
LTLf Satisfiability Checking via Formula Progression

Tong Niu1, Yicong Xu1, Shengping Xiao1, Lili Xiao2, Yanhong Huang1, Jianwen Li1

1. East China Normal University
2. Donghua University

Abstract

Linear Temporal Logic over finite traces, or LTLf , is a
popular logic to describe specifications with finite behav-
iors in AI scenarios such as motion planning. Satisfiabil-
ity is one of the fundamental problems of LTLf and exten-
sive studies have been conducted to speed up the process
to check whether a given LTLf formula is satisfiable. This
paper presents a new approach, namely LSCFP, to solve
the problem of LTLf satisfiability checking by leveraging
the formula progression technique. Compared to previous
work, LSCFP utilizes formula progression to gather more
information propagated along with the search path such
that it can find satisfiable models more quickly if the input
formula is satisfiable. A comprehensive experimental evalu-
ation has been conducted to show the efficiency of LSCFP,
and the results suggest that LSCFP is able to gain at least
15% performance improvement on checking satisfiable for-
mulas when compared to the state-of-the-art LTLf satisfia-
bility checker aaltaf.

1. Introduction

Linear Temporal Logic over Finite Traces, abbreviated
as LTLf , is a kind of logic that has emerged as a popu-
lar specification language in the AI domain to formalize
and validate system behaviors [8]. Unlike standard Lin-
ear Temporal Logic (LTL) which is interpreted over in-
finite traces [16], LTLf is interpreted over finite traces.
While LTL is typically used in formal-verification settings,
where we are interested in nonterminating computations,
cf. [20], LTLf is more attractive in AI scenarios focus-
ing on finite behaviors, such as planning [15, 5] and user
preferences [4, 19]. Due to the wide spectrum of appli-
cations of LTLf in the AI community, the fundamental
problems of LTLf , e.g., satisfiability [13, 12] and synthe-
sis [11, 22], have been extensively studied in prior work.
Towards applications, researchers successfully reduced the
planning problem with LTLf goals to the synthesis prob-
lem for LTLf [7, 6, 1, 2, 21], which makes the logic very

attractive in this domain.
This paper focuses on the problem of LTLf satisfiability

checking. Given an LTLf formula, the satisfiability prob-
lem asks whether there is a finite trace that satisfies the for-
mula. The existing solutions for LTLf satisfiability check-
ing fall into two categories. The first is to reduce the LTLf
satisfiability problem to that of LTL satisfiability, and then
leverage the state-of-the-art LTL checkers, cf. [17], to solve
LTLf satisfiability. Thus, LTLf satisfiability checking can
benefit from progress in LTL satisfiability checking. There
is, however, an inherent drawback that an extra cost has to
be paid when checking LTL formulas, as the tool searches
for a “lasso” (a lasso consists of a finite path plus a cycle,
representing an infinite trace), whereas models of LTLf for-
mulas are just finite traces.

Based on this motivation, the second solution is pro-
posed to reduce LTLf satisfiability checking to the lan-
guage emptiness check over the finite automaton that ac-
cepts the same languages as the input formula. Essentially,
one can construct such an NFA (Non-deterministic Finite
Automaton) from the given formula, such that the formula
is satisfiable if and only if there is a finite trace that can
be accepted by the NFA. [13] is the first attempt to imple-
ment this solution, and the subsequent work [14] improves
the performance significantly by introducing the SAT tech-
nique to achieve the on-the-fly checking procedure, which
is considered the most advanced approach so far.

This paper proposes to check the satisfiability of LTLf
formulas on the fly based on DFA (Deterministic Finite Au-
tomata), which is constructed by leveraging the formula
progression technique [3], and shows that this new ap-
proach, namely LSCFP, can potentially achieve a better
performance, in particular on satisfiable formulas than that
based on NFA [14]. Even though constructing DFA is a
much harder task than constructing NFA from an LTLf for-
mula1, the DFA state contains more formula information
than the NFA state such that a satisfiable model may be de-
tected more quickly.

Take the formula φ = ◦(aU b ∧ G¬b) ∨ ◦a as an ex-

1In theory, the translation to NFA is exponential blow-up while the
translation to DFA is double exponential blow-up.

