

Transient Data Caching Based on Maximum

Entropy Actor-Critic in Internet-of-Things

Networks

Yu Zhang

School of Computer and Electronic

Information

Guangxi University

Nanning, China

zhangy.03@qq.com

Ningjiang Chen*

School of Computer and Electronic

Information

Guangxi University

Nanning, China

chnj@gxu.edu.cn

Siyu Yu

School of Computer and Electronic

Information

Guangxi University

Nanning, China

gaiusyu6@gmail.com

Abstract—With the rapid development of the Internet of

Things (IoT), a massive amount of transient data is transmitted

in edge networks. Transient data is highly time-sensitive, such

as monitoring data generated by industrial devices. Due to their

inefficiency, traditional caching strategies in edge networks are

inadequate for handling transient data. Thus, to improve the

efficiency of transient data caching, we construct a freshness

model of transient data and propose a maximum entropy Actor-

Critic based caching strategy, TD-MEAC—which can improve

the freshness of cached data and reduce the long-term caching

cost. Simulation results show that the proposed TD-MEAC

achieves a higher cache hit rate and maintains a higher average

freshness of cached transient data compared with the existing

DRL and baseline caching strategies.

Keywords—Internet of Things; edge networks; transient data

caching; maximum entropy Actor-Critic

I. INTRODUCTION

The Internet of Things (IoT) development has caused
exponential device growth and generated vast data at the edge
network. The data generated by IoT devices are used in
extensive applications across various domains. Most IoT data
is transient, with short-lived, time-sensitive, and dynamic
characteristics. For example, some health monitoring sensors
produce specific health parameters only valid for a few
minutes. The invalid data can affect the reliability and
accuracy of application decisions.

Caching transient data at the edge network can accelerate
response times and reduce network traffic, thereby improving
Quality of Service (QoS) and Quality of Experience (QoE)[1].
For instance, in a vehicle traffic monitoring system, collecting
and timely updating the status data of the monitoring objects
is crucial. Caching this valid status data at the edge nodes
eliminates the need for IoT devices to respond to data requests,
thereby reducing the load on the return path. Additionally, for
some latency-sensitive applications, such as intelligent power
distribution monitoring systems, responding to requests by
edge nodes can more quickly isolate device failures[2].

Most edge caching studies only apply to data that remains
valid in the long term. Researchers [3]-[6] propose
corresponding caching schemes for different caching
scenarios suitable for long-term valid data. However, due to
IoT data's transient nature, the data gradually becomes
obsolete and invalid.

The main challenges transient data poses to existing
caching strategies are summarized as follows:

• Data freshness. The caching of transient data needs to
consider data freshness, which depends on the
application's timeliness and lifecycle requirements.
Data becomes stale with time, resulting in freshness
loss. Thus, caching transient data requires balancing
caching benefits and freshness loss.

• Frequent replacements. Compared to long-lived data,
the caching of transient data requires more frequent
cache replacements, which may increase the energy
consumption of edge nodes.

 Therefore, caching strategies for long-lived data are not
suitable for transient data.

Some studies have sought to improve traditional caching
strategies to adapt to the transient data. A cache replacement
strategy based on data freshness is proposed in [7], which
selects data with the shortest remaining lifespan for
replacement when cache replacement occurs. Reference [8]
suggested the expected validity of data lifecycles, which
predicts the number of requests received by cached data in the
remaining lifespan and evicts data with the lowest expected
number of requests for cache replacement. References [9][10]
investigate transient data caching in vehicular networking and
transient data caching on routers, respectively. And [11] used
the least recently used replacement strategy and considered
the transient nature of the data to determine whether to cache
it by setting a freshness threshold.

Although these methods consider data transience, they
require prior knowledge, such as popularity and network
topology. However, edge networks are dynamic, with the
position, connection status, resource distribution, application
scenarios, and demands of IoT devices constantly changing,
making it challenging to provide prior knowledge.

