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Abstract—Wireless sensing techniques for Human Activity
Recognition (HAR) have been widely studied in recent years. At
present, the research on HAR based on Radio Frequency Identifi-
cation (RFID) is changing from the tag attachment method to the
tag non-attachment method. Affected by multipath, the current
solutions in tag non-attachment scenarios mainly focus on single-
object activity recognition, which is not suitable for multi-object
scenarios. To address these issues, we propose DeepMultiple, a
novel tag non-attachment activity recognition model for multi-
object. The model first preprocesses the raw signal with filter
and phase calibration, then it applies dilated convolution in the
frequency domain to extract multi-object activity features, finally
ProbSparse is used to optimize the vanilla Transformer-based
Encoder to enhance the activity recognition ability. We deployed
a single reader and antenna for multi-object activity tracking
during the experiments to reduce deployment difficulties. Exten-
sive experimental results show that DeepMultiple can recognize
ten types of multi-object activities with 98.12% precision under
different challenging settings, which has excellent performance
compared with several state-of-the-art methods.

Index Terms—RFID, Multi-object, Human Activity Recogni-
tion, Deep Learning

I. INTRODUCTION

With the development of deep learning technology, human
activity recognition (HAR) has become one of the most impor-
tant tasks in ubiquitous computing. It has attracted widespread
attention from industry and academia. HAR based on cameras
and portable wearable devices has problems such as high line-
of-sight (LoS) requirements, unfriendly privacy protection(e.g.
cameras), and real-time body attachment (e.g. wearable de-
vices). RFID technology has become a new choice in the
field of HAR as its low cost, small form size, and convenient
deployment [1]. It has been widely used in various scenarios
such as patient health monitoring [2], motion guidance in gyms
[3], and activity monitoring on market shelves [4].

There are two tag placement methods for RFID-based HAR.
(1) tag-attached method, tag-attached method employs RFID
tags to attach to the human body (i.e. reference [5], refer-
ence [6]). (2) tag non-attachment method, tag non-attachment
method apply multiple tags to fix in the environment as fixed
references (i.e. reference [7]). The tag attachment method
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needs to attach RFID tags to specific objects or users to
track their movements and infer their activities. This method
has the inconvenience of equipment and privacy violations.
Therefore, more and more researchers turn their attention to
tag non-attachment method. But there are still the following
challenges in the tag non-attachment scenario. First, it is
easy to cause signal attenuation on the direct propagation
link between the tag and the antenna due to environmental
interference. So more antennas need to be brought in to reduce
the multipath interference caused by the environment. Second,
current research on RFID-based activity recognition mainly
focuses on simple scenarios, that is, a person in an open
environment. Since the interaction between multiple objects
is more abundant, the interaction signals after backscattering
are inevitably mixed. It will be more difficult to extend to
multi-object activity recognition.

To address the above challenges, we propose DeepMultiple,
a novel model for multi-object activity recognition in complex
multipath environments. We use both RSSI and phase as
input for getting more useful information from them. The
model splits the preprocessed time-series data by sliding time
windows and uses dilated convolution and selective attention
mechanism to extract available features in complex multi-
path information to realize multi-object activity recognition.
Besides, we deployed only a single antenna for activity iden-
tification during the experiment.

The contributions of this paper are summarized as follows.

• We propose a challenging multi-object activity recogni-
tion scenario without tag attachment. Compared to sev-
eral state-of-the-art methods, experimental results demon-
strate the superiority of our proposed model.

• To the best of the authors’ knowledge, the DeepMultiple
is the first model that applies dilated convolution in the
RFID field to merge the spatial feature from different
objects, and its validity is proven by ablation experiments.

• DeepMultiple optimizes the vanilla Transformer-based
Encoder by ProbSparse attention mechanism, reduces the
calculation of the parameters, and realizes multi-object
HAR with only 2600 training samples.



