
BOP: A Bitset-based Optimization Paradigm for
Content-based Event Matching Algorithms

Wei Liang†, Wanghua Shi§, Zhengyu Liao†, Shiyou Qian§∗, Zhonglong Zheng†∗, Jian Cao§ and Guangtao Xue§
†Zhejiang Normal University, Zhejiang, China. §Shanghai Jiao Tong University, Shanghai, China.

∗Corresponding authors, Email: qshiyou@sjtu.edu.cn, zhonglong,mlli@zjnu.edu.cn

Abstract—Content-based publish/subscribe systems are widely
used in many fields. Event matching is the core component
to achieve fine-grained content-based data distribution. Many
efficient algorithms have been proposed to improve event match-
ing performance. However, in large-scale content-based pub-
lish/subscribe systems, event matching is still the performance
bottleneck of the entire system due to the need to perform
a lot of operations, such as additions, comparisons and bit-
markings. In this paper, we explore to convert various non-
logical operations into efficient logical ones, and propose a bitset-
based optimization paradigm (BOP) for matching algorithms. On
the one hand, BOP can eliminate expensive operations in the
matching process, greatly improving matching performance. On
the other hand, BOP can stabilize the performance of matching
algorithms, ensuring the quality of service of data distribution.
We apply BOP to optimize two existing matching algorithms,
namely TAMA and REIN. The experimental results show that
BOP shortens the matching time of TAMA and REIN by more
than 60%. In addition, the performance of optimized versions is
more stable than the original matching algorithms.

Index Terms—Publish/subscribe, event matching, optimization,
bitset

I. INTRODUCTION

The publish/subscribe system has been widely used in many
fields, such as online advertising [1], mobile message push [2]
[3], information filtering [4], and content-based routing sys-
tems [5]. It provides a loosely coupled messaging architecture
[6]. The publisher publishes messages (also called events) to
the broker, and the subscriber submits his/her interest (often
called subscriptions) to the broker. The broker matches each
event with subscriptions and forwards the event to all inter-
ested subscribers. According to different subscription models,
the publish/subscribe system can be roughly divided into two
categories: topic-based and content-based. The first category
is relatively simple, but the granularity is coarse and the ex-
pression ability is limited. The content-based publish/subscribe
(CPS) system overcomes these shortcomings, and makes the
system more flexible.

Event matching algorithm is the core component of CPS
systems. Matching efficiency is critical, which directly affects
the performance of the entire system. The design of high-
performance event matching algorithm should consider time
efficiency, subscription maintenance cost and memory con-
sumption. For these three aspects, time efficiency is the major

DOI reference number: 10.18293/SEKE2023-142

factor that affects the performance of event matching algo-
rithm. Therefore, how to improve the efficiency of matching
algorithm is a key problem.

With the continuous research and innovation of scholars,
many efficient event matching algorithms have been proposed,
such as PS-Tree [7], H-Tree [8], MO-Tree [9], TAMA [10],
REIN [11], Siena [12], SCSL [13], HEM [14], PhSIH [15] and
Comat [16]. These algorithms utilize different data structures,
such as trees, tables and bloom filters, to index subscriptions to
achieve high event matching speed. Different algorithms have
their advantages and disadvantages.

According to the initial search target in the matching
process, existing algorithms can be classified into forward
matching algorithm such as TAMA [10] and OpIndex [17], and
backward matching algorithm such as REIN [11], Ada-REIN
[18] and GEM [19]. The forward matching algorithm directly
searches matching subscriptions. They need to perform a lot
of additions for counting-based algorithms and comparisons
for tree-based algorithms. For example, TAMA [10] is built
on an index table which is designed to locate all predicates
that are satisfied by the given event value. For subscriptions
containing each satisfied predicate, TAMA needs to perform
a countering operation. On the other hand, the backward
matching algorithm initially aims to search unmatching sub-
scriptions. For example, REIN [11] first locates two lists of
cells containing unsatisfied predicates for each event value and
then traverses the cells to mark unmatching subscriptions in
a bitset. Overall, these algorithms perform a large number of
repetitive operations, which decreases the matching efficiency.

