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Abstract—Scale-out applications, such as various big data sys-
tems and memory computing programs comprise an important
software stack in clouds. Such applications usually have large
memory data footprint as well as code sizes, thus stressing the
CPU’s TLB efficiency. In this paper, we experimentally evaluate
how various TLB design choices in modern off-the-shelf x86
CPUs impact the performance of scale-out applications. The
findings aim to guide the partitioning schemes and capacity
planning of TLBs, and software-hardware co-design for emerging
applications.
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I. INTRODUCTION

In cloud service environments, dominant scale-out appli-
cations [1], such as Hadoop and Spark for distributed data
analysis, and back-end applications like Nginx and MySQL
for web services, are widely deployed. These applications
exhibit markedly different memory characteristics at runtime
compared to traditional Linux applications. In particular, the
executable binary file size and the data working set size [2]
of scale-out applications have significantly increased. This
poses unprecedented memory access pressure [3] on non-
supercomputing data center machines.

At the same time, as the main frequency increases and
pipeline efficiency improves [4], CPUs favor continuous feed-
ing of instructions to maximize their processing power. How-
ever, modern scale-out applications tend to issue a large body
of load/store operations that stress the MMU for address
translation. Address translation in modern 64-bit CPUs is
non-trivial, which contains 4-layer page walks along with
cache misses for PTE accesses. Thus, TLBs are indispensable
components to mitigate such expensive memory operations.

For high-performance scenarios on modern CPUs, TLB
entries should be filled only once (initial translation) and held
for the entire application lifecycle. In such cases, all memory
accesses within the application avoid address translations and
exhibit the same TLB access latency, which is fast due to the
hardware nature of TLB. However, in real-world scenarios,
TLB misses still happen [5] and damage application perfor-
mance due to bad data locality, code and data contention of
TLB entries, or fragmented address accesses.

Previous works conducted performance analysis on data
center applications, such as middleware [6] and serverless
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frameworks [7]. Especially, Michael et al. [5] analyzed the
MMU overhead for scale-out applications, which can account
for 1.8% to 16% of its runtime. However, such overhead is
by far not well understood with regard to the specific TLB
designs in modern CPUs. This paper aims to fill this gap and
advance the understanding.

To investigate the impact of TLB design on scale-out
applications performance, this paper conducts experiments on
different processors, including Intel’s 9th and 12th generation
processors and the AMD Zen3 processor, which use the same
x86 ISA but embody very different TLB designs. We analyze
the performance of applications and measure the miss rate
of TLB, under various workloads and system huge page
configurations. Specifically, we explore various TLB design
details and clarify how different TLB capacities and structures
affect the scale-out application performance.

The main contributions of this paper include:

• We find that some scale-out applications still suffer from
a non-negligible data memory performance overhead of
up to 10.9% due to TLB misses.

• Applications with small hot code areas (such as data-
caching, in-memory-analytics, and graph-analytics) have
reduced code performance loss to less than 0.1% on the
latest CPUs.

• Applications with store-major memory operations (such
as memcached and redis) tend to have better performance
when the underlying CPU has a unified dTLB for loads
and stores.

• Applications with frequent accesses to a small part of hot
data will be greatly impacted by the L1 dTLB latency.
Thus, an L1 dTLB with higher associativity (thus lower
latency) combined with extensive uses of huge pages
(manual application code tuning or OS-level allocator
policy) can effectively improve their performance.

The rest of the paper is organized as follows. Section 2
introduces the potential performance impact of paging and
TLB design on scale-out applications. Section 3 presents our
experimental setup and evaluation methodology. Section 4
discusses the results of our experiments, and presents the per-
formance analysis and discussion. Finally, Section 5 concludes
the paper.
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Fig. 1. Memory subsystem and MMU structures in different processors.
*The TLB entries for 1G huge pages are omitted, and in the latest Intel
microarchitecture, dTLB is divided into store TLB and LOAD TLB [8], which
is simplified here.

II. PERFORMANCE IMPACT OF TLB

This section illustrates that the paging memory system is
not suitable for scale-out applications, and describes several
TLB designs and their impact on the performance of different
applications.