II. RELATED WORK

Tag-attached: Currently, there is a lot of work dedicated
to human activity recognition based on RFID technology.
Reference [10] attaches RFID tags to the user’s back and
recognizes the user’s habitual sitting posture by establishing
the correlation between the phase change of the tags and
the sitting postures. TagBreathe [6] attaches RFID tags to
users and measures the tiny movement of the human chest
to monitor respiration. By attaching passive RFID tags on
the dumbbells and leveraging the Doppler shift profile of the
reflected backscatter signals, FEMO [5] provides an integrated
free-weight exercise monitoring system. Rf-idraw [11] uses
antenna array and beam steering technology to track the
trajectory of the marked object. Tagoram [12] proposes a
Differential Augmented Hologram (DAH) which will facilitate
the instant tracking of the mobile RFID tag with millimeter
accuracy. The above research is carried out around the tag
attached to the detector, however, many activities do not
directly interact with RFID-tagged objects. Empirical results
have shown that RFID signals can be influenced by nearby
human activities even if the objects are not moved [8].

Tag non-attachment: In recent years, more and more
researchers have studied activity recognition in tag non-
attachment scenarios. RFIPad [7] enables in-air handwriting
without tags attached. RF-Care [13] aims to use passive RFID
arrays to establish a tag non-attachment activity recognition
for older people. Tagfree [8] is a pioneering work that aims to
distinguish and use useful features contained in complex mul-
tipath information. Although the above research is based on
tag non-attachment, more devices need to be used for accurate
identification, which increases deployment costs. And these
methods do not have the ability of multi-object recognition.

III. PRELIMINARIES
In this section, we will introduce the basic theory and data

preprocessing methods in RFID.

A. RFID Communication Mechanism
Received Signal Strength Indicator (RSSI) . The wireless

signal will be divided into multiple signals during the propaga-
tion process. After the reader sends signals to the surrounding
environment, multiple signal signals are superimposed and
returned to the reader. The signal strength received by the
reader can be modeled as:

S =

N∑
i=1

h · |Fi| ejθ (1)

where h represents the attenuation coefficient in the signal
propagation process. Fi is the amplitude of the i-th com-
munication path signal, and θ is the phase of RFID signal.
Due to the influence of multi-object interaction and multi-
path effects in the environment, the signal S consists of three
parts: the Stag returned directly by the tag, the Senv returned
by the environment and the Sobjects returned by the multi-
object interaction as shown in Fig.3.

S = Stag + Senv + Sobjects (2)

From the above two formulas, we can conclude that in a
complex multipath environment, the signal received by the
reader is mixed with multiple signals, and it will be affected
by distance and attenuation coefficient.

Phase. For a single-reader RFID propagation environment,
the phase information of the signal received from the k-th tag
provided by the reader is θ = mod (θp + θa + θr + θt, 2π),
θp = 2πd/λ. d is the propagation distance of RFID signal,
λ represents the wavelength of the RFID signal. θa, θr, θt
represent the phase jump caused by the antenna transmission
circuit, receiver circuit and tag reflection characteristics.

B. Data Preprocessing

1) Phase Calibration: As shown in Fig.1(a) and Fig.1(b),
we find that RSSI is less sensitive to human activity, but
still detects fluctuations caused by activity, while the phase
is very sensitive to information, but not accurate. The main
reason for the inaccurate raw phase is caused by the frequency
hopping mechanism. Previous research has shown that fre-
quency hopping can lead to significant phase shifts due to
the phase difference of the oscillators and the non-uniform
frequency response of the antenna [19]. And according to
PRELIMINARIES, we know that the phase shift will also be
affected by transmission, receive, and reflection links.

We use phase unwrapping [15] and phase smoothing to
eliminate this phase shift. The smoothing algorithm works by
collecting an initial phase measurement, which takes about 10
seconds for a stationary tag. It can be written as:

θ(t) = θj(t)− θ̃j + θ̃d (3)

where θj(t) denote the measured phase at frequency fj at time
t. θ̃j and θ̃d represent the median values of phases measured
in the last 10 seconds at frequency fj and common frequency
fd (default to 922.625MHZ in this work). Fig.1(c) shows the
results after phase unwrapping and phase smoothing.