Deep reinforcement learning (DRL)[12] has recently
attracted widespread attention as a new machine learning
paradigm. DRL uses deep neural networks to represent and
process high-dimensional state space, improving decision-
making capabilities in large-scale state space. Without prior
knowledge and state features of edge networks, DRL can
generate a series of mappings between network states and
caching actions through multi-round interactions with edge
networks, making DRL an excellent method for solving the
caching problem of transient data in edge networks.

In [13], DRL was first used to solve the caching problem
of transient data in edge networks. An Actor-Critic method is
trained in an asynchronous and parallel manner, allowing
caching decisions to be made without a priori knowledge.

DOI reference number: 10.18293/SEKE2023-159.

Researchers [14] proposed a hierarchical network
architecture caching system, formulating the problem as a
Markov decision process (MDP) and designing a policy
optimization solver to obtain the optimal policy. Reference
[15] considered the limited caching capacity and used a
distributed proximal policy optimization (DPPO) algorithm to
optimize the allocation of cached data and improve training
speed.

Unlike the above methods, this paper proposes a transient
data cache strategy based on the Maximum Entropy Actor-
Critic, TD-MEAC, which is based on the traditional Actor-
Critic algorithm and considers the randomness of cache
actions. It improves the exploration ability and can better
adapt to the dynamic edge environment. The main
contributions of this paper are as follows:

• A caching strategy for transient data is proposed,
considering the data lifecycle and propagation delay to
construct a freshness model for the data. A cost
function that balances the freshness loss of the data and
the cost of acquiring data items is also presented,
which can reduce the long-term acquisition cost of
transient data.

• Considering the practical limitations of the caching
scenario, the caching replacement problem for
transient data is formulated as MDP. The freshness of
data items is viewed as a part of the state space, and the
efficiency function is applied to the reward function.
The Actor-Critic algorithm with maximum entropy
interacts with the environment and finds the optimal
caching decision.

This paper compares the TD-MEAC with other
approaches, including classical and DRL-based caching
strategies. Simulation results show that the proposed TD-
MEAC achieves a higher cache hit rate and maintains a higher
average freshness of cached transient data.

II. SYSTEM MODEL

A. Network Architecture

This paper considers a centralized caching scenario for a

group of IoT devices covered by edge nodes in edge networks,

as shown in Fig. 1. This scenario consists of IoT devices,

applications, and edge nodes.

Edge nodes randomly distribute N IoT devices within

their coverage area, with each IoT device capable of

generating only one data item type. The corresponding edge

node can cache these data items. When an IoT application

sends a data request, the edge node checks its cache unit to

see if there is a related data item. If there is, and the freshness

of the data item meets the requirements, the edge node

responds to the request. Otherwise, the edge node forwards

the request to the corresponding IoT device, which generates

a new data item and answers via the return link.

B. Freshness model of data items

Freshness reflects the staleness of transient data, and a
lower freshness indicates a more stale data item. Worn data
items can reduce the accuracy and timeliness of applications.
Different applications have additional requirements for data
freshness. Factors that affect data freshness include data
collection and processing time, transmission delay, and
timeliness of data processing.

Fig. 1 The network architecture of edge caching

Fig. 2 data item is valid

Fig. 3 data item is invalid
A static content identifier CID uniquely identifies the IoT

data items. IoT data item i has a timestamp field 𝑡𝑔𝑒𝑛
𝑖 and a

lifecycle field 𝑡𝑔𝑒𝑛
𝑖 . For a given time t, the age of the data item

i is defined as 𝑡𝑎𝑔𝑒
𝑖 = 𝑡 − 𝑡𝑔𝑒𝑛

𝑖 . The response delay of the edge

node 𝑡𝑑𝑒𝑙
𝑖 consists of two parts: the delay of caching and

retrieval after receiving the data request and the propagation
delay of the data item from the edge node to the IoT
application. The freshness of the data item i, denoted as

𝑓𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠𝑖 , is defined as follows：

 ,

 0 ,

i i i

life age del i i i

life age deli

i life

t t t
t t t

freshness t

otherwise

 − −


= 



+
 ()

As shown in Fig. 2, the data item is still valid and can be
used to respond to the request. In contrast, in Fig. 3, the cached
data item has expired, and the carried information is invalid,
thus cannot be used as a response to the request.

