
L∗-Based Learning of Probabilistic Timed
Automata with One Clock

Rong Wu∗
∗School of Software Engineering, Tongji University, Shanghai, China

Email: wu rong@tongji.edu.cn

Abstract—Probabilistic timed automata (PTAs) allow for an-
alyzing systems which operate under the existence of both
probability and time. Probabilistic model checking for PTAs
requires formal models as a basis. In this paper, we consider
a learning algorithm for PTAs with one clock (OPTAs) which
extends Angluin’s L∗ algorithm. For the black-box systems,
we estimate the probabilities by sampling system traces, and
apply the framework of Probably Approximately Correct (PAC)
learning to provide correctness guarantees respect to error and
confidence parameters. Experiments with the implementation of
our learning algorithm include the sender of CSMA/CD protocol
and randomly generated examples. Evaluating results show the
effectiveness of our learning algorithm.

Index Terms—model inference, active automata learning, prob-
abilistic timed automata

I. INTRODUCTION

Model learning is a efficient technique where we are able
to get formal models for black-box systems. It enables the
formal techniques, such as model checking, for systems.
Passive learning and active learning are different two strategies
in model learning. Specifically, passive learning outputs the
learned models through before-hand data, but the data active
learning uses grow gradually by asking for the systems under
learning (SUL) during learning. Increased active learning algo-
rithms are derived from the Angluin’s L∗ algorithm [1] which
learns deterministic finite automata (DFAs), e.g. learning other
automata variants like Mealy machines [2], and symbolic
automata [3] [4].

However, active learning in stochastic and black-box set-
tings has received less attention, except for Markov Deci-
sion Processes (MDPs) [5] and Stochastic Reactive Systems
(SMMs) [6], where the learned probabilities converge to the
true values in the large sample limit. Instead of finite automata
with finite alphabets, the learning algorithms for real-time
systems are complicated since continuous-time semantics. In
[7], the learner can generate equivalent models with the One-
clock Timed Automata (OTAs) under the real-time systems,
through transforming the learning problem from the timed
language observed outside to the timed language observed
inside. Since the goal of Probably Approximately Correct
(PAC) learning is the hypothesis generated by the learner has
low error with high probability, [8] applies it to the learning
of OTAs, which approximates equivalence between the learned
model and the SUL by random sampling.

The contributions of this paper are as follows:

1) We present a L∗-based learning algorithm for One-clock
Probabilistic Timed Automata (OPTAs), where OPTAs
allow for analyzing systems which operate under the
existence of both probability and time.

2) In L∗, the learner queries the teacher for collecting
information of the SUL. Instead the existence of the
teacher owning perfect knowledge of the SUL, we
approximate the queries offered by the teacher under
the black-box system via sampling. Besides, we apply
PAC learning to check the correctness of the hypothesis
generated by the learner. Thus, we carefully design the
learning mechanism, the queries, the behaviors of the
learner and the teacher.

3) We implemented and evaluated in the sender of
CSMA/CD protocol and random examples. Experiment
results show the effectiveness of our algorithm.

Structure: In Sect. II, we introduce preliminaries like
OPTAs and the L∗ algorithm. We present L∗-based learning
algorithm for OPTAs in detail in Sect. III. Sect. IV discusses
the evaluation and we provide a concluding in Sect. V.

II. PRELIMINARIES

Let R≥0 and N denote the sets of non-negative real numbers
and natural numbers, respectively, and B = {T,F} the Boolean
set where T represents true. For a finite set Z, a probabilistic
distribution is defined by function η : Z 7→ [0, 1] with∑

z∈Z η(z) = 1, and we refer with Dist(Z) to the set of
distributions over Z. The concatenation of two sequences
a, a′ ∈ Z∗ is denoted by a · a′, where a is a prefix of a · a′,
denoted a≪ a ·a′, and prefixes(a) = {a′|a′ ∈ Z∗ : a′ ≪ a}
is the set of all prefixes of sequence a. A set of sequences
A ⊆ Z∗ is prefix-closed, iff ∀a ∈ A : prefixes(a) ⊆ A.
Suffixes and suffix-closedness are defined analogously. We use
S(s) ∈ N to denote the multiplicity of s in multiset S.

Probabilistic timed automata (PTAs) [9] use clocks to model
real-time behaviour like classical timed automata [10]. We
consider models with only one clock denoted by x in this
paper. A clock valuation is a value ν ∈ R≥0 interpreted as the
current value of clock x. Let [ν]T = 0 denote that clock x is
reset to 0, and [ν]F = ν. The set of clock constraints over clock
x, denoted by Φ, is defined by the form ϕ ::= T|x ▷◁ n |ϕ∧ϕ,
where n ∈ N and ▷◁∈ {=, <,>,≤,≥}. we use ν |= ϕ to
denote a clock valuation ν satisfies a clock constraint ϕ.