2) Data Splitting and Resampling: We first split the col-
lected long signal data into samples with width w (w = 5s
in this work) and form the training set by them. Then, these
samples are further divided into n (n = 10 in this work) non-
overlapping timesteps X with time interval width τ (τ = 0.5s
in this work), X = {X1, ..., Xt, ..., Xn}, Xt represents the
data collected by k tags at timestep t, which can be further
divided into Xt = {xt1, xt2, ..., xtk}.

Due to the transmission characteristics of the RF signal, the
RSSI and phase from each tag in the scenario cannot be read
equally. We resample the input data to the same dimensions
using linear interpolation.

3) Fast Fourier Transform: The raw RFID signals are a
mixture of objects, too noisy to be directly understood and
used. We use Fast Fourier Transform (FFT) to convert the
time-domain data to the frequency domain for distinguishing
the activity features from multiple objects.

4) Data Filtering: To select a more suitable filter in this
scenario, our paper uses Gaussian Filter, Kalman Filter, Mean
Filter, Median Filter, and Hampel Filter to process the raw
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Fig. 1. Data preprocessing module display diagram

RFID signal. In the experimental section, we further compare
the performance of the model with different filters.

IV. MODEL

In this section, we give a detailed description of the Deep-
Multiple. The framework of DeepMultiple is shown in Fig.2.

A. Individual ConvLayer

DeepMultiple is arranged according to n timesteps as input.
Since the structures of Individual ConvLayer at each timestep
are the same, we focus on a single timestep with input
Xt = {xt1, xt2, ..., xtk}. Recall that xti represents the signals
from the i-th tag at timestep t and the shape of xti is d× 2f ,
where d present the tag measurement dimension, i.e. RSSI
and phase, f is the dimension of frequency domain. For
each timestep, xti is first fed into the dilated CNN with
shape (1, conv1) to extract the multi-scale activity features
from different objects in the frequency domain. Then it uses
a 2d conv with shape (d, conv2) to merge features from
different tags and a 2d conv with shape (1, conv3) to further
learn the high-level relationship, with the output v

(1)
ti . After

each convolution operation, DeepMultiple uses ReLu as the
activation function and applies Batch Normalization to reduce
internal covariate shift and vanishing gradients.

B. Flatten and Merge Layer

In Flatten and Merge Layer, we flatten v
(1)
ti in different chan-

nels into v
(2)
ti and concat k tags vector

{
v
(2)
t1 , v

(2)
t2 , ..., v

(2)
tk

}
into a k-row matrix Vt, then we use conv2d with shape (k,
conv4) to learn the intrinsic interactions among all k tags
to generate the matrix V ′

t , furthermore 2d filters with (1,
conv5) and (1, conv6) are applied to learn the high-level
relationships, last we flatten the result into v′t as the input to
Transformer-based Encoder Variant Layer. Again, after each
convolution layer, Batch Normalization and a ReLu activation
are performed, and a MaxPool2d with stride = 2 is applied to
compress the dimensions in the last convolution layer.

C. Transformer-based Encoder Variant Layer

A large amount of training data should be used in trans-
former due to its complex structure, which is diffcult to
achieve in RFID filed. Previous research like [14] used simple
RNN or GRU as the backbone network, but experiments have
verified that these methods are not suitable for multi-object

recognition without tags attachment. To this end, we optimize
the vanilla Transformer-based Encoder structure and use sparse
ProbSparse attention to effectively reduce the computational
complexity and improve the recognition accuracy.

Since the vanilla self-attention mechanism uses atom oper-
ation, i.e. scaled dot product, causes the time complexity and
memory usage per layer to be O

(
L2

)
.The use of the vanilla

self-attention mechanism entails the computation of the scaled
dot product of the input without discrimination, which will
amplify the influence of noise in the data, hinder the perfor-
mance of the model, and increase computational complexity.
The ProbSparse self-attention mechanism proposed in [9] can
be a good solution to this problem. It has shown that the
distribution of self-attention probability is potentially sparse
and achieves the O (L logL) time complexity and O (L logL)
memory usage on dependency alignments. The ProbSparse
self-attention mechanism is shown below.