A. TLB, the legacy of paging memory

The Memory Management Unit enables efficient memory
allocation and management through paging. In the early days
of the computer, the need for memory performance in applica-
tions was not yet as great as the demand for memory capacity
[9], so the more flexible and efficient memory utilization that
paging brings outweighs the additional access latency when an
address translation occurs. Nowadays, 64-bit CPUs are widely
used where 4-layer page tables replace the 2-layer tables on
32-bit CPUs and incur a 2x latency penalty. Also, the main
frequency of CPUs has greatly increased over time. The CPU
has to wait for more cycles when memory access stalls due to
address translation.

However, scale-out applications are placing higher demands
on memory capacity [3], and the additional logic introduced
is causing the binary file size to balloon [2]. In addition, the
working set size has grown geometrically to handle the ever-
increasing amount of data. The scale-out applications demand
far more performance and capacity from both code and data
memory than they did when paging was proposed, and the
paging design with flexibility is no longer performant for
scale-out applications.

TLB [9] and huge page [10], as mitigants of the paging
memory system, are unable to fully resolve the divergence
between the scale-out applications and the paging memory
system. Every TLB miss can result in applications being
exposed to the paging memory system and having to endure
meaningless page walk latency [11]. Therefore, how to utilize
TLB resources as much as possible on top of the decaying
paging memory system to avoid negative performance impact
on scale-out applications is a matter of concern.

B. Impact of TLB Structures

Different TLB designs are not oriented to the same memory
access pattern and may exhibit different performance and

TABLE I
TLB SPECIFICATIONS (ALL SIZES = 4K/2M/1G)

Intel Coffee Lake (2017) [8]

iTLB 4K 128 entries 512K
2M 8 entries 16M

dTLB
4K 64 entries 256K
2M 32 entries 64M
1G 4 entries 4G

sTLB 4K/2M 1536 entries 6M/3G
1G 16 entries 16G

Intel Golden Cove (2021) [8]

iTLB 4K 256 entries 1M
2M 32 entries 64M

dTLB (store) all sizes 16 entries 64K/32M/16G

dTLB (load)
4K 64 entries 256K
2M 32 entries 64M
1G 8 entries 8G

sTLB 4K/2M 1024 entries 4M/2G
4K/1G 1024 entries 4M/1T

AMD Zen3 (2020) [12]
L1 iTLB all sizes 64 entries 256K/128M/64G
L1 dTLB all sizes 64 entries 256K/128M/64G
L2 iTLB 4K/2M 512 entries 2M/1G

L2 dTLB 4K/2M 2048 entries 8M/4G
1G 64 entries 64G

utilization for different applications and huge page setups.
In the L1 TLB, AMD and Intel adopt two different imple-

mentations of TLB entry for various page sizes, which we
call generic entry and specific entry, as illustrated in Figure
1. Generic entry design [8] is that each L1 TLB entry can
store address translation results for all page sizes. However,
this design limits the number of TLB entries due to the need
for recording more bits per entry. In contrast, the specific entry
design [12] stores 4K pages and 2M huge pages in separate
entries in the L1 TLB. However, the number of entries reserved
for huge pages is limited, which reduces the effective range
of address mapping when using huge pages (Table 1).

There are also two different approaches for L2 TLB. Intel’s
approach [8] is combining iTLB and dTLB in the merged L2
TLB, also known as the sTLB, to record address translation
results for both code and data memory. Although TLB entry
updates may face contention, this design allows for more
flexible capacity sharing. AMD chooses to separate the sTLB
into distinct L2 iTLB and L2 dTLB [12] to store the address
translation results for code and data memory, respectively,
without interference. However, this approach may not fully
utilize all hardware resources when the pressure of the two
types of memory is unbalanced.

III. METHODOLOGY

This section describes the test load selection, test environ-
ment setup, and test methods used in our experiments.

A. Simulated Load

CloudSuite benchmark [13] is a set of test applications or
collections for different scenarios that cover various situations
that may occur in data centers. To measure the performance
of scale-out applications, we used CloudSuite benchmark 4.0
as a simulated data center workload in our study.



B. Test Environment Setup

To compare the performance impact of different TLB capac-
ities and structures, we set up the experimental environment
on three hosts with different processors:

• Host A: 6-core Intel Core i5-9600K (Coffee Lake) CPU
running at 3.70GHz with DDR4 32G memory.

