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Abstract

Monitoring the functionality of systems during opera-
tion is vital for detecting faults and preventing their conse-
quences. In autonomous driving, monitoring is even more
critical because of hardly being able to verify all imple-
mented functionality. Today, systems comprise many inter-
acting components making centralized monitoring less fea-
sible and hard to handle. Hence, we suggest a distributed
but connected monitoring system that reflects the system’s
conceptual structure. In this paper, we outline the foun-
dations of a monitoring system, present some applications
and show how we use concepts like the operational design
domain and requirements for obtaining the required mon-
itoring knowledge in the application area of autonomous
driving.

1 Introduction

Autonomous driving has gained much attention in the
past years. Driving factors are reduced costs, the open-
ing of new opportunities for services, and the reduction
of fatalities, among others. When focusing on decreas-
ing fatalities in driving, we have the underlying assump-
tion that autonomous driving is safe or at least safer than
human driving. Checking that a concrete implementa-
tion of autonomous driving reaches this goal requires so-
phisticated verification and validation before deployment.
Many researchers have been working on this topic, includ-
ing Koopman and Wagner [6], Wotawa [11], Schuldt and
colleagues [9], or Wotawa and colleagues [13].

The underlying challenge is to find a way of justifying
the quality of verification and validation. For this purpose,
Kalra and Paddock [5] stated that an autonomous vehicle
has to operate for 275 million miles for verification pur-

*Authors are listed in alphabetical order.
†DOI reference number: 10.18293/SEKE2023-144

poses. In their calculation, the authors took the fatality rate
of driving in the USA and assumed that autonomous ve-
hicles should be far safer. Unfortunately, testing for 275
million miles is not feasible in practice. Therefore, other
researchers have proposed using ontologies for testing au-
tomated, autonomous vehicles, e.g., [14, 2, 7]. These con-
tributions focus on testing potential unsafe interactions be-
tween the autonomous car and its environment. Note that
there is a massive number of potential interactions between
a car and its environment, indicating the need for additional
means for verifying the behavior of autonomous vehicles.

One way to reduce the search space for verification and
validation is to restrict the use domain. And indeed future
electric connected and automated (ECA) vehicles will be
deployed in specific targeted operational design domains
(ODD) across Europe [4], [8] able to safely and robust oper-
ate in the target ODD making use of their embedded behav-
ior competences [10]. The recently published and continu-
ously amended EU ADS regulation [1] outlines some gen-
eral safety regulations L4+ vehicles to be deployed within
Europe have to comply with. Especially the outlined pil-
lar III, referred to as in-service monitoring, highlights the
importance of monitoring activities during the operation of
future ECA vehicles after they enter the market and get de-
ployed on public roads. In-service monitoring and report-
ing targets to learn from in-service data as a central compo-
nent to the safety potential of future ECA vehicles enabling
key objectives referred to safety confirmation, scenario gen-
eration, and safety recommendation representing a major
source of general safety requirements of future ECA vehi-
cles.

Figure 1 outlines the general architecture of a monitor-
ing system. First, the monitoring system receives internal
values from the system under supervision using a monitor-
ing interface. The internal values comprise sensor inputs,
internal states, error signals, and actuator commands over
time. Next, these values are checked for consistency with
expectations using a knowledge base. In case of inconsis-
tencies, the monitoring system raises an error or warning,
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Figure 1: The proposed monitoring architecture.

depending on the severity, which the mitigation mechanism
uses for suggesting corrective or compensating actions. Fi-
nally, mitigation transfers these actions to the system using
the mitigation interface. It is worth stating that the monitor-
ing system is independent of the system under supervision
and only communicates via the proposed interfaces. The
system itself communicates with its environment using ac-
tuators and sensors.

Because of the hierarchical nature of systems comprising
subsystems down to basic components (at least from a con-
ceptual point of view), Lewitschnig and Wotawa [12] intro-
duced a hierarchical monitoring concept. In this paper, we
extend this concept to a general monitoring paradigm com-
prising separate monitoring nodes that are interconnected
and which belong to parts of a system. Each monitoring
node checks the behavior of its corresponding parts, also
considering results from other monitoring nodes. The moni-
toring nodes perform the checks utilizing formalized knowl-
edge of the expected behavior. In case of severe violations,
we assume the existence of mitigation actions like safety
maneuvers. However, we do not discuss how mitigation will
be carried out in this paper and leave this for future research.
In addition, to knowledge-based monitoring, we further dis-
cuss how to obtain knowledge by considering ODDs and
hierarchically structured monitoring systems. Finally, we
illustrate the process using examples from the automotive
industry.