C. Cost Function

The caching of transient data at edge nodes results in a lag,
causing the cached data to have a non-zero data age compared
to directly acquired data from IoT devices. Consequently, the
cache results in a loss of data freshness. The cost of freshness
loss for a newly generated data item from IoT devices can be
considered zero, while the cost of freshness loss for a cached
data item i is related to its data age. Therefore, the cost of
freshness loss denoted as 𝐶𝑜𝑠𝑡𝑙𝑜𝑠𝑠, is defined as follows:

 ,

 0 ,

i

age i i

age lifei

loss life

t
t t

Cost t

otherwise




= 



 ()

The acquisition cost of data denoted as 𝐶𝑜𝑠𝑡𝑔, depends on

where the data is obtained. The cost of acquiring data from an
edge node is denoted as 𝐶𝑜𝑠𝑡𝑔1, while the cost of acquiring

data from IoT devices is denoted as 𝐶𝑜𝑠𝑡𝑔2. The generation of

data items by IoT devices consumes device energy, and there
is a transmission delay from IoT devices to edge nodes. Thus,
it is generally true that 𝐶𝑜𝑠𝑡𝑔1<𝐶𝑜𝑠𝑡𝑔2.

When an edge node responds to a request, the cost consists
of two parts: the cost of freshness loss 𝐶𝑜𝑠𝑡𝑙𝑜𝑠𝑠, and the cost
of acquiring data items by the edge node 𝐶𝑜𝑠𝑡𝑔1. When IoT

devices respond to the request, there is only the cost of
acquiring data items 𝐶𝑜𝑠𝑡𝑔2. Both costs affect the benefit of

caching transient data. To balance the two costs, the cost
function, denoted as Cost, is defined as follows:

 1loss gCost Cost Cost = + + =， ()

Where 𝜓 and 𝜚 respectively denote the weighting
coefficients for the cost of freshness loss and the acquisition
cost of data items.

 To evaluate the effectiveness of caching, we define the
benefit function U. Minimizing the cost is equivalent to
maximizing the benefit since the cost of caching is inversely
proportional to its benefit. To ensure that the benefit function
is always non-negative, we define the constant 𝛼𝐶𝑜𝑠𝑡𝑔2 + 𝛽

as the baseline benefit value. Therefore, the benefit function is
defined as follows:

 ()2() 1g loss gU Cost Cost Cost= − + − ()

III. PROBLEM FORMULATION

A. Cache Replacement Model

 The cache state of edge nodes is determined solely by the
previous cache state and the previous caching action.
Therefore, the cache replacement process can be represented
as MDP. Typical MDP consists of a quintuple {𝑆, 𝐴, 𝑃, 𝑅, 𝛾}.
In the transient data cache model, the number of requests
processed by an edge node in a single time step is unknown.
If the unknown number of requests is regarded as part of the
MDP, the complexity of the model will increase exponentially.
Therefore, this paper regards processing a single request by an
edge node as a decision cycle and replaces the time step with
a decision cycle. And the quintuple for the n-th decision cycle
can be represented as {𝑠𝑛 , 𝑎𝑛 , 𝑝(𝑠𝑛+1|𝑠𝑛 , 𝑎𝑛), 𝑟𝑛 , 𝛾}.

 The state space S represents a finite set of states for the
caching process of edge nodes. The state features are split into
two parts: the data items already cached in the cache space and
the requests from IoT applications. The cache space size is
defined as C, and C binary tuples can represent the data item

features 𝑑̂𝑖 = {𝐶𝐼𝐷𝑖 , 𝑓𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠𝑖} .The request is represented

by 𝑑̂0 = {𝐶𝐼𝐷, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑇𝑖𝑚𝑒}. Thus, the state ns for the n-th

decision cycle can be represented as 𝑠𝑛 = {𝑑̂0, 𝑑̂1, 𝑑̂2… 𝑑̂𝑐}.