To improve the efficiency of existing matching algorithms,
we propose a bitset-based optimization paradigm (BOP). The
basic idea of BOP is manifested in two aspects. First, with
bitsets, BOP can transform the expensive arithmetic operations
in existing matching algorithms to efficient logical operations,
which can make full use of the characteristics of hardware.
Second, the status (matching or unmatching) of subscriptions
can be marked in advance in bitsets, which avoids performing a
large number of repetitive operations in the matching process.
We formalize the optimization paradigm for forwarding match-
ing algorithms. In addition, we extend it to support backward
matching algorithm. Therefore, BOP is a general optimization
method to improve the efficiency of most matching algorithms.

We apply BOP to optimize two existing matching algo-
rithms, a forward matching algorithm TAMA [10] and a back-
ward matching algorithm REIN [11], resulting in REIN-O and

TAMA-O respectively. Based on the original data structures of
TAMA and REIN, BOP introduces bitsets to speed up event
matching. We conducted extensive experiments to evaluate
the effectiveness of BOP with different parameter settings,
including subscription size, event size, predicate width and
predicate attribute distribution. The experimental results show
that REIN-O and TAMA-O achieve significant performance
improvement. Compared with TAMA and REIN, REIN-O
and TAMA-O reduce matching time by more than 60%. In
addition, the performance of REIN-O and TAMA-O is more
stable than that of TAMA and REIN.

The main contributions of this paper are as follows:
• We propose a bitset-based optimization paradigm called

BOP, which aims to improve the efficiency of existing
matching algorithms.

• We formalize the optimization paradigm and apply it to
optimize two existing matching algorithms.

• We conduct a series of experiments to verify the opti-
mization effect of BOP.

The remainder of this paper is organized as follows. Section
II presents the background knowledge. Section III briefly
discusses the related work. Section IV describes the design
details of BOP. Section V analyzes the experimental results.
Section VI concludes the paper.

II. PRELIMINARIES

In this section, we provide the basic knowledge of the event
matching problem.

Attribute: An attribute ai represents the name of a data
item, which appears in events and subscriptions. Each attribute
in events has a value, expressed in the form of < ai, v > or
ai=v. The number of all attributes in the content space is called
the dimensionality, denoted by d.

Event: Event is also known as message, consisting of mul-
tiple attribute-value pairs. Event is expressed as E={a1=v1,
a2=v2,......,am=vm}, where m represents the number of at-
tributes in the event. m is called the event size in the paper.
Note that each attribute appears only once in an event.

Predicate: A predicate defines a constraint on an attribute.
An interval predicate is expressed as P < ai, lower, upper >,
where ai is an attribute, and lower and upper represent the
left and right boundaries of the predicate respectively.

Subscription: A subscription is composed of multiple inter-
val predicates in the conjunctive normal form. A subscription
S is expressed as S = {P1∧P2∧......∧Pk}, where k represents
the number of predicates in the subscription. k is called the
subscription size in the paper.

Match: Given an attribute-value pair ai=vi and a predicate
< aj , lower, upper >, if ai=aj ∧ vi ∈ [lower, upper], the
attribute value satisfies the predicate. Given an event E and
a subscription S, if each predicate in S is satisfied by the
corresponding attribute value of E, S is a match of E.

Event Matching Problem: Give a set of n subscriptions
and an event E, the event matching problem is to search all
the matches of E from the subscription set.

III. RELATED WORK

In this section, we review the related work and classify
existing algorithms into two categories: forward matching
and backward matching. Then, for each category, we briefly
introduce the matching process and discuss a representative
algorithm. Finally, we describe the difference between BOP
and existing work.

A. Algorithm Classification

In order to achieve high matching performance, an effective
data structure for indexing subscriptions is necessary. The clas-
sic data structures include match tree [20], match table [21],
binary decision graph [22] and Bloom filter [23]. According
to the initial search targets, the matching algorithms based on
these data structures can be divided into two categories: for-
ward matching algorithm and backward matching algorithms.

B. Forward Matching Algorithms

The forward algorithm aims at matching subscriptions dur-
ing the matching process, which can be further divided into
two sub-categories: counting-based algorithms such as TAMA
[10] and OpIndex [17], and tree-based algorithms such as PS-
Tree [7] and H-Tree [8].