We structure this article as follows. We start motivat-
ing research in knowledge-based monitoring using the case
of an accident of a Tesla car driving in autonomous mode
(Sect. 2). Afterward, Section 3 introduces the foundations
of monitoring and its specialization into hierarchical moni-
toring devices. Then, in Section 4, we introduce a process
for obtaining the required knowledge using ODD and illus-
trate its use. Finally, we conclude the paper.

2 Motivation

In this section, we motivate the need for monitoring au-
tonomous driving, considering different views. First, let us
discuss an accident of a Tesla car driving in autonomous
mode on a highway in Taiwan in 2020, where we depict the
most important parts of the accident’s chronology in Fig-
ure 2. The Tesla car was not reducing speed until brak-
ing came too late. As a result, the Tesla crashed into an
overturned truck that blocked the two left lanes of the high-
way. It seems that Tesla’s vision systems did not perceive
the truck. Hence, there might be an issue with the vision
system that an autonomous car can hardly identify without
perception redundancies. However, even worst, the Tesla
was not even reacting to the truck driver on the highway,
who warned drivers. Such behavior does not belong to any
road traffic regulation.

The Convention on Road Traffic emerged from the
United Nations Conference on Road and Motor Transport
in September 1949 in Geneva1. In the document Article,
7 and 10 are of particular interest to us. Article 7 states:
“Every driver, pedestrian or other road user shall conduct
himself in such a way as not to endanger or obstruct traf-
fic; he shall avoid all behaviour that might cause damage to
persons, or public or private property.”. Especially the last
part is of interest to us when considering the Tesla accident,
where the car is passing by the truck driver at high speed,
not considering potential damage to persons. This behavior
also conflicts with Article 10: “The driver of a vehicle shall
at all times have its speed under control and shall drive in
a reasonable and prudent manner. He shall slow down or
stop whenever circumstances so require, and particularly
when visibility is not good.”. Of course, in the mentioned
case, the Tesla driver is responsible for violating the traffic
convention. However, the car in autonomous driving mode
was not implementing the regulations too.

We can derive from the Tesla accident example: There is
a need for thoroughly verifying the vision system, consid-
ering different and even unexpected scenarios. In order to
detect faulty behavior of an autonomous car while driving,
it is essential to have redundancies in perception. Other-
wise, we are not able to detect perception faults. In addi-
tion, we need to formalize traffic rules and check them dur-
ing operation. For example, in the Tesla accident, the con-
trol system might have ignored the truck driver due to other
regulations preventing persons from walking on highways.
An independent monitoring system relying on formalized
traffic regulations would detect such a fault and be able to
initiate countermeasures like braking or changing lanes. In
any case, a monitoring system utilizes perceived informa-

1See UN Treaties Chapter XI.B. TRANSPORT AND COMMUNI-
CATIONS https://treaties.un.org/doc/Treaties/1952/
03/19520326%2003-36%20PM/Ch_XI_B_1_2_3.pdf
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lane to warn other drivers.

The Tesla car is not reducing speed or 
changing lanes. The driver of the Tesla 
is not taking any actions to overrule 
automated driving. 

The Tesla is continuing driving. About 4 
seconds later, the Tesla crashed into the 
Truck. The Tesla driver started braking 
too late. 

1 2 3

Figure 2: Chronology of the 2020 Tesla crash in Taiwan where a Tesla in autonomous driving mode crashed into an over-
thrown truck on the highway. The Tesla driver was overruling autonomous driving too late to prevent the crash. Pictures are
taken from a published YouTube video https://youtu.be/LfmAG4dk-rU

tion and checks conformance with formalized regulations
and rules.

In addition, a monitoring system has to deal with in-
formation coming from various parts of the system under
observation. For example, there might be a fault reported
in the battery subsystem of an autonomous and electrified
vehicle that might limit the operational range of the vehi-
cle. However, when knowing that the vehicle can complete
the particular journey having enough electricity to arrive at
a workshop afterward safely, the reported fault can be ig-
nored during the journey. In this example, the conclusion
requires information from different parts located at differ-
ent levels of a conceptual hierarchy. For example, the bat-
tery belongs to the power train, and knowledge regarding
the journey comes from a planning module that uses the
power train component to move the car from its current lo-
cation to its destination. Hence, it might be appropriate to
consider conceptual hierarchies when monitoring systems.
Furthermore, utilizing conceptual hierarchies during moni-
toring allows for specifying the knowledge for checking the
current status at each level of the hierarchy. In this way,
developers of monitoring functionalities focus only on one
hierarchy and do not need to know all details of parts. The
following sections will outline more details regarding this
monitoring design process.