• Host B: 8-core Intel Core i7-12700 (Golden Cove) CPU
running at 4.50GHz with DDR4 16G memory.

• Host C: 8-core AMD Ryzen 5700G (Zen3) CPU running
at 4.60GHz with DDR4 32G memory.

The detailed TLB specifications are recorded in Table 1. All
hosts run the Debian 11.6 system with Linux kernel 6.0.12-1.

C. Performance Event

To analyze the running characteristics of the same work-
loads on processors with different TLB capacities and struc-
tures, we bind client and server applications to different cores,
while only measuring the cores running the server application.
To collect processor performance events during testing, we
employed the Linux perf tool, and the average of three
test results was computed.

D. Huge Page

If only 4K pages are used, the TLB can provide an
extremely limited range [14] of address mapping (Table 1),
which is much smaller than the size of the scale-out applica-
tion’s working set, or even the size of its code memory, but
the use of huge pages can effectively alleviate this limitation.

In Linux, there are two ways to use huge pages: Transparent
Huge Pages (THP) and hugetlbfs. THP is transparent to the ap-
plication and does not require modification of the application,
while hugetlbfs is not. And starting from kernel 5.14, THP
can not only be used for data but also executable memory,
mapping application code areas with huge pages. However, if
the memory pages are not aligned to 2MB or not contiguous,
the promotion rate of THP will not only decrease further but
also introduce noticeable memory bloat [15].

IV. EXPERIMENT RESULT AND ANALYSIS

In this section, we analyze application performance over-
head on processors with various TLB designs. Then, we
investigate the effects of using huge pages. Additionally,
we analyze the importance of L1 iTLB and L1 dTLB for
applications with limited hot code areas and frequent hot data
accesses. Furthermore, we explored the impact of a separate
store dTLB on data memory performance. Finally, we measure
the effective hit rate of L2 TLB on different structures and
whether it matters to applications.

A. Is MMU overhead still significant for scale-out applica-
tions on the latest x86 processors?

In this section, we measure and calculate the proportion
of cycles consumed by page walks (Host A and Host B) or
pipeline stalled cycles (Host C) during application runtime
to evaluate the MMU overhead caused by TLB misses for
different scale-out applications. Figure 2 shows the results.
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Fig. 2. Intel: Percentage of cycles consumed by page walks relative to the
total cycles. AMD: Percentage of cycles caused by TLB misses leading to
front-end/back-end stalling.

For most scale-out applications, the performance overhead
due to iTLB misses is not significant. The average iTLB misses
overhead is only 0.98%, 0.56%, and 0.35% on Host A, Host
B, and Host C. However, for applications with large hot code
areas such as data-serving and web-serving, the iTLB miss
overhead is still non-negligible, especially on processors with
small TLB capacities such as Host A, where the overheads are
3.89% and 0.86%, respectively.

Since the MMU overheads are not comparable due to
different performance event definitions between Host C and
the others, we analyze the TLB miss rates (Figure 3 and Figure
4). We find that the L2 iTLB miss for most applications is less
than 0.25 MPKI, for applications with large hot code areas it
still does not exceed 1 MPKI. However, the L2 iTLB miss rate
of these scale-out applications on Host C is on average 63.26%
higher than that on Host B, which suggests that applications
running on Host C may get worse code performance.

Moreover, by comparing the code performance overhead on
Host A and Host B, we find that Host B has indeed alleviated
the code memory address translation overhead by increasing
the iTLB and sTLB capacity. The code performance overhead
on average decreases by 39.61%, and in data-caching the
overhead remarkably decreases by 98.2%.

In contrast to the low code performance overhead, our
results show that most scale-out applications still suffer from
significant data memory performance overhead due to dTLB
misses. Specifically, these applications have an average over-
head of more than 3.68% on Host A and Host B, and
applications with higher data memory pressure, such as data-
caching and data-serving, introduce up to 11.71% and 7.33%
overheads.

Findings:
• In scale-out applications, the overhead caused by iTLB

misses is not significant, with most applications showing
a code performance loss of less than 1%.
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Fig. 3. L2 iTLB miss rate, measured as the number of misses per thousand
instructions (MPKI).