 The action space A represents a finite set of caching
actions for edge nodes. The action taken by the edge node in
the nth decision cycle is represented by 𝑎𝑛. The size of the
action space is proportional to the cache space and is related
to the selected caching action. The larger the action space, the
greater the computational complexity of the model. In

resource-constrained edge nodes, to limit the size of the action
space, it is stipulated that at most one cache replacement
occurs in a decision cycle. The action space is represented as
𝐴 = {0,1,2,3, … , 𝐶} . Here, 𝑎𝑛 = 0 represents skipping the
cache replacement process while 𝑎𝑛 = 1… 𝑐 represents
replacing the new data item with the 𝑎𝑛-th data item in the
cache space.

 The state transition probability 𝑃(𝑠𝑛+1|𝑠𝑛 , 𝑎𝑛) represents

the probability of the following decision cycle state 1ns +

given the state-action combination {𝑠𝑛 , 𝑎𝑛}.

 The reward function 𝑅 is an instantaneous utility function.
𝑟𝑛 represents the expected instantaneous reward for the state-
action combination in the n-th decision cycle. The utility
function U serves as a suitable indicator for training DRL,
balancing freshness loss cost and data acquisition cost. Define
reward function R as:

 ()  , | , ~ , n n n n n nR s a E r s a P where r U= = ()

In addition to the immediate reward, the impact of future
rewards on the current decision is also considered. A discount
rate γ is used to reconcile the cumulative rewards of the
reward sequence. The smaller the γ is, the more biased the
immediate reward is. Define the cumulative rewards 𝐺𝑛
starting from the n-th decision cycle as:

0

i

n n ii
G r

+

+=
=  ()

The goal of MDP is to find an optimal caching policy 𝜋∗
that maximizes the long-term reward under this policy, as
shown below:

  *

nargmaxE G = ()

B. TD-MEAC: Transient Data Caching Strategy Based on

Maximum Entropy Actor-Critic

 To enhance the exploration capability of the strategy, the
randomness of cached actions is considered when selecting
them, and the maximum entropy policy is used to improve the
solution to the problem. The improved optimal policy 𝜋∗ is
defined as:

 ()()*

0
|i

n ii
argmaxE G H s   

+

=

 = +
  ()

 Here, 𝜋(∙ |𝑠𝑖) represents the probability distribution of
cached actions taken under the marginal node state 𝑠𝑖 . The
function 𝐻(𝜋(∙ |𝑠𝑖)) represents the entropy of the cached
actions, which measures the randomness of the caching
strategy. Increasing entropy can give the marginal node a
more robust exploration capability and thus better discover
potential high-reward policies. 𝛼 is the temperature parameter,
which indicates the relative importance of the entropy term to
the cumulative reward.

 To calculate the optimal policy 𝜋∗, this paper defines the
action value function 𝑄𝜋(𝑠, 𝑎) and state value function𝑉𝜋(𝑠).
𝑄𝜋(𝑠, 𝑎)measures the expected cumulative reward obtained
by the marginal node based on the caching policy 𝜋 ,

considering the entropy of the cached actions, and can be
expressed as:

 () () () ()1 1, , | ~ ,n n n n n n n nQ s a E r s a V s s p s a  + +
 = + 

 ()

𝑉𝜋(𝑠) measures the expected cumulative reward obtained
by the marginal node based on the caching policy 𝜋 after
executing the cached actions, considering the entropy of the
cached actions, and can be expressed as:

 () () () (), log | | ~n n n nV s s Q s a a s a    = −  
 ()

Two independent neural networks are used to approximate
the value function 𝑄𝜋(𝑠, 𝑎) and the policy function 𝜋(∙ |𝑠),
denoted as 𝑄𝜔(𝑠, 𝑎) and 𝜋𝜃(𝑎|𝑠), respectively, where 𝜔 and
𝜃 are the parameters of the two networks. The policy network
𝜋𝜃(𝑎|𝑠) outputs a 𝐶 -dimensional vector, representing the
probability distribution of each cached action. The value
network 𝑄𝜔(𝑠, 𝑎) outputs a score for the cached action. The
convergence objective is achieved through stochastic gradient
descent during policy evaluation and improvement.