1

ample. The CDLSC approach, which is presented in [14],
may first construct a successor φ1 = aU b∧G¬b of φ (φ1 is
an NFA state) and then determine φ1 is unsatisfiable. Then
the algorithm backtracks to φ and constructs another suc-
cessor φ2 = a of φ, after which it can return satisfiable.
The whole checking process may invoke at least two SAT
calls. Meanwhile, the LSCFP approach presented in this
paper uses formula progression to construct the successor
φ3 = (aU b ∧ G¬b) ∨ a, which is a DFA state and can im-
mediately be determined as an accepting state. Therefore,
LSCFP is able to check the satisfiability of φ by invoking
only one SAT call.

We compare LSCFP to CDLSC by conducting a com-
prehensive experiment on the widely used formulas for
benchmarking LTLf satisfiability. The results indeed af-
firm our conjecture that LSCFP can perform better than
CDLSC on checking satisfiable formulas by achieving a
15% speed-up on average. Notably, LSCFP cannot com-
pete to CDLSC on checking unsatisfiable formulas, the re-
sult of which is consistent with the fact that constructing
DFA is much more costly than constructing NFA.

The rest of this paper is organized as follows. Section 2
introduces definitions for LTLf and its satisfiability prob-
lem; Section 3 introduces the LSCFP approach in detail;
Section 4 presents the experimental results, and finally, Sec-
tion 5 concludes the paper.

2. Preliminaries

2.1. LTL over Finite Traces (LTLf)

Linear Temporal Logic over finite traces, or LTLf [8],
extends propositional logic with finite-horizon temporal
connectives. In particular, LTLf can be considered as
a variant of Linear Temporal Logic (LTL) [16]. Distin-
guished with LTL which is interpreted over infinite traces,
LTLf is interpreted over finite traces. Given a set of atomic
propositions P , the syntax of LTLf is identical to LTL, and
defined as:

φ ::= tt | p | ¬φ | φ ∧ φ | ◦φ | φU φ

where tt represents the true formula, p ∈ P is an atomic
proposition, ¬ is the negation, ∧ is the and,◦ is the strong
Next and U is the Until operator. We also have the cor-
responding dual operators ff (false) for tt , ∨ (or) for ∧,
• (weak Next) for◦ and R (Release) for U . Moreover, we
use the notation Gφ (Global) and Fφ (Future) to represent
ff Rφ and tt U φ, respectively. Notably, ◦ is the standard
Next operator, while • is weak Next; ◦ requires the exis-
tence of a successor instance, while • does not. Thus •ϕ
is always true in the last instance of a finite trace, since no
successor exists there.

A finite trace ρ = ρ[0], ρ[1], . . . , ρ[n] (n ≥ 0) is a
sequence of propositional interpretations (sets), in which
ρ[m] ∈ 2P (0 ≤ m < |ρ|) is the m-th interpretation of
ρ, and |ρ| = n + 1 represents the length of ρ. Intuitively,
ρ[m] is interpreted as the set of propositions that are true at
instant m. We denote ρi to represent ρ[i], ρ[i+1], . . . , ρ[n],
which is the suffix of ρ from position i.

LTLf formulas are interpreted over finite traces. For a
finite trace ρ and an LTLf formula φ, we define the satis-
faction relation ρ |= φ (i.e., ρ is a model of φ) as follows:

• ρ |= tt ;

• ρ |= p iff p ∈ ρ[0], where p is an atomic proposition;

• ρ |= ¬φ iff ρ ̸|= φ;

• ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2;

• ρ |= ◦φ iff |ρ| > 1 and ρ1 |= φ;

• ρ |= φ1 U φ2 iff there exists i with 0 ≤ i < |ρ| such
that ρi |= φ2, and for every j with 0 ≤ j < i it holds
that ρj |= φ1.

Two LTLf formulas φ1 and φ2 are semantically equiva-
lent, denoted as φ1 ≡ φ2, iff for every finite trace ρ, ρ |= φ1

iff ρ |= φ2. According to the semantics of LTLf for-
mulas, it is trivial to have that ff ≡ ¬tt , ◦ϕ ≡ ¬•¬ϕ,
(ϕ1 U ϕ2) ≡ ¬(¬ϕ1 R¬ϕ2) and Gϕ ≡ ¬F¬ϕ. A literal
is an atom p ∈ P or its negation (¬p). We say an LTLf
formula is in Negation Normal Form (NNF) if the nega-
tion operator appears only in front of an atom. Every LTLf
formula can be converted into its equivalent NNF in linear
time. We now introduce below the concept of satisfiability
for LTLf formulas.

