is an instantaneous utility function. 
𝑟𝑛 represents the expected instantaneous reward for the state-
action combination in the n-th decision cycle. The utility 
function U serves as a suitable indicator for training DRL, 
balancing freshness loss cost and data acquisition cost. Define 
reward function R as: 

 ( )  , | , ~ ,  n n n n n nR s a E r s a P where r U= =  () 

In addition to the immediate reward, the impact of future 
rewards on the current decision is also considered. A discount 
rate γ  is used to reconcile the cumulative rewards of the 
reward sequence. The smaller the γ is, the more biased the 
immediate reward is. Define the cumulative rewards 𝐺𝑛 
starting from the n-th decision cycle as: 
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The goal of MDP is to find an optimal caching policy 𝜋∗ 
that maximizes the long-term reward under this policy, as 
shown below: 

  *

nargmaxE G =  () 

B. TD-MEAC: Transient Data Caching Strategy Based on 

Maximum Entropy Actor-Critic 

 To enhance the exploration capability of the strategy, the 
randomness of cached actions is considered when selecting 
them, and the maximum entropy policy is used to improve the 
solution to the problem. The improved optimal policy 𝜋∗ is 
defined as: 

 ( )( )*

0
|i

n ii
argmaxE G H s   

+

=

 = +
   () 

 Here, 𝜋(∙ |𝑠𝑖) represents the probability distribution of 
cached actions taken under the marginal node state 𝑠𝑖 . The 
function 𝐻(𝜋(∙ |𝑠𝑖))  represents the entropy of the cached 
actions, which measures the randomness of the caching 
strategy. Increasing entropy can give the marginal node a 
more robust exploration capability and thus better discover 
potential high-reward policies. 𝛼 is the temperature parameter, 
which indicates the relative importance of the entropy term to 
the cumulative reward. 

 To calculate the optimal policy 𝜋∗, this paper defines the 
action value function 𝑄𝜋(𝑠, 𝑎) and state value function𝑉𝜋(𝑠). 
𝑄𝜋(𝑠, 𝑎)measures the expected cumulative reward obtained 
by the marginal node based on the caching policy 𝜋 , 



 

 

considering the entropy of the cached actions, and can be 
expressed as: 

 ( ) ( ) ( ) ( )1 1, , | ~ ,n n n n n n n nQ s a E r s a V s s p s a  + +
 = + 

 () 

𝑉𝜋(𝑠) measures the expected cumulative reward obtained 
by the marginal node based on the caching policy 𝜋  after 
executing the cached actions, considering the entropy of the 
cached actions, and can be expressed as: 

 ( ) ( ) ( ) ( ), log | | ~n n n nV s s Q s a a s a    = −  
 () 

Two independent neural networks are used to approximate 
the value function 𝑄𝜋(𝑠, 𝑎) and the policy function 𝜋(∙ |𝑠), 
denoted as 𝑄𝜔(𝑠, 𝑎) and 𝜋𝜃(𝑎|𝑠), respectively, where 𝜔 and 
𝜃 are the parameters of the two networks. The policy network 
𝜋𝜃(𝑎|𝑠)  outputs a 𝐶 -dimensional vector, representing the 
probability distribution of each cached action. The value 
network 𝑄𝜔(𝑠, 𝑎) outputs a score for the cached action. The 
convergence objective is achieved through stochastic gradient 
descent during policy evaluation and improvement. 

 To mitigate the overestimation caused by bootstrapping 
during the neural network training process, this strategy 
employs two value networks, 𝑄𝜔1

(𝑠, 𝑎) and 𝑄𝜔2
(𝑠, 𝑎), and 

defines two target value networks, 𝑄𝜔̅1
(𝑠, 𝑎) and 𝑄𝜔̅2

(𝑠, 𝑎), 
with the same structure as the former but with different 
parameters. To compute the TD target 𝑦̂𝑛, the minimum value 
between the two target value networks is taken and denoted as: 
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 The TD error, defined as  , can be represented as the 

difference between the value network and the TD target, as 
shown below: 