The counting-based matching algorithm sets a counter for
each subscription. In the matching process, for each predicate
P satisfied by the event value, the counter of each subscription
containing P will be incremented by one. For a subscription,
if the number of satisfied predicates recorded in the counter is
equal to the subscription size, the subscription is a match of
the event. The basic idea of the tree-based matching algorithm
is to use the pruning ability of trees, where subscriptions are
usually stored in leaf nodes. In the matching process, internal
nodes are used to filter unmatching subscriptions, finally gen-
erating a set of candidate subscriptions. These subscriptions
are accurately evaluated to obtain matching results. To better
understand the forward matching algorithm, we discuss a
representative algorithm TAMA.

TAMA [10] is a forward and counting-based matching
algorithm. Its overall structure can be divided into two layers.
The first layer is indexed on attributes. All attributes are
organized into a linear table. The second layer adopts the
hierarchical discretization method, which divides each pred-
icate into multiple levels. Specifically, the value space of each
attribute is divided into cells level by level. Different levels
have different granularity. The upper cell is evenly divided
into two smaller cells in the lower level. Thus, at the i-th
level, the attribute space is divided into 2i cells, and each cell
at the i-th level will be separated into two cells at the (i+1)-
th level. Given an interval predicate P , from the level that P
can contain the cell, the ID of the subscription containing P
is stored in at most two cells that are covered by P at each
level. Given an event value v, the cell containing v stores the
subscriptions whose predicates are satisfied by v. The counter
of these subscriptions will be incremented by one.

C. Backward Matching Algorithms

The backward matching algorithm initially targets at un-
matching subscriptions during the matching process, such as
REIN [11] and GEM [19]. Given the set of subscriptions,
when the unmatching ones are determined, the matches can be
easily obtained. Generally, the working principle of backward
matching algorithms is to search all unsatisfied predicates. For
each unsatisfied predicate P , all subscriptions containing P
are marked as unmatching in a bitset. REIN is a representa-
tive backward matching algorithm, which is discussed in the
following.

REIN transforms the matching problem into a rectangular
intersection problem, and proposes an index structure to ef-
fectively solve the problem. REIN divides the value space
of attributes into multiple cells and realizes the one-to-one
mapping between predicate values and cells. When matching
an event value, the list of cells containing unsatisfied predicates
can be easily determined. These cells are iteratively processed
by marking the unmatching subscriptions in a bitset. After
processing all attributes, the unmarked bits represent matching
subscriptions. Therefore, REIN mainly performs cell traversal
and bit marking operations.

Existing algorithms perform a large number of repetitive
operations, such as additions in TAMA. Compared with
logical operations, these operations have higher costs from
the perspective of hardware. To improve the performance of
existing matching algorithms, we propose a general bitset-
based optimization paradigm (BOP), which is applicable to
most algorithms. BOP explores to convert costly non-logical
operations into efficient logical operations by trading off space
for time.

IV. DESIGN OF BOP

In this section, starting from the basic idea of BOP, we use
bitset to optimize the forward algorithm first, and then extend
it to optimize the backward algorithm.

A. Basic Idea

When the number of subscriptions is large, for most algo-
rithms, matching an event needs to perform a large number
of repeated operations, such as comparisons, additions or bit-
markings. As discussed in Section III, the forward counting-
based matching algorithm calculates the number of satisfied
predicates for each subscription. When there is only one
unsatisfied predicate in a subscription of size k, it is redundant
and inefficient to count the k−1 satisfied predicates. Therefore,
when the predicate width is wide and the subscription size
is large, the performance of the counting-base matching algo-
rithm will decline. The backward matching algorithm searches
unsatisfied predicates and marks all subscriptions containing
them. When there are multiple unsatisfied predicates in a
subscription, the subscription will be marked repeatedly. Ex-
cept for the first time, the subsequent marks are redundant
and inefficient. Therefore, the backward matching algorithm
performs poorly in high-dimensional content space and small-
width predicates.

As a result, from the perspective of hardware, the basic idea
of BOP is to convert a large number of expensive operations
performed by the matching algorithm into more efficient
logical operations. For this purpose, we introduce bitset as
a caching mechanism to reduce some repeated operations.
In addition, based on bitsets, BOP performs as many logical
operations as possible to improve matching performance.