DOI reference number: 10.18293/SEKE2023-156

Definition 1. A one-clock probabilistic timed automata
(OPTA) is a tuple P = (ΣI ,ΣO, Q, q0, x, prob,L) where

• ΣI and ΣO are finite sets of input and output symbols
respectively,

• Q is a set of locations, q0 ∈ Q is the initial location,
• x is the unique clock,
• prob is the probabilistic transition relation consisting of

elements with the form (q, g, i, η), where q ∈ Q, guard
g ∈ Φ, i ∈ ΣI , and η ∈ Dist(B×Q), and

• L : Q→ ΣO is a labeling function.

A state of OPTA P is a pair (q, ν) which transitions to either
(q, ν + t) after elapsing a certain amount of time t ∈ R≥0, or
(q′, [ν]b) with probability η(b, q′) after traversing an enabled
probabilistic transition (q, g, i, η) ∈ prob. i.e. ν |= g, where
outcome (b, q′) ∈ B×Q consists of a reset indicator b signaling
whether to reset the clock x and a successor location q′. We
use (q, ν)

(i,t)o−−−→ (q′, [ν + t]b) to denote the successor relation
after both transitions, where L(q′) = o.

Given a path ρ = (q0, ν0)
t1,i1,η1−−−−−→ (q1, ν1) · · ·

tn,in,ηn−−−−−→
(qn, νn), we have a delay-timed trace L(ρ) =
o0(i1, t1)o1 · · · (in, tn)on, also called as delay-timed
trace, where L(qk) = ok. Obviously, reset-delay-
timed traces integrate reset information, denoted
ωr = o0(i1, t1)(b1, o1) · · · (in, tn)(bn, on) where bk ∈ B
taken from ηk(bk, qk). We extend the representation
of successor relation to delay-timed traces ω by
(q, ν)

L(q)−−−→ (q, ν), and (q, ν)
ω·(i,t)o−−−−−→ (q′, ν′) if

∃(q′′, ν′′) : (q, ν) ω−→ (q′′, ν′′) ∧ (q′′, ν′′)
(i,t)o−−−→ (q′, ν′).

Delay-timed traces are observed outside according to the
global clock. We introduce logical-timed traces and reset-
logical-timed traces to denote the observations inside, i.e.
from the view of the local clock. We use Γ to denote the
mapping of observations outside and inside, e.g. Γ(ωr) = γr
represents reset logical-timed trace γr is the same sequence
with reset delay-timed trace ω, except for the time recorded
is the clock valuation µk after delaying time tk, i.e. γr =
Γ(ωr) = o0(i1, µ1)(b1, o1) · · · (in, µn)(bn, on) with µk = tk
if k = 1∨ bk−1 = T and µk = µk−1 + tk. We use Π(γr) = γ
to denote the projection of reset-logical-timed trace γr without
reset information, and let last(γr) = on, ν(γr) = [µn]bn .

Let ΣI = ΣI × R≥0 and ΣO = B × ΣO. Then T Rd =
ΣO × (ΣI ×ΣO)∗ denotes the set of delay-timed traces, and
T Rlr = ΣO × (ΣI ×ΣO)∗ denotes the set of reset-logical-
timed traces. We say OPTA P is deterministic if each delay-
timed trace in T Rd corresponds to at most one path. And,
OPTA P is complete if for all q ∈ Q and i ∈ ΣI , the guards
form a partition of R≥0. We assume that the OPTAs we work
are complete and deterministic in the following sections.

The L∗ algorithm [1] learns an unknown regular language
L, which has two different roles for learning: a learner,
and a teacher which is able to answer membership and
equivalence queries. First the learner checks which strings
are in L using membership queries. While has collected
sufficient information, the learner builds a hypothesis (DFA)

H using the membership query results. It then checks the
equivalence between language L and the language accepted
by H via equivalence query. If not, the teacher returns a
counterexample to the learner for refining H. After processing
a counterexample, the learner starts a new round until the
equivalence query returns yes, i.e. H accepts language L.

III. LEARNING OPTAS VIA SAMPLING

Here we present a learning algorithm for OPTAs referring
to the L∗-based algorithms of OTAs [7] and MDPs [5]. We
first describe how we capture the behaviour of an OPTA.

For a timed language L ⊆ (Σ×R≥0)
∗ accepted by a timed

automata over alphabet Σ, we associate to a characteristic
function f : (Σ × R≥0)

∗ 7→ {T,F}. Similarly, we explain
OPTA P as a function P : (ΣO ×ΣI)∗ 7→ Dist(ΣO)∪ {⊥}.