 ( ), ˆ , 1,2
i

i

n n n nQ s a y i = − =  () 

The workflow of the TD-MEAC caching strategy is 
illustrated in Fig. 4 and described as follows: 

• Given the current state 𝑠𝑛 , the edge node uses the 
policy network 𝜋𝜃(∙ |𝑠𝑛) to obtain a cached action 𝑎𝑛. 
The agent executes the action, and the environment 
provides the reward 𝑟(𝑠𝑛 , 𝑎𝑛) and the new state 𝑠𝑛+1. 
The transition(𝑠𝑛 , 𝑎𝑛 , 𝑟(𝑠𝑛 , 𝑎𝑛), 𝑠𝑛+1) is then stored in 
the experience buffer D. 

• A batch of transitions 𝑇 is randomly sampled from the 
experience buffer D, and the TD error of each 
transition is computed. 

• The value and policy network parameters are updated. 
When updating the parameters of the value network, 
the objective function is defined as follows:  
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Here, 𝑉𝜔̅(𝑠𝑛+1) represents the expected action 
distribution obtained by sampling experiences from 
the experience buffer using the target value network 
and  (9). When updating the parameters of the policy 
network, the objective function is defined as follows: 
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The value network parameters 𝜔1  and 𝜔2 are updated 
using the stochastic gradient descent method based on 
(9) and (10). Then, the target value network parameters 
𝜔̅1 and 𝜔̅2 are updated using the weight-based method.  

 Different temperature parameters must be used depending 
on the exploration stage. When the policy has essentially 
completed the exploration of a region and the optimal action 
has been determined, 𝛼 should be reduced. Conversely, when 
the procedure begins exploring a new area, 𝛼  should be 
increased to explore more space in search of the optimal action. 
Consequently, during policy updates, the temperature 
parameter 𝛼  is updated synchronously with the constraint 
formula proposed in [16] to adjust automatically, as shown in 
(15): 

 ( ) ( )( )  log | | ~n n n n nJ E a s H a    = − + 
 () 

 Here, 𝐻 is a constant vector that represents the 
hyperparameter of the target entropy. 

 

Fig. 4 Workflow of TD-MEAC 



 

 

 

Fig. 11 Life cycle VS Cache hit ratio 

 

Fig. 12 Request counts VS Cost 

IV. EXPERIMENTS AND EVALUATION  

A. Simulation Setting 

The simulations were conducted on a workstation with an 
AMD Ryzen 7 3700 X 8-Core CPU and 32 GB RAM. The 

edge node's cache space was set to 100 ( 100C = ), with 200 

IoT devices within the coverage range. The data item's 
lifespan was randomly sampled from 5 to 20-time steps, and 
the delay in network propagation was uniformly distributed 
between one to three timesteps. Fifty thousand requests were 
generated using the Zipf distribution with variable parameter 
𝜖 ranging from 0.9 to 1.7.  

Regarding the TD-MEAC neural network model, both the 
value and policy networks were set to two hidden layers. Each 
hidden layer had 64 neurons, and the relu function was the 
activation function between the layers. The learning rate was 
initialized at 0.0001, the discount rate γ was set to 0.99, the 
initial value of the temperature parameter α was 0.2, and the 
weight coefficient ψ of the cost was initialized to 0.6. Each 
batch contained 256 experiences during training, and the 
experience buffer size was set to 5000. 

B. Results and Discussions 

 This paper compared TD-MEAC with three representative 
caching schemes, including a baseline caching strategy: 
LFF[7], and two DRL-based methods: DRL-Cache[13] and 
IoT-Cache[15]. 

 This section analyzes the impact of different parameter 
indicators on cache strategies from multiple aspects. 

1) Cache capacity: Fig. 5 and Fig. 6 illustrate the impact 

of varying cache capacity on the cache hit ratio and average 

freshness of cached items. It can be observed that the cache 

hit ratio increases, and the average freshness decreases with 

the rise of cache capacity. For transient data, cache misses are 

likely to occur if the capacity is small, resulting in a low cache 

hit ratio. And transient data experiences freshness loss once 

it is cached until invalid. Larger cache capacity results in 

fewer cache replacements, reducing the average freshness of 

cached items. 