Definition 1 (LTLf Satisfiability). An LTLf formula φ is
satisfiable iff there exists a finite trace ρ ∈ (2P)∗ such that
ρ |= φ; otherwise, it is unsatisfiable.

Theorem 1 ([8]). Checking the satisfiability of an LTLf
formula is PSPACE-complete.

Notations. We use cl(ϕ) to denote the set of subformulas
of ϕ. Let A be a set of LTLf formulas, we denote

∧
A to

be the formula
∧
ψ∈A ψ. We say an LTLf formula ϕ is in

Tail Normal Form (TNF) if ϕ is in Negated Normal Form
(NNF) and N -free. Assume ϕ is in NNF, tnf(ϕ) is defined
as t(ϕ) ∧ FTail, where Tail is a new atom to identify the
last state of satisfying traces (Motivated from [8]), and t(ϕ)
is an LTLf formula defined recursively as follows:

1. t(ϕ) = ϕ if ϕ is true,ff or a literal;

2. t(◦ψ) = ¬Tail ∧◦(t(ψ));

3. t(•ψ) = Tail ∨◦(t(ψ));

2

4. t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2);

5. t(ϕ1 ∨ ϕ2) = t(ϕ1) ∨ t(ϕ2);

6. t(ϕ1 U ϕ2) = (¬Tail ∧ t(ϕ1))U t(ϕ2);

7. t(ϕ1 Rϕ2) = (Tail ∨ t(ϕ1))R t(ϕ2).

Theorem 2 ([12]). ϕ is satisfiable iff tnf(ϕ) is satisfiable.

In the rest of the paper, unless clearly specified, the input
LTLf formula is in TNF.

2.2. Transition-based Deterministic Finite Automa-
ton (TDFA)

The Transition-based Deterministic Finite Automaton
(TDFA) is a variant of the Deterministic Finite Automaton
(DFA), which identifies the accepting condition on the tran-
sitions instead of states.

Definition 2 (Transition-based DFA [18]). A transition-
based DFA (TDFA) is a tuple A = (2P , S, s0, δ, T) where

• 2P is the alphabet;

• S is the set of states;

• s0 ∈ S is the initial state;

• δ : S × 2P → S is the transition function;

• T ⊆ δ is the set of accepting transitions.

For simplicity, we use the notation s1
ω−→ s2 to denote

δ(s1, ω) = s2. The run r of a TDFA A on a finite trace ρ =
ρ[0], ρ[1], · · · , ρ[n] ∈ (2P)+ is a finite state sequence r =

s0, s1, · · · , sn such that s0 is the initial state, si
ρ[i]−−→ si+1

is true for 0 ≤ i < n . Note that runs of TDFA do not need
to include the destination state of the last transition, which
is implicit sn+1 = δ(sn, ρ[n]), since the starting state (sn)
together with the labels of the transition (ρ[n]) are sufficient
to determine the destination. r is called acyclic iff (si =
sj) ⇔ (i = j) for 0 ≤ i, j < n. Also, we say that ρ runs
across si iff si is in the corresponding run r. The trace ρ
is accepted by A iff the corresponding run r ends with an
accepting transition, i.e., δ(sn, ρ[n]) ∈ T . The set of finite
traces accepted by a TDFA A is the language of A, denoted
as L(A).

According to [18], TDFA has the same expressiveness
as the normal DFA, and for an LTLf formula φ, there is
a TDFA Aφ such that L(φ) = L(Aφ). As a result, the
LTLf satisfiability-checking problem can be solved on the
corresponding TDFA.

3. LTLf Satisfiability Checking via Formula
Progression (LSCFP)

In this section, we first introduce the concept of for-
mula progression for LTLf formulas and how to construct
the TDFA via formula progression. Then we produce an
on-the-fly satisfiability-checking framework along with the
TDFA construction.

3.1 LTLf -to-TDFA via Formula Progression

The formula progression technique originates in [3] for
goal planning with temporal logic. A definition of LTLf
progression has been used in [10], and here we adapt the
definition to a finite trace instead of a single proposition.