 To mitigate the overestimation caused by bootstrapping
during the neural network training process, this strategy
employs two value networks, 𝑄𝜔1

(𝑠, 𝑎) and 𝑄𝜔2
(𝑠, 𝑎), and

defines two target value networks, 𝑄𝜔̅1
(𝑠, 𝑎) and 𝑄𝜔̅2

(𝑠, 𝑎),
with the same structure as the former but with different
parameters. To compute the TD target 𝑦̂𝑛, the minimum value
between the two target value networks is taken and denoted as:

 () ()()
()

1,2 l

ˆ

, og | ,

~ |

i

n

i n n n n

n n

y r

min Q s a a s

a s

 



  



=

=

+ − ()

 The TD error, defined as  , can be represented as the

difference between the value network and the TD target, as
shown below:

 (), ˆ , 1,2
i

i

n n n nQ s a y i = − = ()

The workflow of the TD-MEAC caching strategy is
illustrated in Fig. 4 and described as follows:

• Given the current state 𝑠𝑛 , the edge node uses the
policy network 𝜋𝜃(∙ |𝑠𝑛) to obtain a cached action 𝑎𝑛.
The agent executes the action, and the environment
provides the reward 𝑟(𝑠𝑛 , 𝑎𝑛) and the new state 𝑠𝑛+1.
The transition(𝑠𝑛 , 𝑎𝑛 , 𝑟(𝑠𝑛 , 𝑎𝑛), 𝑠𝑛+1) is then stored in
the experience buffer D.

• A batch of transitions 𝑇 is randomly sampled from the
experience buffer D, and the TD error of each
transition is computed.

• The value and policy network parameters are updated.
When updating the parameters of the value network,
the objective function is defined as follows:

()

() () ()()
2

1

1
(, ,

2
n n n n n

J Q

E Q s a r s a V s





  +

=

 
 − +   

 

 ()

Here, 𝑉𝜔̅(𝑠𝑛+1) represents the expected action
distribution obtained by sampling experiences from
the experience buffer using the target value network
and (9). When updating the parameters of the policy
network, the objective function is defined as follows:

 ()
()()

()1,2

log |

, | ~ , ~
i

n

i n n

a s
J E

min Q s a s T a





 

 


=

 −
 =
  

 ()

The value network parameters 𝜔1 and 𝜔2 are updated
using the stochastic gradient descent method based on
(9) and (10). Then, the target value network parameters
𝜔̅1 and 𝜔̅2 are updated using the weight-based method.

 Different temperature parameters must be used depending
on the exploration stage. When the policy has essentially
completed the exploration of a region and the optimal action
has been determined, 𝛼 should be reduced. Conversely, when
the procedure begins exploring a new area, 𝛼 should be
increased to explore more space in search of the optimal action.
Consequently, during policy updates, the temperature
parameter 𝛼 is updated synchronously with the constraint
formula proposed in [16] to adjust automatically, as shown in
(15):

 () ()() log | | ~n n n n nJ E a s H a    = − + 
 ()

 Here, 𝐻 is a constant vector that represents the
hyperparameter of the target entropy.

Fig. 4 Workflow of TD-MEAC

Fig. 11 Life cycle VS Cache hit ratio

Fig. 12 Request counts VS Cost

IV. EXPERIMENTS AND EVALUATION

A. Simulation Setting

The simulations were conducted on a workstation with an
AMD Ryzen 7 3700 X 8-Core CPU and 32 GB RAM. The

edge node's cache space was set to 100 (100C =), with 200

IoT devices within the coverage range. The data item's
lifespan was randomly sampled from 5 to 20-time steps, and
the delay in network propagation was uniformly distributed
between one to three timesteps. Fifty thousand requests were
generated using the Zipf distribution with variable parameter
𝜖 ranging from 0.9 to 1.7.

Regarding the TD-MEAC neural network model, both the
value and policy networks were set to two hidden layers. Each
hidden layer had 64 neurons, and the relu function was the
activation function between the layers. The learning rate was
initialized at 0.0001, the discount rate γ was set to 0.99, the
initial value of the temperature parameter α was 0.2, and the
weight coefficient ψ of the cost was initialized to 0.6. Each
batch contained 256 experiences during training, and the
experience buffer size was set to 5000.