2) Request rate: As depicted in Fig. 7, the cache hit ratio 

of the cache strategy increases as the request rate rises from 

2 to 10 requests/timestep. However, the cache hit ratio will 

 
Fig. 5  Cache capacity VS Cache hit ratio 

 
Fig. 6  Cache capacity VS Average Freshness 

 
Fig. 7 Request rate VS Cache hit ratio 

 
Fig. 8 Request rate VS Average freshness 

 
Fig. 9 Weight factor VS Cache hit ratio 

 
Fig. 10 Weight factor VS Average freshness 



 

 

not continue to grow, and when the request rate exceeds ten 

requests/timestep, the cache hit ratio tends to stabilize. Fig. 8 

shows the average freshness of cached data items increases 

as the request rate increases. Due to the increase in request 

rate, the number of cache replacements also increases, and 

invalidated cache data items are more likely to be replaced, 

thus increasing the average freshness. The average freshness 

stabilizes when the request rate exceeds ten requests/timestep. 

Compared with other cache strategies, the proposed TD-

MEAC performs better at different request rates. 

3) Weight factor ψ: The weight coefficients in the cost 

function play an essential role in cache strategies. ψ 

represents the weight assigned to the cost of freshness loss. 

As shown in Fig. 9, the cache hit ratio based on the DRL-

based cache strategy decreases as ψ increases from zero to 

one. This is because the cache strategy tends to retrieve new 

data from the IoT devices to avoid the cost of freshness loss 

associated with using cached data. As ψ increases, the IoT 

devices generate more data, decreasing the cache hit ratio. Fig. 

10 presents a clear trend of the average freshness. As the 

proportion of fresh data retrieved from the IoT devices 

increases, the edge nodes replace cached data items with fresh 

ones of the same CID, resulting in an overall increase in the 

average freshness. 
 To investigate the inherent logic of different strategies in 
the transient data caching process, we recorded the response 
process of edge nodes to requests. We classified the requested 
data items according to their lifecycles. The cache hit ratio is 
shown in Fig. 11. Data items with longer lifecycles tend to 
have a higher cache hit ratio. For data items with lifecycles 
between 10 and 16, the cache hit ratio of the TD-MEAC 
strategy is superior to that of DRL-Cache and IoT-Cache. As 
for data items with other lifecycles, the performance of the 
three DRL-based strategies is comparable. 

 Finally, we recorded the long-term average cost as the 
number of requests changed. As shown in Fig. 12, the TD-
MEAC strategy's average cost converges to the lowest point 
at around 28,000 requests and maintains relatively stable 
performance afterward. TD-MEAC outperforms DRL-Cache 
and IoT-Cache strategies in reducing long-term average costs. 

 The performance of the proposed TD-MEAC strategy is 
still better than that of the DRL-Cache and IoT-Cache 
strategies. Part of the reason is that the TD-MEAC uses the 
method of entropy regularization and the optimal strategy 𝜋∗ 
used contains the entropy of the cache actions. Entropy 
regularization can encourage the model to balance the 
predicted distribution of outputs and improve the convergence 
speed of the model. In addition, the TD-MEAC uses two 
independent value networks to reduce overestimation 
problems, making the learning process more stable. 

V. CONCLUSION 

 This paper addressed the issue of caching transient IoT 
data in edge networks. A freshness model was established 
based on the transient data's lifespan and latency, and a cost 
function was proposed that integrated data freshness and 
retrieval Cost. To make the approach suitable for dynamic 

edge environments, we developed a maximum entropy Actor-
Critic-based caching strategy, TD-MEAC, reducing reliance 
on prior knowledge. The performance of TD-MEAC was 
evaluated experimentally and compared to other strategies. 
Experimental results indicate that TD-MEAC is better than 
other caching strategies regarding cache hit ratio, data 
freshness, and reducing long-term cache costs. 
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