Definition 2. For an OPTA P = (ΣI ,ΣO, Q, q0, x, prob,L),
its characteristic function is P , defined for delay-timed input
(i, t) ∈ ΣI , and delay-timed trace ω ∈ T Rd as follows:

• P (ϵ)(L(q0)) = 1;
• P (ω · (i, t)) =⊥ if ∄(q, ν) : (q0, ν0)

ω−→ (q, ν);
• P (ω · (i, t))(o) = p otherwise if η(b, q′) = p > 0 ∧
L(q′) = o, where (q, g, i, η) ∈ prob with ν + t |= g.

We say OPTAs P and P ′ with characteristic function P and
P ′ are equivalent, iff P = P ′.

We define reset-logical-timed characteristic function Plr,
which is the characteristic function observed inside, by Plr(γr ·
(i, µ))(b, o) = P (ω · (i, t))(o) if γr and ω refer to the same
path, where b ∈ B is taken from η(b, q′) and µ = ν(γr) + t.
We transform the learning problem to that of learning a reset-
logical-timed characteristic function as noted in [7], that is,
we can build a hypothesis that is equivalent with the target
OPTA over their reset-logical-timed characteristic functions.

Theorem 1. Given OPTAs P and P ′ with reset-logical-timed
characteristic functions Plr and P ′

lr, if Plr = P ′
lr ⇒ P ≡ P ′.

A. PAC learning of OPTAs

We assume P = (ΣI ,ΣO, Q, q0, x, prob,L) is the OPTA
underlying the SUL, and P is its characteristic function. For
a hypothesis H with characteristic function H , let P ⊕H =
{ω · (i, t)|ω ∈ T Rd, (i, t) ∈ ΣI : P (ω · (i, t)) ̸= H(ω · (i, t))}
be the symmetric difference between P and H . We use D
to denote a probabilistic distribution over (ΣO × ΣI)∗. The
quality of hypothesis H for P is defined by D(P ⊕H).

Let ϵ and δ be the error and confidence parameters respec-
tively. We say a learning algorithm for OPTA P is PAC(ϵ,
δ)-correct if its output learned model H satisfies:

Pr(D(P ⊕H) ≤ ϵ) ≥ 1− δ (1)

where Pr is the probability of the event D(P ⊕H) ≤ ϵ.
Thus, in PAC learning framework, equivalence queries re-

quire to sample delay-timed test sequences, i.e. elements in
(ΣO ×ΣI)∗, then test whether they belong to the symmetric
difference. Theorem 2 defines the minimum number of sam-
ples required to ensure Equation 1. We discuss equivalence
queries in more detail in Sect. III-D4.

Theorem 2. A learning algorithm PAC-learns an OPTA if the
k-th equivalence query tests

rk =
1

ϵ
(ln

1

δ
+ ln 2(k + 1)). (2)

random delay-timed test sequences from a fixed distribution
over (ΣO ×ΣI)∗ without finding a counterexample.

B. Queries

Let λ = γ ·e ∈ (ΣO×ΣI)∗ be a logical-timed test sequence,
where γ is a logical-timed trace, and e is called as logical-
timed continuation sequence. Obviously, reset-logical-timed
test sequences is the logical-timed test sequences extending
with reset information.

The teacher gains information about the reset-logical-timed
characteristic function by sampling system traces. Let S be the
multiset of reset-logical-timed traces collected from the SUL
during learning. Thus, the teacher offers four queries:
Frequency queries: take a logical-timed test sequence λ

as input, and return the corresponding reset-logical-timed test
sequence π(λ) and output frequencies freq(λ) : ΣO 7→ N
collected in multiset S.
Complete queries: given a logical-timed test sequence λ,

complete query cq(λ) returns whether freq(λ) has sufficient
information to approximate the true distribution.
Refine queries: given a set rare of logical-timed test

sequences which require to refine the knowledge about the
SUL, refine query rq(rare) returns a multiset of reset-logical-
timed traces sampled from the SUL along rare.
Equivalence queries: given a hypothesis H, and the pa-

rameters: error ϵ, confidence δ and the amount of previous
equivalence queries k, equivalence query eq(H, ϵ, δ, k) returns
a pair (r, ctx) where r is the Boolean value signaling whether
H passes all tests, and ctx is a counterexample.

C. Learner

1) Timed observation table: Timed Observation table is
used to store information growing during learning in our work.

Definition 3. A timed observation table is a tuple T =
(ΣI , S,R,E, f, ψ), where ΣI = ΣI × R≥0 is a infinite set
of logical-timed inputs, S,R ⊂ T Rlr are finite sets of reset-
logical-timed traces, E ⊂ (ΣI ×ΣO)∗×ΣI is a suffix-closed
set of logical-timed continuation sequences, ψ : S∪R 7→ 2Σ

I

,
and ∀γr ∈ S ∪R, e ∈ E ∪ψ(γ) : f(γr · e) = freq(Π(γr) · e).
Specifically,

• S is called the set of prefixes, R is called the boundary,
and E is called the set of suffixes.