3 Monitoring Foundations

In the following, we outline the foundations be-
hind knowledge-based monitoring. We extend previous
work [12] to handle monitoring systems of all kinds of

structures, not just hierarchical ones, i.e., tree-structured
monitoring systems.

Definition 1 (Monitoring System) A tuple (COMP,
CONN) is a monitoring system where COMP is a set of
components, and CONN is a set of connections between
components, i.e., a set of pairs from COMP × COMP .

Because of simplicity, we further introduce the functions
for obtaining the predecessor and successor of a component
C ∈ COMP , i.e., pred(C) = {C ′|(C ′, C) ∈ CONN},
and succ(C) = {C ′|(C,C ′) ∈ CONN} respectively, and
the definition of basic nodes, i.e., nodes that do not have
successors, basic = {C|(C ′, C) ∈ CONN} ∧ succ(C) =
∅.

What we need to add is the monitoring and checking of
the behavior of a system. For this purpose, we introduce
three additional functions we must define for each moni-
toring system component. We assume, without restricting
generality, to use first-order logic (FOL) for representing
the information delivered by these functions.
Output: The out : COMP 7→ FOL function delivers a set
of predicates to hold when executing the given component.
Constraints: The constr : COMP 7→ FOL function de-
livers first-order logic sentences that must hold in the con-
text of a given component.
Behavior: The behav : COMP 7→ FOL function returns a
set of first-order logic sentences that are used with the inputs
of a component (i.e., the outputs of the successor nodes) to
derive the outputs.

We use these functions to express the behavior of the sys-
tem. For each component Ci, we can derive its output from

https://youtu.be/LfmAG4dk-rU


Algorithm 1 monitoring(O, (COMP,CONN))

Input: A set of observations O obtained from the system
under the supervision and a monitoring system.
Output: > if all constraints are fulfilled, and ⊥ other-
wise

1: Convert each observation o ∈ O to its corresponding
predicate p and assign it to a corresponding monitoring
system component C ∈ COMP .

2: while There is no change in out(C) of any C ∈
COMP do

3: for all C ∈ COMP do
4: for all Fact P that can be derived from behav(C)∪

(
⋃

C′∈pred(C) out(C
′)) do

5: Add P to out(C).
6: end for
7: if constr(C) ∪ out(C) 6|= ⊥ then
8: Add violation() to out(C)
9: end if

10: end for
11: end while
12: if ∃C ∈ COMP : violation() ∈ out(C) then
13: return ⊥
14: else
15: return >
16: end if

the inputs considering the defined behavior of the compo-
nent. Moreover, if each component Ci works correctly, all
constraints must be fulfilled considering given inputs and
computed output. We use both rules in the monitoring al-
gorithm (Algorithm 1), called every predefined time step
t. In the first line of the algorithm, there is a mapping of
current observations at time t to corresponding predicates
of the monitoring system components. Afterward, we ap-
ply derivations until no new facts can be derived anymore.
Next, the algorithm derives new facts in lines 4–6, where
we use the inputs, i.e., the outputs of predecessors of the
current component, and the given behavior of the compo-
nent to derive new facts P . Afterward, the algorithm checks
the fulfillment of given constraints using the current facts in
Line 7.

Algorithm monitoring terminates because, in each step,
it adds new facts to out(C) for the current component C.
Adding facts is done until no new facts can be derived. Be-
cause we consider only a finite number of facts, the algo-
rithm must terminate. It is also worth mentioning that the
algorithm transfers all facts of any node to its successor. If
this is not wanted, we need to add a filtering rule. Further
note that the algorithm generalizes a previous one [12].

We illustrate the monitoring foundations using a small
example where we formalize a monitoring system that

would have at least indicated a wrong driving behavior for
the Tesla accident from Figure 2. We assume three mon-
itoring components: Cgps for gaining information about
speed and the location, i.e., whether the car is on a high-
way or not accordingly to given maps, Cvision for indicat-
ing other vehicles or persons, and Ccar for the overall Tesla
car. Obviously, Cgps and Cvision are predecessors of Ccar.
Hence, we represent the monitoring system using the tuple
({Cgps, Cvision, Ccar}, {(Cgps, Ccar), (Cvision, Ccar}).

For all components, we do not add behavior in this ex-
ample. For Cgps, we assume that predicates onHighway(),
speed(v), and braking() indicate the operation on the high-
way, the current speed v and information regarding braking,
respectively. Note that the predicates can also be available
in their negated form using the operator ¬. For Cvision, we
have a predicate personOnLane() indicate whether a per-
son is on the driving lane within reach. For Ccar, we do not
introduce other predicates. Furthermore, for Cgps, we add a
constraint ¬(onHighway()∧ speed(v)∧ v > 130) stating
that overspeeding on the highway is not allowed consider-
ing the speed limit in Austria, which is 130km/h. For com-
ponent Ccar, we assume that we have to brake once a per-
son is on the lane within reach, i.e., ¬(personOnLane() ∧
¬braking()).