Definition 3 (Formula Progression for LTLf). Given an
LTLf formula φ and a non-empty finite trace ρ, the pro-
gression formula fp(φ, ρ) is recursively defined as follows:

• fp(tt , ρ) = tt and fp(ff , ρ) = ff ;

• fp(p, ρ) = tt if p ∈ ρ[0]; fp(p, ρ) = ff if p /∈ ρ[0];

• fp(¬φ, ρ) = ¬fp(φ, ρ);

• fp(φ1 ∧ φ2, ρ) = fp(φ1, ρ) ∧ fp(φ2, ρ);

• fp(φ1 ∨ φ2, ρ) = fp(φ1, ρ) ∨ fp(φ2, ρ);

• fp(◦φ, ρ) = φ if |ρ| = 1; Else fp(◦φ, ρ) =
fp(φ, ρ1);

• fp(•φ, ρ) = φ if |ρ| = 1; Else fp(•φ, ρ) =
fp(φ, ρ1);

• fp(φ1 U φ2, ρ) = fp(φ2, ρ) ∨ (fp(φ1, ρ) ∧
fp(◦(φ1 U φ2), ρ));

• fp(φ1 Rφ2, ρ) = fp(φ2, ρ) ∧ (fp(φ1, ρ) ∨
fp(•(φ1 U φ2), ρ)).

The following lemmas are not hard to obtain based on
Definition 3, whose proofs are omitted here.

Lemma 1. Given an LTLf formula φ and two non-empty
finite traces ρ1 and ρ2, ρ2 |= fp(φ, ρ1) implies ρ1 · ρ2 |= φ.

Lemma 2. Given an LTLf formula φ and two non-empty
finite traces ρ1 and ρ2, it holds that fp(fp(φ, ρ1), ρ2) =
fp(φ, ρ1 · ρ2).

Lemma 3. Given an LTLf formula and a non-empty finite
trace ρ, ρ |= φ implies ρi |= fp(φ, ρi) for every 0 ≤ i < |ρ|.

Now we re-construct the TDFA for an LTLf formula.

Definition 4 (LTLf to TDFA). Given an LTLf formula φ,
the TDFA Aφ is a tuple (2P , S, δ, s0, T) such that

3

• 2P is the alphabet, where P is the set of atoms of φ;

• S = {φ ∪ fp(φ, ρ) | ∀ρ ∈ (2P)+} is the set of states;

• s0 = φ is the initial state;

• δ : S × 2P → S is the transition function such that
δ(s, σ) = fp(s, σ) for s ∈ S and σ ∈ 2P (Here σ is
considered a trace with length 1);

• T = {s1
σ−→ s2 ∈ δ | σ |= s1} is the set of accepting

transitions.

Theorem 3. Given an LTLf formula φ and the TDFA Aφ

constructed by Definition 4, it holds that L(φ) = L(Aφ).

Proof. Let |ρ| = n + 1 (n ≥ 0) and the corresponding run
r of Aφ on ρ is s0, s1, . . . , sn, where s0 = φ.

(⇐) According to Definition 4, ρ is accepted by Aφ im-
plies (ρn = ρ[n]) |= sn and sn = fp(φ, ρn). Then from
Lemma 1, we have (ρn · ρn = ρ) |= (s0 = φ).

(⇒) First from Definition 4, every fp(φ, ρi) for 0 ≤
i ≤ n is a state of Aφ. Secondly, δ(fp(φ, ρi), ρ[i]) =
fp(φ, ρi+1) is true for 0 ≤ i ≤ n, because fp(φ, ρi+1) =
fp(fp(φ, ρi), ρ[i]) is true (Lemma 2). Therefore, let si =
fp(φ, ρi) (0 ≤ i ≤ n) and the state sequence r =
s0, s1, . . . , sn is a run of Aφ on ρ. Finally, ρ |= φ im-
plies that ρn |= (sn = fp(φ, ρn)) is true because of Lemma
3. So ρ is accepted by Aφ.

3.2 On-the-fly Checking Framework

The CDLSC approach [12] is an on-the-fly satisfia-
bility checking framework along with the NFA construc-
tion. Compared to that, LSCFP completes the satisfiability
checking over the on-the-fly TDFA construction instead. In
a high-level description, LSCFP combines SAT computa-
tion together with formula progression to construct TDFA
states instead of NFA ones.