• Most scale-out applications still suffer from a non-
negligible data memory performance overhead. The
dTLB miss overhead on the data-serving application
exceeds 10% on older processors, which can be reduced
by over 25% by enlarging dTLB capacity.

• In database applications and others with large hot code
areas, the iTLB miss overhead is still noticeable and
should be given due attention.

• Separating the L2 iTLB from the L2 TLB has a non-
efficient improvement on the overall application code
performance.

B. Can huge pages improve the code and data memory
performance of applications?

The comparison of MMU overhead before and after en-
abling THP reveals that using huge pages for code and
data memory leads to better overall performance, resulting
in an average of 12.16% reduction in iTLB miss overhead
and 27.43% in dTLB miss overhead. For data-serving ap-
plications, enabling THP leads to a significant reduction in
iTLB miss overhead by an average of 23.30%, resulting
in better code performance. Additionally, for data-analytics,
in-memory-analytics, and graph-analytics applications, using
huge pages leads to a reduction in data memory performance
overhead by 48.49%, 58.73%, and 56.45%, respectively. Even
for web-serving databases that are not suitable for huge
pages [16], enabling THP still reduces iTLB and dTLB miss
overhead by 12.58% and 18.41%. However, it is important to
consider the potential long-tail in memory access latency due
to THP memory page locking [15], and explicit use of huge
pages is recommended instead.

Findings:
• In most scale-out applications, even those with sparse

data memory access patterns like database applications,
enabling huge pages has a significant improvement in
both code and data memory performance.
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Fig. 4. L1 iTLB and L2 dTLB miss rate, measured as the number of misses
per thousand instructions (MPKI).

C. What can be observed when running on processors with
different TLB designs?

We analyze how different TLB designs affect application
performance. Figure 4 illustrates the L1 iTLB and L2 dTLB
miss rate on different processors. For every application, Host
B outperforms the others, with an average 65.28% and 59.47%
reduction in iTLB miss rate to Host C and Host A.

In data-caching, in-memory-analytics, graph-analytics, and
web-search applications, Host B has a lower L2 dTLB miss
rate than Host A, but with a higher data memory performance
overhead (Figure 2). One possible cause of this phenomenon
is that the Linux kernel swaps out [17] some pages to disks
due to limited system memory capacity, which causes orders
of magnitude data memory performance degradation of the
program when accessing these pages.

For code performance, except for applications with limited
hot code areas, such as data-caching and media-streaming,
Host C’s fully associative design of L1 iTLB is not as effective
as larger but less associative L1 iTLB on other applications.
The L1 iTLB miss rate of Host C is 14.33% higher compared
to Host A. Host B continues to increase its capacity while
keeping its associativity unchanged, further reducing the aver-
age L1 iTLB miss rate by 59.47%. This is particularly evident
in data-caching, an application with limited hot code areas,
where the L1 iTLB miss rate of Host B is reduced by 63.67%.

Regarding the huge pages, we found that enabling THP
resulted in reduced iTLB and dTLB miss rates for all three
processors in most applications, with an average reduction of
14.21% and 46.72%, respectively. And the data in Figure 3
shows that enabling THP also led to a reduced average L2
iTLB miss rate of 22.52%.

Lastly, we observed an abnormal increase in the L1 iTLB
miss rate of the data-serving application on Host B when
enabling THP, with an increase of 20.03%. However, a similar
phenomenon does not occur on Host A, which has fewer iTLB
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Fig. 5. L1 dTLB, for different processors, measured as the number of misses
per thousand instructions (MPKI).

entries for huge pages. This may be attributed to the iTLB of
Host B has a huge capacity for 4K pages and can perfectly fit
the hot code areas of the application, while not limited by the
limited number of huge page entries.

Findings:
• No matter which processor and what TLB design is

considered, enabling huge pages can lead to an overall
improvement in application performance.

• For scale-out applications with limited hot code areas,
the impact of L1 iTLB capacity has reached a critical
point. Running on processors with larger L1 iTLB can
almost eliminate the address translation overhead on code
performance.

D. How does the design of L1 dTLB affect centralized hot
data memory accesses?

Centralized memory accesses to a small part of hot data
will be greatly impacted by the L1 dTLB design. In VM-
based cloud environments, nested page tables make the address
translation overhead even higher [18]. For applications with
frequent accesses to hot data that may be sensitive to latency,
it is necessary to ensure that all memory access hit the TLB
to avoid data memory address translation.