B. Results and Discussions

 This paper compared TD-MEAC with three representative
caching schemes, including a baseline caching strategy:
LFF[7], and two DRL-based methods: DRL-Cache[13] and
IoT-Cache[15].

 This section analyzes the impact of different parameter
indicators on cache strategies from multiple aspects.

1) Cache capacity: Fig. 5 and Fig. 6 illustrate the impact

of varying cache capacity on the cache hit ratio and average

freshness of cached items. It can be observed that the cache

hit ratio increases, and the average freshness decreases with

the rise of cache capacity. For transient data, cache misses are

likely to occur if the capacity is small, resulting in a low cache

hit ratio. And transient data experiences freshness loss once

it is cached until invalid. Larger cache capacity results in

fewer cache replacements, reducing the average freshness of

cached items.

2) Request rate: As depicted in Fig. 7, the cache hit ratio

of the cache strategy increases as the request rate rises from

2 to 10 requests/timestep. However, the cache hit ratio will

Fig. 5 Cache capacity VS Cache hit ratio

Fig. 6 Cache capacity VS Average Freshness

Fig. 7 Request rate VS Cache hit ratio

Fig. 8 Request rate VS Average freshness

Fig. 9 Weight factor VS Cache hit ratio

Fig. 10 Weight factor VS Average freshness

not continue to grow, and when the request rate exceeds ten

requests/timestep, the cache hit ratio tends to stabilize. Fig. 8

shows the average freshness of cached data items increases

as the request rate increases. Due to the increase in request

rate, the number of cache replacements also increases, and

invalidated cache data items are more likely to be replaced,

thus increasing the average freshness. The average freshness

stabilizes when the request rate exceeds ten requests/timestep.

Compared with other cache strategies, the proposed TD-

MEAC performs better at different request rates.

3) Weight factor ψ: The weight coefficients in the cost

function play an essential role in cache strategies. ψ

represents the weight assigned to the cost of freshness loss.

As shown in Fig. 9, the cache hit ratio based on the DRL-

based cache strategy decreases as ψ increases from zero to

one. This is because the cache strategy tends to retrieve new

data from the IoT devices to avoid the cost of freshness loss

associated with using cached data. As ψ increases, the IoT

devices generate more data, decreasing the cache hit ratio. Fig.

10 presents a clear trend of the average freshness. As the

proportion of fresh data retrieved from the IoT devices

increases, the edge nodes replace cached data items with fresh

ones of the same CID, resulting in an overall increase in the

average freshness.
 To investigate the inherent logic of different strategies in
the transient data caching process, we recorded the response
process of edge nodes to requests. We classified the requested
data items according to their lifecycles. The cache hit ratio is
shown in Fig. 11. Data items with longer lifecycles tend to
have a higher cache hit ratio. For data items with lifecycles
between 10 and 16, the cache hit ratio of the TD-MEAC
strategy is superior to that of DRL-Cache and IoT-Cache. As
for data items with other lifecycles, the performance of the
three DRL-based strategies is comparable.

 Finally, we recorded the long-term average cost as the
number of requests changed. As shown in Fig. 12, the TD-
MEAC strategy's average cost converges to the lowest point
at around 28,000 requests and maintains relatively stable
performance afterward. TD-MEAC outperforms DRL-Cache
and IoT-Cache strategies in reducing long-term average costs.

 The performance of the proposed TD-MEAC strategy is
still better than that of the DRL-Cache and IoT-Cache
strategies. Part of the reason is that the TD-MEAC uses the
method of entropy regularization and the optimal strategy 𝜋∗
used contains the entropy of the cache actions. Entropy
regularization can encourage the model to balance the
predicted distribution of outputs and improve the convergence
speed of the model. In addition, the TD-MEAC uses two
independent value networks to reduce overestimation
problems, making the learning process more stable.