Given an LTLf formula φ whose closure is cl(φ), ev-
ery state s of the corresponding NFA is a conjunction of
subformulas of φ, i.e., s ⊆ cl(φ). To compute one suc-
cessor of φ, the SAT-based method proposed in [12] first
converts φ to its neXt Normal Form (XNF) xnf(φ), in
which there are no Until or Release subformulas of ϕ in
the atomic level or connected by Boolean operators. For
example, φ1 = ((¬Tail ∧ a)Ub) is not in XNF because
there is an Until subformula (φ itself) in the atomic level,
while φ2 = (b ∨ (¬Tail ∧ a ∧ (X ((¬Tail ∧ a)Ub))))
is, though φ1 and φ2 are semantically equivalent. In fact,
every LTLf formula ϕ has a linear-time conversion to an
equivalent formula in XNF. By treating xnf(φ) as a propo-
sitional logic, denoted as xnf(φ)p, a Boolean SAT solver is
able to return an assignment that indicates the current con-
ditions (label of the NFA transition) and one next state of

𝜑1

𝜑2 𝜑3 𝜑n…

𝛼 𝛼 𝛼

𝜑1

𝜑2|𝜑3 … |𝜑n

𝛼

Figure 1. A schema to illustrate CDLSC (left)
vs. LSCFP (right) on state construction.
CDLSC needs to invoke up to n SAT calls to
compute the successors of φ1, while LSCFP
needs only one SAT call plus one formula pro-
gression to obtain all the state information.

φ. Consider φ2 as the example, the SAT solver may return
{a, b,¬Tail,X ((¬Tail ∧ a)Ub)} as an assignment, based
on which CDLSC identifies that φ1 = (¬Tail ∧ a)Ub is a
successor of itself under the condition a ∧ b ∧ ¬Tail.

Algorithm 1 LSCFP: LTLf Satisfiability Checking via
Formula Progression.
Require: An LTLf formula φ.
Ensure: SAT or UNSAT.

1: if Tail ∧ xnf(φ)p is satisfiable then
2: return SAT;
3: Let ψ = xnf(φ) ∧ ¬X (φ);
4: while ψp is satisfiable do
5: Let A be a propositional assignment for ψp;
6: Let L(A) be the set of literals extracted from A, i.e.,

L(A) represents the current conditions;
7: Let φ′ = fp(ψ∧φ,L(A)), i.e., be the DFA successor

state of φ computed via formula progression;
8: if LSCFP (φ′) returns SAT then
9: return SAT;

10: Let ψ = xnf(ϕ) ∧ ¬X (φ′);
11: return UNSAT;

Compared to CDLSC, LSCFP takes the current condi-
tions as the input to compute fp(φ, {a, b,¬Tail}), which
from Definition 3 equals φ1 ∨ tt ≡ tt . Therefore, LSCFP
identifies tt as a TDFA successor state of φ under the condi-
tions a∧ b∧¬Tail. In general, CDLSC computes only one
successor under the fixed conditions, while LSCFP is able
to compute all possible successors under the same condi-
tions. Figure 1 shows the differences between LSCFP and
CDLSC on constructing automata states.

The implementation of LSCFP is shown in Algorithm
1. Line 1 first checks whether the input formula φ is a final
state of the TDFA, which is equivalent to checking whether
Tail ∧ (xnf(s))p is satisfiable [12]. If φ is not a final state,

4

the while loop (Line 4-10) searches the successors of φ re-
cursively to identify whether they can be final. Line 3 and
10 block the states already checked during the search. If
no new state (assignment) can be generated from the SAT
solver, the algorithm terminates with an unsatisfiable result.
In the while loop, Line 5 obtains the propositional assign-
ment A from the SAT solver, Line 6 extracts the conditions
(label) of the current transition indicated by A, and then
Line utilizes the formula progression technique to compute
the corresponding TDFA successor.

The theorem below provides the theoretical guarantee to
the correctness of Algorithm 1.

Theorem 4. The input LTLf formula is satisfiable if and
only if Algorithm 1 returns SAT.

Proof. First of all, it is not hard to see that Algorithm 1
constructs exactly the TDFA in Definition 4. Secondly, let
ρ = ω0ω1 . . . ωn (n ≥ 0) be a non-empty trace and the
corresponding run on the TDFA constructed in Algorithm
1 be r = s0(φ)

ω0−→ s1 . . . sn
ωn−−→ sn+1. Notably, since

Algorithm 1 constructs TDFA, the run of the automaton on
a given trace is unique. According to Theorem 3, ρ |= φ
if and only if ωn |= sn holds, which indicates that sn is a
final state. Then, sn is a final state if and only if Algorithm
1 can return SAT at Line 2. As a result, ρ |= φ if and only
if Algorithm 1 returns SAT at Line 2 when taking sn as the
input in the recursive checking process.