Figure 5 shows the miss rates of L1 dTLB. For all scale-
out applications, it can be observed that Host C’s L1 dTLB
performs significantly better than Host A and Host B. The
average L1 dTLB miss rate for Host C is only 3.2487 MPKI,
which is 47.39% and 36.73% lower than Host A and Host
B, respectively. Given the similarity of the L1 dTLB capacity
among the three hosts, Host C’s fully associative design is
likely the reason for its higher hit rate.

After enabling THP huge pages, the L1 dTLB miss rates on
Host C, Host A, and Host B are reduced for any applications.
The average reduction is up to 58.52%, indicating that using
huge pages is also extremely useful for reducing the hot data
memory access latency.
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misses per thousand instructions (MPKI).

Findings:
• For applications requiring low latency access to hot data,

a processor with higher associativity on L1 dTLB should
be considered.

• The use of huge pages effectively reduces the L1 dTLB
miss on different processors, which further reduces access
latency on hot data access.

E. Do hybrid load/store applications suffer a performance hit
due to store dTLB?

We noticed that in Intel’s latest dTLB design, the store op-
erations have been allocated a small separate area. Therefore,
we separately measured the hit rates of load and store accesses
in the L1 dTLB, as shown in Figure 6.

Firstly, for all applications running on Host B, the miss
rate of the store operation in L1 dTLB is significantly higher
than that on Host A, with an average increase of 129.73%.
However, by avoiding store operations from competing with
load operations for limited TLB resources and mitigating the
interference with the address translation of load operations,
the TLB miss rate of load operations is dramatically reduced
by 44.57%. This further contributes to a 22.22% decrease in
the overall miss rate of the L1 dTLB, thus providing better
data memory performance for applications.

However, for applications with store-major memory opera-
tions, such as data-caching, the store dTLB miss rate increased
by 187.55%, despite a decrease of 29.27% in the load L1
dTLB miss rate. The high store miss rate leads to overall
performance degradation of the L1 dTLB. Nonetheless, since
most applications mainly issue load operations, the separate
store dTLB does help reduce the dTLB miss rate without
noticeably increasing the dTLB capacity.

Findings:
• For applications that have a high proportion of store op-

erations, running on processors without separated dTLBs
can probably provide better overall performance.
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F. Does the separated L2 TLB matter for scale-out applica-
tions?

We define L2 TLB self-miss rate (Figure 7) as the number
of L2 TLB misses over the number of L2 TLB accesses.

Benefiting from the separate design, Host C exhibits lower
L2 iTLB self-miss rates and provides better code performance
for most applications at the same L1 iTLB efficiency, except
for the data-caching and media-streaming, where Host B
performs exceptionally well due to its huge L1 iTLB responds
to most address translation requests.

For data memory performance, Host C has even worse L2
dTLB self-miss rates despite separating the L2 dTLB from L2
TLB with dedicated 2048 entries. Thus, some applications’
data memory performance on Host C may not be as good as
that of Host B, which has a smaller total L2 TLB size but also
a lower L2 dTLB miss rate.

Findings:
• For scale-out applications, the separated L2 TLB can

slightly improve the code performance, but not the data
memory performance.

V. CONCLUSION

In this paper, we measured and analyzed the performance
overhead suffered by a variety of scale-out applications due
to the paging memory system and address translation. We
found that even though the latest x86 processors try to reduce
the MMU overhead on scale-out applications by increasing
capacity and associativity, they still cannot fully mitigate the
degradation of code and data memory performance due to
TLB misses. When running scale-out applications, selecting
a processor with the appropriate TLB design can maximize
performance based on the memory access characteristics and
requirements, such as frequent hot data accesses or mixed
loads and stores. Noteworthy, we found that for applications
with limited hot code areas, the current L1 iTLB capacity
has reached a critical point where almost all code address

translations overhead can be eliminated. Finally, we deepened
the understanding of the MMU overhead suffered by scale-out
applications due to paging by incorporating in-depth analysis
on TLB design, and we hope the findings can guide the
planning of TLBs and CPUs, and software-hardware co-design
for the next generation of applications.
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