When designing BOP, two guidelines should be followed.
First, BOP should be general, which means that BOP should be
able to optimize backward and forward matching algorithms.
Second, BOP should be non-intrusive, which means that BOP
should not change the underlying data structure and matching
process of existing algorithms.

B. BOP for Forward Counting-based Algorithm

Most forward counting-based algorithms index predicates
defined on an attribute separately. This type of algorithms
can only retrieve the satisfied or unsatisfied predicates on
single attribute. When matching, the attributes in the event
are processed one by one. For each attribute, when finding
a satisfied predicate, all subscriptions containing the predicate
can be marked in a bitset, instead of incrementing the counters.
In this way, counting operations can be replaced with marking
operations.

In addition, in the content space with d attributes, sub-
scription size k is generally far smaller than d. In other
words, subscriptions usually define predicates on some at-
tributes, with most attributes in the content space having null
predicates. From the semantics of event matching, the event
value matches all null predicates. Therefore, for each attribute
ai (i ∈ [1, 2,, d]), BOP sets a bitset Bi

null to record the
subscriptions that do not define predicate on ai.

The matching process with BOP can be formalized as
follows:

Bresult = ∩d
i=1(B

i
null ∪Bi

match) (1)

where Bresult represents the result bitset, d is the dimen-
sionality of content space, Bi

null is the bitset used to mark
subscriptions that have no predicate defined on attribute ai,
and Bi

match is the bitset that marks all subscriptions whose
predicates defined on attribute ai are satisfied.

C. Extension for Backward Marking-based Algorithm

BOP can also be extended to optimize the backward
marking-based algorithm. Backward matching aims at find-
ing all unsatisfied predicates and marking the corresponding
subscriptions as unmatching in a bitset. Following the opti-
mization paradigm defined in Formula (1), backward matching
should be first transformed into forward matching, and then
logical AND operations are performed. Specifically, the bitset
associated with each attribute is initially set to all 1. In
the matching process, all unmatching subscriptions found are
marked as 0 in the bitset for each attribute. Then, logical AND
operations are performed based on the bitset of all attributes.
The bits with value 1 in the result bitset represent the matching
subscriptions.

D. Implementation Considerations

To apply BOP, there are two implementation considerations.
The first is to reduce the memory consumed by bitsets in
the matching process, and the second is to efficiently process
logical operations.

Intuitively, BOP needs to set d bitsets in the event matching
process, and obtains the result bitset by performing logical
operations on the d bitsets. This will consume a lot of memory
in high-dimensional scenarios. By analyzing the principle of
BOP, we find that only two bitsets are needed to iterate in
the implementation. Actually, processing an attribute consists
of two steps: marking all subscriptions containing satisfied
predicates and performing a bitset AND operation. Therefore,
it is not necessary to maintain one bitset for each attribute at
the same time, but only two bitsets in the matching process.
One bitset is used to store the result after processing all
previous attributes, and the other bitset stores the subscription
matching status on the current attribute.

An event of size m has no value on d − m attributes,
which are called null attributes. For each null attribute ai, the
corresponding Bi

match is all 0, thus no logical OR operation
is required. Thus, there is no need to perform d − m OR
operations. BOP first performs a logical OR operation between
Bi

null and Bi
match for each attribute in the event, so there will

be m bitset OR operations. Then, BOP performs d bitset AND
operations. A total of d +m logical operations are required.
However, in the implementation, we can eliminate bitset OR
operations. For the m attributes contained in the event, we can
copy Bi

null first, and mark the found matching subscriptions
directly in Bi

null, without setting the bitset Bi
match, In this

way, BOP only needs to perform d bitset AND operations.

E. Complexity Analysis

BOP needs to set a bitset for each attribute, which has
the space complexity of O(nd), where n is the number of
subscriptions and d is the dimensionality of the content space.
In addition, two bitsets are required in the matching process.
For subscriptions of size k, the insertion time is increased
by O(d − k) due to the marking operations on the null
attributes without defining predicates. In the matching process,
counting operations are replaced with marking operations, so
the number of operations does not change. BOP needs to
perform the additional d bitset AND operations.

V. EXPERIMENTS

To demonstrate the effectiveness of BOP for event matching
algorithms, we select two different matching algorithms to
optimize, namely REIN [11] and TAMA [10].