4. Experimental Evaluations

Experimental Setup. We implement LSCFP in the state-
of-the-art LTLf satisfiability solver aaltaf 2, which imple-
mented CDLSC, and use Minisat 2.2.0 [9] as the SAT en-
gine. To evaluate the performance of LSCFP, we compared
it to CDLSC on the widely used LTLf benchmarks that are
presented in [12], in which there are 8645 formulas in total.

We ran the experiments on a RedHat 6.0 cluster with
2304 processor cores in 192 nodes (12 processor cores per
node), running at 2.83 GHz with 48GB of RAM per node.
When we ran the experiments, each tool was run on a dedi-
cated node, which guarantees that no CPU or memory con-
flict with other jobs can occur. For each tested formula, we
set the timeout to 120 seconds, measuring execution time
with Unix time. Excluding timeouts, the results from both
LSCFP and CDLSC are consistent.
Results. Figure 2 shows the comparison between LSCFP
and CDLSC on satisfiable formulas in terms of time cost.
LSCFP performs better than CDLSC on more than 60% of
the tested satisfiable cases, and for some particular cases,
LSCFP can be 10X times faster than CDLSC. LSCFP
is able to solve 6380 satisfiable instances within timeout,

2https://github.com/lijwen2748/aaltaf

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10 100 1000 10000 100000

C
D

L
S

C
 (

m
s
)

LSCFP (ms)

Figure 2. Scatter plots for LSCFP vs. CDLSC
on satisfiable formulas.

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10 100 1000 10000 100000

C
D

L
S

C
 (

m
s
)

LSCFP (ms)

Figure 3. Scatter plots for LSCFP vs. CDLSC
on unsatisfiable formulas.

while CDLSC solves the number of 6419. Notably, there
are 39 formulas that cannot be solved by LSCFP within
timeout, which slows down its overall performance. How-
ever, LSCFP is still able to obtain a 15% improvement on
average when compared to CDLSC on checking satisfiable
formulas.

Figure 3 shows the comparison between LSCFP and
CDLSC on unsatisfiable formulas in terms of time cost.
For instances that can be solved by both approaches,
LSCFP gains a similar performance with CDLSC. How-
ever, LSCFP has more timeout cases than CDLSC. In total,
LSCFP solves the amount of 1904 unsatisfiable formulas,
while CDLSC solves the amount of 2141. So there are 237
more unsatisfiable instances that can be timeout for LSCFP
than CDLSC, which is the main reason why LSCFP is
not competitive in solving unsatisfiable formulas. In our
conjecture, LSCFP needs to enumerate all TDFA states in
the worst case to check unsatisfiability, and this is a much

5

heavier task than enumerating NFA states. Also, CDLSC
leverages more advanced convergent techniques by using
the conflict sequence, which we plan to explore in LSCFP
to speed up the performance.

5 Concluding Remarks

In this paper, we present LSCFP, a new on-the-fly satis-
fiability checking approach for LTLf formulas. Compared
to the existing CDLSC method, LSCFP combines SAT in-
voking together with the formula progression technique to
compute the DFA states instead of NFA ones. The ben-
efit is to accelerate the checking performance, in particular
for satisfiable instances. Our experimental results affirm our
conjecture on such a benefit. Currently, LSCFP cannot per-
form well on checking unsatisfiable formulas, and we plan
to introduce the ideas in CDLSC to enable fast convergent
by overapproaximating reachable states in future work.

6 Acknowledgment

We thank anonymous reviewers for their helpful com-
ments. Tong Niu and Yicong Xu have equal contributions
to this paper. Jianwen Li is the corresponding author. This
work is supported by the National Natural Science Foun-
dation of China (Grant #U21B2015 and #62002118), the
Shanghai Collaborative Innovation Center of Trusted Indus-
try Internet Software, and the National Key Research and
Development Program (2022YFB3305202).

References

[1] B. Aminof, G. De Giacomo, A. Murano, and S. Rubin. Syn-
thesis under assumptions. In Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Sixteenth In-
ternational Conference, KR 2018, Tempe, Arizona, 30 Octo-
ber - 2 November 2018, pages 615–616. AAAI Press, 2018.

[2] B. Aminof, G. De Giacomo, A. Murano, and S. Rubin. Plan-
ning under LTL environment specifications. In Proceedings
of the Twenty-Ninth International Conference on Automated
Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA,
July 11-15, 2019, pages 31–39. AAAI Press, 2019.