• S and R are disjoint, and S ∪R is prefix-closed.
• ∀γr ∈ S ∪ R, i ∈ ψ(γr),o ∈ ΣO : γr · io ∈ R if

freq(Π(γr) · i)(o) > 0.

We represent the content of a row by row(γr)(e) = f(γr ·e)
for γr ∈ S ∪R, e ∈ E ∪ ψ(γ). We initially set S = {L(q0)},
where L(q0) is the initial output of the SUL, E = {(i, 0)|ΣI},
and ψ(L(q0)) = {(i, 0)|ΣI}.

Since can not directly determine equivalence of rows,
we apply Hoeffding bounds [11] to determine whether two

logical-timed test sequences produce statistically different
distributions. Put differently, for logical-timed test sequences
λ1, λ2, we approximate Plr(π(λ1)) ̸= Plr(π(λ2)) by check-
ing whether freq(λ1) and freq(λ2) have been sampled from
different distributions. Thus, we say λ1, λ2 produce statisti-
cally different distributions, denoted diff(λ1, λ2), iff one
of the following conditions holds:

1) cq(λ1) ∧ cq(λ1) ∧ (n1 > 0⊕ n2 > 0), or
2) n1 > 0 ∧ n2 > 0 ∧ ∃o ∈ ΣO :∣∣∣∣fq1(o)n1

− fq2(o)

n2

∣∣∣∣ > (
1
√
n1

+
1
√
n2

)

√
1

2
ln

2

α
(3)

where fqk = freq(λk), nk =
∑

o∈ΣO fqk(o) for k = 1, 2,
and α specifies the confidence level (1− α)2.

We say f(γr ·e) and f(γ′r ·e′) are compatible, denoted f(γr ·
e) ≈ f(γ′r · e′) if ¬diff(Π(γr) · e,Π(γ′r) · e′) for γr ∈ S ∪R,
e ∈ E ∪ψ(γ). We extend this notion to rows, i.e. we say two
rows labeled γr and γ′r are compatible, denoted row(γr) ≈
row(γ′r), if all of the following conditions hold: (1) last(γr) =
last(γ′r), (2) ∀e ∈ E : row(γr)(e) ≈ row(γ′r)(e), and (3)
∀i ∈ ψ(γr) ∩ ψ(γ′r) : row(γr)(i) ≈ row(γ′r)(i).

The hypothesis generated from a timed observation table
T is well-formed if T is prepared, which satisfies all of the
following properties:

• reduced: ∀s, s′ ∈ S ⇒ row(s) ̸≈ row(s′)
• closed: ∀r ∈ R,∃s ∈ S : row(s) ≈ row(r).
• consistent: for all compatible pairs of rows labeled
γr, γ

′
r ∈ S∪R, the logical-timed input i ∈ ψ(γr)∩ψ(γ′r),

and output o ∈ ΣO , we have row(γr · i · (, o)) ≈
row(γ′r · i · (, o)) if γr · i · (, o), γ′r · i · (, o) ∈ S ∪R.

• evidence-closed: ∀s · e ∈ S ·E : γr ∈ S ∪R, i ∈ ψ(γr),
where γr · i≪ π(Π(s) · e) is the longest prefix such that
γr ∈ S.

We apply repeatedly following operations to get a prepared
table T . We move r ∈ R to S and update ψ(r) = ψ(r) ∪
{(i, 0)|i ∈ ΣI} as noted in [7], if r breaks the closedness.
Notably, we add column i ∈ ψ(r) to E if row(r)(i) makes
row(r) different from all of the rows in S. As for consistent,
if there exist γr, γr ∈ S ∪ R such that row(γr) ≈ row(γ′r)
but row(γr · i · (, o)) ̸≈ row(γ′r · i · (, o)), we add suffix
i · o · e to E, where e ∈ E such that f(γr · i · (, o) · e) ̸≈
f(γ′r ·i·(, o)·e). To make table T evidence-closed, we add all
the prefixes γr ·i ∈ prefixes(π(Π(s) ·e)) such that γr ∈ S to
the table T , i.e. add γr to R and update ψ(γr) = ψ(γr)∪{i}.

However, compatibility is not transitive in general, that is,
a row in R may be compatible with multiple rows in S. Thus
we create compatible classes for partitioning R as noted in [5],
where every trace γr ∈ S ∪ R in compatible class cg(s) are
compatible with its representative s ∈ S. We use rep(γr) = s
to denote s is the representative of trace γr, which has the
largest rank among S, where rank is before-defined.

2) Hypothesis generation: We build a hypothesis H from
a prepared timed observation table T , where table T is used
to construct an intermediary automaton M, then M is
transformed to hypothesis H via partition function [7].