A. Test Benches

1) BOP on TAMA: According to the optimization paradigm
defined in Formula (1), BOP can be directly applied to TAMA,
which results in a new variant called TAMA-O. When inserting
a subscription S, it is necessary for TAMA-O to mark S as
matching in the bitset Bnull of each null attribute on which
S does not define a predicate. When matching an event E,

TABLE I: Parameter settings in the experiments

Para. Description Values
d Dimensionality 50
k Subscription size 4, 6, 8, 10
m Event size 10, 20, 30, 40
w Predicate width 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
α Attribute Zipf distribution 0, 0.25, 0.5, 0.75, 1.0
n Number of subscriptions 1M, 2M, ..., 8M, 9M

TAMA-O processes the attributes in E one by one. First, a
copy of Bnull is made, denoted by B′

null, for each attribute.
Then, based on the original data structure of TAMA, TAMA-
O searches satisfied predicates for each event attribute and
marks all subscriptions containing these predicates as match-
ing in B′

null. Finally, a logical AND operation is performed
between the result bitset Bresult and B′

null. After processing
all attributes in E and all null attributes, the unmarked bits in
Bresult represent the matching subscriptions of E.

2) BOP on REIN: Since REIN is a backward marking-
based matching algorithm, we first consider transforming it
into a forward matching, generating a variant called REIN-
F. Specifically, REIN-F marks (set to 0) all subscriptions
containing unsatisfied predicates in the bitset initialized to all
1, and then obtains subscriptions that match on all attributes
through bitset AND operations. In the implementation, REIN-
F does not need to actually perform AND operations. For all
attributes, the same effect can be achieved by marking 0 on the
same bitset, similar to REIN. Based on the data structure of
REIN, BOP further optimizes REIN-F by searching satisfied
predicates on each attribute. In this way, REIN-F works in
the same way as the counting-based matching algorithm.
Therefore, REIN-F can be optimized by BOP, resulting in a
new variant called REIN-O.

B. Setup

For simplicity, we consider the value space of each attribute
as [0,1]. Event values and predicate values are generated
based on uniform distribution. Attributes are selected based
on Zipf distribution with different setting of parameter α.
Since the performance of matching algorithms is affected
by many parameters, we evaluate the effects of subscription
size k, event size m, predicate width w, predicate attribute
distribution α, and the number of subscriptions n. The settings
of these parameters are shown in Table I. By default, we
set n to 1 million, d to 50, w to 0.4, k to 6, and m to
20. In each experiment, 1,000 events are matched and the
average matching time is calculated. All the experiments were
conducted on a server with 128 1.4GHZ CPUs, which runs
Ubuntu 18.04.6 and Linux kernel 5.4.0-136. All code is written
in C++ language and compiled by g++ with version 7.5.0.

C. Results and Analysis

1) Effect of Subscription Size k: We set k to 4, 6, 8 and
10 in the experiment. The experimental results of the four
tested algorithms are shown in Figure 1. We can see that
BOP significantly improves the performance of TAMA and

Fig. 1: Effect of subscription size k

Fig. 2: Effect of event size m

REIN. Compared with TAMA, TAMA-O reduces the matching
time by 61% on average. In addition, as k increases, TAMA-
O performs more stable. Similarly, REIN-O is more efficient
and stable than REIN, reducing the matching time by 71% on
average. The reason why BOP achieves better performance is
that it converts expensive non-logical operations into logical
operations, which is more efficient for hardware.

2) Effect of Event Size m: In this experiment, we set m
to 10, 20, 30 and 40. The experimental results are shown
in Figure 2. Overall, the matching time of REIN decreases
with the increase of m. When fixing the subscription size,
events of larger size have more matching subscriptions, which
is conductive to improving the performance of REIN. On
the contrary, the average matching time of TAMA increases
with m. With more matching subscriptions, TAMA needs to
perform more counting operations. Compared with TAMA,
TAMA-O reduces the matching time by 62% on average.
Similarly, compared with REIN, REIN-O reduces the average
matching time by 61%.