Let us now apply the monitoring system to the Tesla
accident, considering the third time step. In this case
onHighway(), personOnLane(), and ¬braking() must
be true. We assume that the speed is less than 130km/h,
e.g., 100km/h, leading to the predicate speed(100). After
mapping all observations to predicates, we obtain the fol-
lowing set of predicates for each component:

C out(C)
Cgps onHighway(), speed(100), ¬braking()
Cvision personOnLane()
Ccar

After applying algorithm monitoring, all predicates are
also available in Ccar because of lines 4–6.

C out(C)
Cgps onHighway(), speed(100), ¬braking()
Cvision personOnLane()
Ccar onHighway(), speed(100), ¬braking()

personOnLane()

Obviously, the observations personOnLane() and
¬braking() violate the constraint ¬(personOnLane() ∧
¬braking()) of Ccar. When considering that mitigation
would stop the car because of the constraint violation, the
accident would have been prevented.



4 Autonomous driving use case

To maximize the learning from in-service data, we de-
veloped a hierarchical monitoring device concept [12] in-
cluding 4 defined ECA vehicle layers (starting from sub-
components, via components, through sub-systems up to
the system, the entire ECA vehicle itself). The main pur-
pose of the hierarchical monitoring device approach is to
monitor the health status of the individual elements across
the 4 specified layers to guarantee the safe operation of the
vehicle within its specified ODD. The nominal behavior of
the 4 specified layers is directly specified via the system
requirements and specification of the entire ECA vehicle.
Compare requirements flow is highlighted in blue in Fig-
ure 3. The ECA vehicle requirements originate from the
target ODD and related behavior competencies needed to
safely operate within the target ODD completed by certi-
fication, homologation, legislation, and standardization of
relevant aspects. Out of those 4 requirements sources, the
system requirements are specified and pushed down along
the 4 ECA vehicle layers (ECS value chain).

Contrary to the requirements flow (down-down from the
system level), the health status flow moves bottom-up, see
again Figure 3. Each layer determines the health status of
its included elements and communicates them up to the next
layer until the system layer (ECA vehicle) is reached.

All monitoring activities within the specific layers are
operating according to the same receive-monitor-transmit
principle. The receiving element collects all information
about the individual health status of the current and previ-
ous layer to have a complete database ready which forms
the basis for the subsequent monitoring stage. In detail, the
monitoring element classifies the health status of the current
layer based on the collected data of the receiving element
analyzing the current residual risk [3] for continuation. In
case some misbehaviors or failures are observed with a cer-
tain layer the following strategy will be applied:

• Handle, correct, and mitigate all occurring failures and
misbehavior if possible within the current layer mak-
ing use of e.g. redundant elements, etc.

• In case a correction is not possible within the current
layer, classify the health status (optimal, acceptable,
critical) based on the available information to be trans-
mitted to the next layer

Finally, the transmitting element transfers the classified
health status of the current layer to the subsequent one. In
case the system layer is not able to correct eventually occur-
ring faults and misbehavior directly, the ECA vehicle has to
reduce its specified manageable target ODD and/or behav-
ior competencies to further guarantee a safe operation and
avoid unacceptable residual risks. In other words, the ma-
jor goal behind that approach is to continue the operation as

long as the residual risk in reduced ODD and behavior com-
petences is acceptable again as a safe-stop is not always the
best option in case of faults and observed misbehavior. The
reduction of the target ODD or behavior competences can
be applied several times until the mandatory common basis
gets lost, e.g. on the highway the ECA vehicle is just able to
drive 30km/h anymore. This operation is against the traffic
law which makes a continuation impossible. In that aspect,
a so-called minimum risk maneuver has to be trigger that
safely terminates the operation of the ECA vehicle e.g. on
the emergency lane of the highway.

5 Conclusions

This paper discussed the importance of monitoring fo-
cusing on autonomous driving and introduced a general
monitoring framework comprising interconnected monitor-
ing nodes. Besides the formal foundations, we outline its
use considering a small real-world example. In addition, we
discuss how monitoring knowledge can be obtained using
the operational design domains and how to handle faults in
the monitoring framework. Future work will include imple-
menting the proposed approach in an autonomous driving
demonstrator and conceiving an experimental evaluation.
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