We define an intermediary automata is a tuple M =
(QM,ΣI

M,ΣO
M, q0M, probM,LM), where QM is a finite set

of states, ΣI
M ⊂ ΣI is a finite set of logical-timed inputs,

ΣO
M is a finite set of outputs, q0M ∈ QM is the initial state,

probM ⊆ QM × ΣI
M × Dist(B × QM) is the transition

relations, and LM : QM 7→ ΣO
M is a labelling function.

We build an intermediary automata M = (QM,ΣI
M,ΣO ∪

{undef}, q0M, probM,LM) from a prepared timed observa-
tion table T = (ΣI , S,R,E, f, ψ), as follows:

• QM = {⟨last(s), row(s)⟩|s ∈ S} ∪ {qud},
– for q = ⟨o, row(s)⟩ ∈ QM \ {qud} : LM(q) = o
– for qud : LM(qud) = undef

• q0M = ⟨L(q0), row(L(q0))⟩
• ΣI

M = {i ∈ ψ(γr)|γr ∈ S ∪R}
• for γr ∈ S ∪ R, (i, µ) ∈ ψ(γr): let s = rep(γr), q =
⟨last(s), row(s)⟩, n =

∑
o∈ΣO freq(Π(γr) · (i, µ))(o),

and repf(q, (i, µ)) = λ where λ ∈ {Π(γ′r) · (i, µ′)|γ′r ∈
cg(s), (i, µ′) ∈ ψ(γ′r) : ¬diff(Π(γr) · (i, µ),Π(γ′r) ·
(i, µ′))} with the largest rank.

1) if ¬cq(Π(γr) · (i, µ)) and ∄γ′r ∈ cg(s) : cq(Π(γ′r) ·
(i, µ)), probM = probM ∪{(q, (i, µ), ηud)}, where
ηud(T, qud) = 1

2) otherwise if cq(Π(γr) ·(i, µ)) and n > 0, probM =
probM∪{(q, (i, µ), η)}, where for all (b, o) ∈ ΣO :
q′ = ⟨o, row(rep(γr · (i, µ)(b, o)))⟩ and
η(b, q′) = freq(repf(q,(i,µ)))(b,o)∑

o∈ΣO freq(repf(q,(i,µ)))(o)

• probM = probM ∪ {(qud, (i, 0), ηud)|i ∈ ΣI} if qud is
reachable

We create a state q for every s ∈ S, and transitions
from state q lead to the representatives of the extensions γr ·
(i, µ)(b, o) for each γr ∈ cg(s), where transition probabilities
are estimated by the representative frequencies repf(q, (i, µ)).
The representative frequencies are used to refer the compatible
frequencies to the same distributions. If we have not sufficient
information for a logical-timed input, we create a transition to
a sink state qud.

We receive a OPTA H = (ΣI ,ΣO, QH, q
0
H, x, probH,LH)

from an intermediary automata M = (QM,ΣI
M,ΣO ∪

{undef}, q0M, probM,LM) as noted in [7], where QH, q0H
and LH is the same withM, and probH are transformed from
probM one by one: for a group of probabilistic transitions with
the same source q ∈ QH and input i ∈ ΣI , their guards are
a partition of R≥0 such that each guard g includes the clock
valuation µ recorded in the corresponding transition of M,
and we denote as Iq,i(µ′) = µ with µ′ |= g.

3) Learning algorithm: Algorithm 1 implements the learn-
ing algorithm for OPTAs via sampling. First, it initializes
a timed observation table T = (S,R,E, f, ψ) with S =
{L(q0)} where L(q0) is the initial output of SUL, E =
{(i, 0)|i ∈ ΣI}, and ψ(L(q0)) = {(i, 0)|i ∈ ΣI}. Then,
it performs the main loop until equivalent = yes which
represents the final equivalence query terminates without find-
ing a counterexample. The loop starts with a refine query
rq with the set of incomplete logical-timed test sequences
of table T , i.e. get incomplete seq(T) = {Π(γr) · e|γr ∈

S ∪ R, e ∈ E ∪ ψ(γr) : ¬cq(Π(γr) · e)}, then updates the
extensions, where Lt(S ∪ R) = {γr · io|γr ∈ S ∪ R, i ∈
ψ(γr),o ∈ ΣO : freq(Π(γr) · i)(o) > 0}, and fills table
based on multiset S. We adjust table T to be prepared before
hypothesis generation. After building a hypothesis H, we
determine whether to perform equivalence queries depending
on the uncertainty of table T , which is discussed in detail
later. We have equivalent = no if not. Otherwise if finding
a counterexample cex, we process cex with normalizing [7]
and adding all the prefixes of cex to table T , i.e. ∀γr · i ∈
prefixes(cex) : R = R∪ {γr} ∧ψ(γr) = ψ(γr)∪ {i}. Once
the loop stops, we output the hypothesis.