3) Effect of Predicate Width w: In this experiment, we set
w from 0.1 to 0.9. The experimental results are shown in
Figure 3. Overall, the matching time of TAMA increases with
the increase of w, while REIN is the opposite. On average,
the matching time of REIN-O is reduced by 66% compared

Fig. 3: Effect of predicate width w

Fig. 4: Effect of attribute Zipf distribution α

Fig. 5: Effect of the number of subscriptions n

with REIN. When w=0.1, the matching time is reduced by up
to 89%. Similarly, the matching time of TAMA-O is much
smaller than that of TAMA. When w=0.1, compared with
TAMA, the matching time of TAMA-O is reduced by 79%.
With the increase of the matching probability, there are more
and more 0s set in the bitset. This is not conducive to the
logical OR operations. Thus, the optimization effect of BOP
continues to decline with the increase of w, resulting in an
average reduction of 60% in the matching time.

4) Effect of Attribute Distribution α: In the experiment,
attributes follow the Zipf distribution, where the parameter α
is set to 0, 0.25, 0.5, 0.75 and 1. The experimental results
are shown in Figure 4. Overall, the matching time of the four
algorithms is basically unchanged with the increase of α. This
is because the matching probability of subscriptions does not
change. BOP can optimize TAMA, reducing the matching time
by 60% on average. Similarly, REIN-O reduces the matching
time by 65% compared with REIN.

5) Effect of Subscription Number n: In this experiment, we
set n from 1M to 9M. The experimental results are shown in
Figure 5. The matching time of the four algorithms increases
with n because the total workload increases. TAMA-O and
REIN-O perform better than their baselines, reducing the
matching time by 69% and 66% respectively on average.

Fig. 6: The 95th percentile matching time

Fig. 7: Memory usage

6) Performance Stability: In this experiment, we evaluate
the performance stability of the four algorithms in terms of
the 95th percentile (P95) of matching time. With the default
parameter settings, we change k, m, w and α respectively. The
experimental results are shown in Figure 6. With BOP, TAMA-
O and REIN-O perform more stable than their baselines. For
example, in the first group of experiments, the P95 value of
REIN, REIN-O, TAMA and TAMA-O is 12.27, 4.43, 4.90
and 1.87 ms respectively. Similar conclusions can be reached
in other groups of experiments. Therefore, we verify that BOP
is beneficial to improve and stabilize matching performance.

D. Memory Usage

In this experiment, we set each parameter as the default
value to measure the memory consumption of the four al-
gorithms. The experimental results are shown in Figure 7.
Compared with TAMA, TAMA-O does not increase memory
consumption. REIN-O increases memory usage by about 39%
on the basis of REIN. This is mainly because a bitset is con-
figured for each attribute. Considering that REIN-O reduces
the matching time by more than 60%, BOP well achieves the
goal of exchanging space for time.

VI. CONCLUSION

By summarizing the working principles of existing matching
algorithms, we propose BOP to improve their performance.
The basic idea of BOP is to convert a large number of non-
logical operations into logical ones. The experimental results
show that BOP can improve and stabilize the performance
of matching algorithms. In the future, the optimization effect
of BOP can be further improved by dividing attributes into
groups and setting a bitset for each group.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (61772334).

REFERENCES

[1] A. Rizzardi, S. Sicari, D. Miorandi, and A. Coen-Porisini, “Aups: An
open source authenticated publish/subscribe system for the internet of
things,” Information Systems, vol. 62, pp. 29–41, 2016.

[2] S. Nakamura, L. Ogiela, T. Enokido, and M. Takizawa, “An information
flow control model in a topic-based publish/subscribe system,” Journal
of High Speed Networks, vol. 24, no. 3, pp. 243–257, 2018.

[3] M. Jergler, K. Zhang, and H.-A. Jacobsen, “Multi-client transactions
in distributed publish/subscribe systems,” in IEEE 38th International
Conference on Distributed Computing Systems (ICDCS), 2018, pp. 120–
131.

[4] T. W. Yan and H. Garcia-Molina, “Index structures for selective dissem-
ination of information under the boolean model,” ACM Transactions on
Database Systems (TODS), vol. 19, no. 2, pp. 332–364, 1994.

[5] A. Mitra, M. Maheswaran, and J. A. Rueda, “Wide-area content-based
routing mechanism,” in IEEE Proceedings International Parallel and
Distributed Processing Symposium (IPDPS), 2003, pp. 8–pp.

[6] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM computing surveys (CSUR),
vol. 35, no. 2, pp. 114–131, 2003.