V. CONCLUSION

 This paper addressed the issue of caching transient IoT
data in edge networks. A freshness model was established
based on the transient data's lifespan and latency, and a cost
function was proposed that integrated data freshness and
retrieval Cost. To make the approach suitable for dynamic

edge environments, we developed a maximum entropy Actor-
Critic-based caching strategy, TD-MEAC, reducing reliance
on prior knowledge. The performance of TD-MEAC was
evaluated experimentally and compared to other strategies.
Experimental results indicate that TD-MEAC is better than
other caching strategies regarding cache hit ratio, data
freshness, and reducing long-term cache costs.

VI. ACKNOWLEDGMENTS

 The work described in this paper is supported by the
National Natural Science Foundation of China (No. 62162003)
and the Nanning Science and Technology project (No.
20221031).

REFERENCES

[1] Al-Ward H, Tan C K, Lim W H. Caching transient data in Information-
Centric Internet-of-Things (IC-IoT) networks: A survey[J]. Journal of
Network and Computer Applications, 2022: 103491.

[2] Wu H, Fan Y, Wang Y, et al. A comprehensive review on edge caching
from the perspective of total process: Placement, policy and delivery[J].
Sensors, 2021, 21(15): 5033.

[3] Maniotis P, Thomas N. Viewport-Aware Deep Reinforcement
Learning Approach for 360° Video Caching[J]. IEEE Transactions on
Multimedia, 2021.

[4] Zhang Y, Feng B, Quan W, et al. Cooperative edge caching: A multi-
agent deep learning based approach [J]. IEEE Access, 2020, 8: 133212-
133224.

[5] Wang Y, Friderikos V. Network Orchestration in Mobile Networks via
a Synergy of Model-driven and AI-based Techniques [C]//2020 IEEE
Eighth International Conference on Communications and Networking
(ComNet). IEEE, 2020: 1-5.

[6] Zhong C, Gursoy M C, Velipasalar S. Deep reinforcement learning-
based edge caching in wireless networks [J]. IEEE Transactions on
Cognitive Communications and Networking, 2020, 6(1): 48-61.

[7] Meddeb M, Dhraief A, Belghith A, et al. Least fresh first cache
replacement policy for NDN-based IoT networks [J]. Pervasive and
Mobile Computing, 2019, 52: 60-70.

[8] Fatale S, Prakash R S, Moharir S. Caching policies for transient data
[J]. IEEE Transactions on Communications, 2020, 68(7): 4411-4422.

[9] Zhang S, Luo H, Li J, et al. Hierarchical soft slicing to meet multi-
dimensional QoS demand in cache-enabled vehicular networks [J].
IEEE Transactions on Wireless Communications, 2020, 19(3): 2150-
2162.

[10] S. Vural, N. Wang, P. Navaratnam, and R. Tafazolli, "Caching transient
data in Internet content routers," IEEE/ACM Trans. Netw., vol. 25, no.
2, pp. 1048-1061, Apr. 2017.

[11] Z. Zhang, C.-H. Lung, I. Lambadaris, and M. St-Hilaire, "IoT data
lifetime-based cooperative caching scheme fo r ICN-IoT networks, " in
Proc. IEEE ICC, Kansas, MO, USA, May 2018, pp. 1-7.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et
al., "Human-level control through deep reinforcement learning,"
Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[13] Zhu H, Cao Y, Wei X, et al. Caching transient data for Internet of
Things: a deep reinforcement learning approach [J]. IEEE Internet of
Things Journal, 2018, 6(2): 2074-2083.

[14] Wu H, Nasehzadeh A, Wang P. A Deep Reinforcement Learning-
Based Caching Strategy for IoT Networks With Transient Data [J].
IEEE Transactions on Vehicular Technology, 2022, 71(12):13310-
13319.

[15] Sharma S, Peddoju S K. IoT-Cache: Caching Transient Data at the IoT
Edge [C]//2022 IEEE 47th Conference on Local Computer Networks
(LCN). IEEE, 2022: 307-310.

[16] Haarnoja T, Zhou A, Hartikainen K, et al. Soft actor-critic algorithms
and applications [J]. arXiv preprint arXiv:1812.05905, 2018.