Uncertainties in time observation tables mainly arise from
the compatibility checks. Put differently, for r ∈ R, the state
reached by r may be ambiguous if row(r) is compatible with
multiple rows s ∈ S. We quantify the uncertainty as the
ratio runamb of unambiguous rows and all of the rows, where
unambiguous rows are compatible with a row in S. Besides,
there exist unknown distributions in hypothesis H if location
qud is reachable. Thus, to decrease the amount of unnecessary
equivalence queries, we perform equivalence queries once
location qud is unreachable and runamb ≥ munamb.

Algorithm 1 Learning of OPTAs by sampling

Input: timed observation table T = (ΣI , S,R,E, f, ψ),
teacher capable of answering freq, π, cq, rq and eq

Output: final hypothesis H
1: T ← initialized(T)
2: k ← 0
3: repeat
4: k ← k + 1
5: rare← get incomplete seq(T)
6: S ← S ⊎ rq(rare)
7: R← R ∪ Lt(S ∪R)
8: for all γr ∈ S ∪R, e ∈ E do
9: f(γr · e)← freq(Π(γr) · e)

10: while T is not prepared do
11: T ← make prepared(T)
12: H ← build hypothesis(T)
13: if enable eq(T ,H) then
14: equivalent, cex← eq(H, k, ϵ, δ)
15: if cex ̸= none then
16: T ← process cex(cex, T)
17: else
18: equivalent← no

19: until equivalent = yes
20: return H

D. Teacher

We describe how to answer the four queries provided by the
teacher in the following. We first introduce the SUL operations
providing for the teacher, which include: (1) reset: reset the
SUL and return L(q0); (2) step: perform a delay-timed input,
change the current state according to the distribution of the

enabled transition, and return (b,L(q′)), where (b, q′) is the
selected outcome. Here we assume that the SUL is smart to
answer the reset information in transitions.

1) Frequency queries: For a logical-timed test sequence λ,
let λ = γ · e where γ is the longest logical-timed trace with
∃γr ∈ S : Π(γr) = γ. The frequency query for λ returns pair
(π(λ), freq(λ)), where π(λ) = γr · er in which er sets all of
the reset indicators of e to T, and freq(λ)(o) = S(γr · er ·o)
for all o ∈ ΣO.

2) Complete queries: We have S(γr) ≤ S(γ′r) for all γ′r ∈
prefixes(γr), since we add all of the prefixes of samples
to S. For a logical-timed test sequence λ, we assume that
cq(λ) = T if

∑
o∈ΣO S(π(λ) ·o) ≥ nc, and we have already

seen all of the outputs after λ. Thus the extensions of λ · o
are complete if S(π(λ) · (, o)) = 0. Besides, for γr ∈ S, we
have the extensions of Π(γr) · (i, µ) are also complete if µ
less than the clock valuation of the state reached by γr.

3) Refine queries: The procedure of refine queries we use
is similar with [5], in which a prefix tree is the compact repre-
sentations of the set rare consisting of sequences requiring to
refine the knowledge, and new sampled SUL traces generated
by directed random walks on the prefix tree. But the prefix tree
we use is a tree with edges labeled logical-timed inputs, and
nodes labeled outputs. Notably, to represent as a prefix tree, the
sequences in rare are extended to logical-timed traces by add
a special output leaf /∈ ΣO at the end of every sequence. To
get the delay-time inputs used to operation step, we record the
current clock valuation during sampling. We receive nresam
reset-logical-timed traces after performing a refine query.

4) Equivalence queries: Recall that the framework of PAC
learning for OPTAs. We face the difficulty that a delay-
timed test sequences ω · i ∈ (ΣO ×ΣI)∗ sampled randomly
can not directly determine P (ω · i) ̸= H(ω · i). Thus, we
apply two strategies to find counterexamples as in Algorithm
2. We first compute the number of samples rk. Then we
sample delay-timed traces from a distribution D, and obtain
the corresponding reset-delay-timed traces on the SUL by
testing. The sampling mechanism is discussed in detail later.
We return unreachable samples on H as counterexamples,
or check for consistency between multiset S and hypothesis
H respect to these samples according to Theorem 3. To
not produce spurious results for diff , we perform refine
queries for gaining more information about samples, until
all of the distributions of samples are unambiguous, where
unamb(tests) = |{λ∈tests|cq(λ)}|

|tests| . Under the unambiguous
setting, we have H is PAC(ϵ, δ)-correct if without finding a
counterexample.