[7] S. Ji and H.-A. Jacobsen, “Ps-tree-based efficient boolean expression
matching for high-dimensional and dense workloads,” Proceedings of
the VLDB Endowment, vol. 12, no. 3, pp. 251–264, 2018.

[8] S. Qian, J. Cao, Y. Zhu, M. Li, and J. Wang, “H-tree: An efficient index
structurefor event matching in content-basedpublish/subscribe systems,”
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 26,
no. 6, pp. 1622–1632, 2014.

[9] T. Ding, S. Qian, J. Cao, G. Xue, Y. Zhu, J. Yu, and M. Li, “Mo-tree: an
efficient forwarding engine for spatiotemporal-aware pub/sub systems,”
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 32,
no. 4, pp. 855–866, 2020.

[10] Y. Zhao and J. Wu, “Towards approximate event processing in a large-
scale content-based network,” in IEE 31st International Conference on
Distributed Computing Systems (ICDCS), 2011, pp. 790–799.

[11] S. Qian, J. Cao, Y. Zhu, and M. Li, “Rein: A fast event matching
approach for content-based publish/subscribe systems,” in IEEE Confer-
ence on Computer Communications (INFOCOM), 2014, pp. 2058–2066.

[12] A. Carzaniga and A. L. Wolf, “Forwarding in a content-based network,”
in Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications (SIGCOMM,
2003, pp. 163–174.

[13] T. Ding, S. Qian, J. Cao, G. Xue, and M. Li, “Scsl: Optimizing matching
algorithms to improve real-time for content-based pub/sub systems,”
in IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2020, pp. 148–157.

[14] W. Shi and S. Qian, “Hem: A hardware-aware event matching algorithm
for content-based pub/sub systems,” in Database Systems for Advanced
Applications: 27th International Conference (DASFAA), 2022, pp. 277–
292.

[15] Z. Liao, S. Qian, J. Cao, Y. Cao, G. Xue, J. Yu, Y. Zhu, and M. Li,
“Phsih: A lightweight parallelization of event matching in content-based
pub/sub systems,” in Proceedings of the 48th International Conference
on Parallel Processing (ICPP), 2019, pp. 21:1–21:10.

[16] T. Ding, S. Qian, W. Zhu, J. Cao, G. Xue, Y. Zhu, and W. Li, “Comat:
an effective composite matching framework for content-based pub/sub
systems,” in IEEE International Conference on Parallel & Distributed
Processing with Applications(ISPA), 2020, pp. 236–243.

[17] D. Zhang, C.-Y. Chan, and K.-L. Tan, “An efficient publish/subscribe
index for e-commerce databases,” Proceedings of the VLDB Endowment,
vol. 7, no. 8, pp. 613–624, 2014.

[18] S. Qian, W. Mao, J. Cao, F. L. Mouël, and M. Li, “Adjusting matching
algorithm to adapt to workload fluctuations in content-based pub-
lish/subscribe systems,” in IEEE Conference on Computer Communi-
cations (INFOCOM), 2019, pp. 1936–1944.

[19] W. Fan, Y. Liu, and B. Tang, “Gem: An analytic geometrical ap-
proach to fast event matching for multi-dimensional content-based
publish/subscribe services,” in The 35th Annual IEEE International
Conference on Computer Communications (INFOCOM), 2016, pp. 1–9.

[20] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D.
Chandra, “Matching events in a content-based subscription system,”
in Proceedings of the 18th Annual ACM Symposium on Principles of
Distributed Computing (PODC), 1999, pp. 53–61.

[21] D. Zhang, C.-Y. Chan, and K.-L. Tan, “An efficient publish/subscribe
index for e-commerce databases,” VLDB Endowment, vol. 7, no. 8, pp.
613–624, 2014.

[22] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith, “Efficient
filtering in publish-subscribe systems using binary decision diagrams,”
in Proceedings of the 23rd IEEE International Conference on Software
Engineering (ICSE), 2001, pp. 443–452.

[23] Z. Jerzak and C. Fetzer, “Bloom filter based routing for content-
based publish/subscribe,” in Proceedings of the 2nd ACM International
Conference on Distributed Event-Based Systems (DEBS), 2008, pp. 71–
81.