[3] F. Bacchus and F. Kabanza. Planning for temporally ex-
tended goals. Ann. of Mathematics and Artificial Intelli-
gence, 22:5–27, 1998.

[4] M. Bienvenu, C. Fritz, and S. A. McIlraith. Specifying and
computing preferred plans. Artificial Intelligence, 175:1308
– 1345, 2011.

[5] A. Camacho, J. Baier, C. Muise, and A. McIlraith. Bridg-
ing the gap between LTL synthesis and automated planning.
Technical report, U. Toronto, 2017.

[6] A. Camacho, M. Bienvenu, and S. A. McIlraith. Finite LTL
synthesis with environment assumptions and quality mea-
sures. In Principles of Knowledge Representation and Rea-

soning: Proceedings of the Sixteenth International Confer-
ence, KR 2018, Tempe, Arizona, 30 October - 2 November
2018, pages 454–463. AAAI Press, 2018.

[7] A. Camacho, E. Triantafillou, C. J. Muise, J. A. Baier, and
S. A. McIlraith. Non-deterministic planning with temporally
extended goals: LTL over finite and infinite traces. In Pro-
ceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California,
USA, pages 3716–3724. AAAI Press, 2017.

[8] G. De Giacomo and M. Vardi. Linear temporal logic and
linear dynamic logic on finite traces. In IJCAI, pages 2000–
2007. AAAI Press, 2013.

[9] N. Eén and N. Sörensson. An extensible SAT-solver. In SAT,
pages 502–518, 2003.

[10] G. D. Giacomo, M. Favorito, J. Li, M. Y. Vardi, S. Xiao, and
S. Zhu. Ltlf synthesis as and-or graph search: Knowledge
compilation at work. In Proceedings of the Thirty-First In-
ternational Joint Conference on Artificial Intelligence, pages
3292–3298. AAAI Press, 2022.

[11] G. D. Giacomo and M. Y. Vardi. Synthesis for ltl and ldl
on finite traces. In Proceedings of the 24th International
Conference on Artificial Intelligence, IJCAI 15, pages 1558–
1564. AAAI Press, 2015.

[12] J. Li, K. Y. Rozier, G. Pu, Y. Zhang, and M. Y. Vardi. Sat-
based explicit ltlf satisfiability checking. In The Thirty-Third
AAAI Conference on Artificial Intelligence, pages 2946–
2953. AAAI Press, 2019.

[13] J. Li, L. Zhang, G. Pu, M. Y. Vardi, and J. He. LTLf satisfi-
bility checking. In ECAI, pages 91–98, 2014.

[14] J. Li, S. Zhu, G. Pu, L. Zhang, and M. Y. Vardi. Sat-based ex-
plicit ltl reasoning and its application to satisfiability check-
ing. Formal Methods in System Design, pages 1–27, 2019.

[15] F. Patrizi, N. Lipoveztky, G. De Giacomo, and H. Geffner.
Computing infinite plans for LTL goals using a classical
planner. In IJCAI, pages 2003–2008. AAAI Press, 2011.

[16] A. Pnueli. The temporal logic of programs. In 18th An-
nual Symposium on Foundations of Computer Science (sfcs
1977), pages 46–57, Oct 1977.

[17] K. Rozier and M. Vardi. LTL satisfiability checking. In
SPIN, volume 4595 of LNCS, pages 149–167. Springer,
2007.

[18] Y. Shi, S. Xiao, J. Li, J. Guo, and G. Pu. Sat-based automata
construction for ltl over finite traces. In 2020 27th Asia-
Pacific Software Engineering Conference (APSEC), pages
1–10, 2020.

[19] S. Sohrabi, J. A. Baier, and S. A. McIlraith. Preferred ex-
planations: Theory and generation via planning. In AAAI,
pages 261–267, August 2011.

[20] M. Vardi. Automata-theoretic model checking revisited. In
VMCAI, LNCS 4349, pages 137–150. Springer, 2007.

[21] S. Zhu, G. D. Giacomo, G. Pu, and M. Y. Vardi. Ltlf
synthesis with fairness and stability assumptions. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, New York, NY, USA, February 7-12, 2020, pages
3088–3095. AAAI Press, 2020.

[22] S. Zhu, L. Tabajara, J. Li, G. Pu, and M. Vardi. Symbolic
ltlf synthesis. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, IJCAI 17, pages 1362–
1369. AAAI Press, 2017.

6