Theorem 3. Let C ⊂ {ω ·(i, t) ∈ (ΣO×ΣI)∗|P (ω ·(i, t) ̸=⊥
}, and multiset S has n samples of C. Given αn such that∑

n αnn <∞, then with probability one, ∀ω·(i, t) ∈ C : P (ω·
(i, t)) ̸= H(ω · (i, t))⇔ diff(γ · (i, µ), repf(q, (i, Iq,i(µ)))),
where γ = Γ(ω), q ∈ QH : (q0H, ν0)

ω−→ (q, ν), and µ = ν+ t,
except for finitely many n.

The purpose of a sample mechanism is to sample the SUL
traces different from the hypothesis H. Without Hoeffding

Algorithm 2 Equivalence queries

Input: hypothesis H, the count k of the current equivalence
query, error ϵ and confidence δ

Output: Boolean equivalent identifying whether H passes
all tests, and counterexample cex

1: tests← {}
2: rk ← 1

ϵ (ln
1
δ + ln 2(k + 1))

3: for counter ← 1 to rk do
4: ω ← sample(D)
5: ωr ← test SUL(ω)
6: γr · io← Γ(ωr)
7: if ∄qH ∈ QH : (q0H, ν0)

ω−→ (qH, ν) then
8: equivalent← F, cex← γr · i
9: return equivalent, cex

10: tests← tests ∪ {Π(γr) · i}
11: repeat
12: S ← S ⊎ rq(tests)
13: for γ · (i, µ) in tests do
14: ω ← ω′ with γ = Γ(ω′)
15: q ← qH with (q0H, ν0)

ω−→ (qH, ν)
16: if diff(γ · (i, µ), repf(q, (i, Iq,i(µ)))) then
17: equivalent← F, cex← π(γ) · (i, µ)
18: return equivalent, ctx

19: until unamb(tests) = 1
20: return yes, none

checking, unreachable sampled traces on H diverge the SUL
and the hypothesis. The sampling distribution D is that we
randomly select delay-timed input (i, t) ∈ ΣI , test iteratively
the SUL to observe output, and stop with probability pstop.
Besides, we choose some traces to extend randomly. More
techniques used to improving sampling efficiency, can be
found in [8].

Theorem 4. Algorithm 1 terminates and outputs a model
that has an average error less than or equal ϵ with the the
probability of at least 1− δ, except for finitely many n.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In our work, we want to learn a model close to the
true model, since equivalence can hardly be achieved. Our
experiments aim to measure the distance between the learned
models and the true models. More concretely, 2000 test cases
generated from true models are calculated first whether exe-
cutable on the learned models. If executable, we calculate the
Kullback-Leibler Divergence (KLD) of the output distributions
produced by both models, and record executable test cases
are passing. And we compare the probability of the temporal
properties for the true model and the learned model, if the true
model can perform probabilistic model check by Prism [12].
We implemented our algorithm in JAVA, and performed the
experiments on a PC with 16 GB RAM, an Intel Core i7-9750
CPU with 2.6 GHz and running Windows 10.

TABLE I: Results for learning the CSMA/CD protocol

true model learned model
traces - 25075434
time [s] - 1104.578
rpass - 1.0
KLD - 0.000006

Pmin(F
≤1800(done)) 0.5833 0.5829

Pmin(F
≤2200(done)) 0.9663 0.9663

TABLE II: Results on random examples

Case ID ϵ, δ rpass KLD # trace tmean

4 4 3 10 0.01 0.9997 0.2836 2196039 102.047
4 4 3 20 0.01 0.9996 0.3131 2305877 134.190
4 4 3 30 0.01 0.9988 0.1421 2401363 184.100
6 2 3 20 0.01 0.9959 0.1462 1978498 85.787
6 2 4 20 0.01 0.9951 0.1303 1940146 89.791
6 2 5 20 0.01 0.9974 0.1625 1848045 90.774
6 3 4 20 0.01 0.9978 0.0734 2197287 120.542
6 4 4 20 0.01 0.9999 0.0588 4095301 493.074
10 2 7 40 0.1 0.9000 0.0718 1330212 46.045
10 2 7 40 0.01 0.9956 0.0458 3363402 176.929
10 2 7 40 0.001 0.9991 0.0433 1587538 9277.404

A. CSMA/CD Protocol

We consider to learn the sender in IEEE 802.3 CSMA/CD
protocol, which can be specified and verified formally within
the framework of probabilistic timed automata [13]. In our
setting, the corresponding OPTA P to be learned is configured
to have |Q| = 8 locations 1 with two WAIT states moved with
probability 0.5, |ΣI | = 5, and the propagation delay is 26µs,
the time to send a data packet is 808µs. For the evaluation
of the CSMA/CD protocol, we perform probabilistic model
checking for the minimum probability of reaching the goal
done within a varying number of time. We set the sampling
parameters as nresam = 100, pstop = 0.5. Let munamb =
0.999 for the enable condition of equivalence queries. As the
parameters of PAC, we set the error parameter ϵ = 0.001 and
the confident parameter delta = 0.001. We set α = 0.001 for
the compatibility check, and the complete threshold nc = 50.

Table I shows the measurement results for learning the
CSMA/CD protocol. The passing ratio achieves 100%, and the
absolute difference to the true probabilities is at most 0.0004
in probabilistic model checking.

B. Random experiments

We randomly generated 90 OPTAs in nine groups, with each
group labelled n m c k, having different numbers of loca-
tions, size of inputs, size of outputs, and maximum constant
appearing in clock constraints. We set the sampling parameters
as nresam = 200, pstop = 0.5. munamb = 0.999 for the
enable condition of equivalence queries, α = 0.01 for the
compatibility check, and the complete threshold nc = 50. As
shown in Table II, the passing ratios at least 99%, and the sum
of KLD for the passing test cases are at most 0.5 in all cases.
While ϵ and δ are smaller, the passing rate increases.

1To ensure the completeness of P , we complete it as noted in [7], i.e. any
unspecified behavior in the original model is regarded as transitioning to a
sink location

V. CONCLUSION

In this paper, we present a learning algorithm for one-clock
probabilistic timed automata based on the framework of L∗

via sampling. The traces sampled from the SUL are used to
infer the structure, estimate transition probabilities, and check
the compatibility between the target model and the hypothesis
generated by learner. We apply the PAC learning framework to
our learning algorithm for quantifying the learned model under
the black-box setting. We evaluate our learning algorithm on
randomly generated examples and the sender of CSMA/CD
protocol. Future works include combines our learning al-
gorithm with learning-based verification techniques for case
studies on stochastic systems.

REFERENCES

[1] D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and computation, vol. 75, no. 2, pp. 87–106, 1987.

[2] M. Shahbaz and R. Groz, “Inferring mealy machines,” in FM 2009:
Formal Methods: Second World Congress, Eindhoven, The Netherlands,
November 2-6, 2009. Proceedings 2. Springer, 2009, pp. 207–222.

[3] G. Argyros and L. D’Antoni, “The learnability of symbolic automata,” in
Computer Aided Verification: 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part I 30. Springer, 2018, pp.
427–445.

[4] S. Drews and L. D’Antoni, “Learning symbolic automata,” in Tools
and Algorithms for the Construction and Analysis of Systems: 23rd
International Conference, TACAS 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I. Springer,
2017, pp. 173–189.

[5] M. Tappler, B. K. Aichernig, G. Bacci, M. Eichlseder, and K. G. Larsen,
“L*-based learning of markov decision processes,” in Formal Methods–
The Next 30 Years: Third World Congress, FM 2019, Porto, Portugal,
October 7–11, 2019, Proceedings. Springer, 2019, pp. 651–669.

[6] M. Tappler, E. Muškardin, B. K. Aichernig, and I. Pill, “Active model
learning of stochastic reactive systems,” in Software Engineering and
Formal Methods: 19th International Conference, SEFM 2021, Virtual
Event, December 6–10, 2021, Proceedings. Springer, 2021, pp. 481–
500.

[7] J. An, M. Chen, B. Zhan, N. Zhan, and M. Zhang, “Learning one-
clock timed automata,” in Tools and Algorithms for the Construction and
Analysis of Systems: 26th International Conference, TACAS 2020, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2020, Dublin, Ireland, April 25–30, 2020, Proceedings,
Part I. Springer, 2020, pp. 444–462.

[8] W. Shen, J. An, B. Zhan, M. Zhang, B. Xue, and N. Zhan, “Pac
learning of deterministic one-clock timed automata,” in Formal Methods
and Software Engineering: 22nd International Conference on Formal
Engineering Methods, ICFEM 2020, Singapore, Singapore, March 1–3,
2021, Proceedings. Springer, 2020, pp. 129–146.

[9] H. Jensen, “Model checking probabilistic real time systems,” in Proc.
7th Nordic Workshop on Programming Theory. Citeseer, 1996, pp.
247–261.

[10] R. Alur and D. Dill, “The theory of timed automata,” in Real-Time:
Theory in Practice: REX Workshop Mook, The Netherlands, June 3–7,
1991 Proceedings. Springer, 1992, pp. 45–73.

[11] R. C. Carrasco and J. Oncina, “Learning deterministic regular gram-
mars from stochastic samples in polynomial time,” RAIRO-Theoretical
Informatics and Applications, vol. 33, no. 1, pp. 1–19, 1999.

[12] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification of
probabilistic real-time systems,” in Computer Aided Verification: 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,
2011. Proceedings 23. Springer, 2011, pp. 585–591.

[13] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang, “Symbolic
model checking for probabilistic timed automata,” Information and
Computation, vol. 205, no. 7, pp. 1027–1077, 2007.