A (Q,K,V) = softmax

(
QK⊤
√
dk

)
V (4)

where Q is a sparse matrix of the same size as q and it only
contains the Top-u queries under the sparsity measurement
M (q,K) controlled by a constant sampling factor c, we set
u = c · lnLQ, and A represents kernel smoother based on
probability distribution. M (q,K) and A can be described as:

M(qi,K) = max
j

{
qik

⊤
j√
dk

}
− 1

LK

LK∑
j=1

qik
⊤
j√
dk

(5)

Under the long tail distribution, we randomly draw sample
U = LK lnLQ dot-product pairs to get M (qi,K). Then, we
select Top-u from them as Q, so the ProbSparse self-attention
time complexity and space complexity are O (L logL).

A (qi,K,V) =
∑
j

k (qi, kj)∑
l (qi, kl)

vj = Ep(kj|qi) [vj] (6)

where qi stands for the i-th row in Q, p (kj | qi) =
k (qi, kl)/

∑
l k (qi, kl) and k (qi, kl) selects the asymmetric

exponential kernel exp
(
qik

⊤
j /

√
d
)

. The self-attention and
values are combined on the basis of the calculation of proba-
bilities p (kj | qi) to obtain the output.

We explain the Transformer-based Encoder Variant Layer
with input v′t at timestep t and start by applying the po-
sitional embedding [18] to introduce a concept of relative
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Fig. 2. Illustrating the overall structure of DeepMultiple, where Re(z) and Lm(z) represent the real part and imaginary part respectively

order between the features extracted at different timesteps.
Then, we multiple v′t with three different learnable matrices
WQ,WK ,WV to get the query, key, value matrices Q, K,
V. The Top-u important queries are selected according to (5)
and the attention score is obtained by (6). Then we integrate
attention score and input by skip-connection. Last, Layer
Normalization is applied and then the normalized data are
passed into the feedforward output layer to obtain the output
O = {o1, o2, ..., ot}.

D. Output Layer

The output after Transformer-based Encoder variant Layer
is O = {o1, o2, ..., ot} , we need a prediction activity ŷ, so a
Linear layer, ŷc = OA⊤ + b, is used to map O to ŷc (where
c ⊂ C, C is the set of all classes) and then normalize ŷc by
softmax, we select the max probability as follows.

P = argmax
c∈C

(softmax (ŷc)) (7)

We opt to use cross-entropy loss. It can be formulated as:

L = −
N∑
c=1

yc log (Pc) (8)

where yc is the indicator variable, Pc is the probability that
the predicted result belongs to class c, and N is the number
of class categories.

V. EXPERIMENT

A. DataSet Description

We conduct extensive experiments based on the dataset
collected by five volunteers (three males and two females)
in two typical indoor environments, a laboratory and an

empty room to complex and simple multipath environments,
respectively. In each environment, we deploy a single reader
and antenna then we attach a 3x3 tag array to a wall 1.5-
2m above the ground. In our experiments, volunteers perform
activities as shown in Fig.3. We tested ten activity scenarios
of two people, as shown in Fig.4.

The hardware components of our experiment include an
Impinj R700 reader, equipped with an ultrahigh-frequency
UHF2599 antenna and SMARTRAC DogBone RFID tags.

We collected 3250 signal samples and name them RFAC
DataSet, of which 80% were used as training sets, and 20%
were used as test sets. To compare the impact of different fil-
tering algorithms on model performance, we processed the raw
data by different filters and constructed RFAC-Hampel, RFAC-
Gaussian, RFAC-Kalman, RFAC-Median, and RFAC-Mean.
In the subsequent experiments, the pre-processed dataset is
applied to the baseline for performance comparison.

B. Experimental Details

In this section, we introduce the baseline, hyper-parameter
tuning, and evaluation metrics used in this experiment.

Baseline: We chose five deep learning models used in
the HAR field as a comparison, including the state-of-the-art
models. For all the compared models, we only made minor
adjustments to the shape of the input, and the model structures
were implemented as provided by the authors. The CNN-
stacked model, DeepConv [16], CNN-GRU, TagFree [8] and
AttnSense [17] are used to compare the performance with
DeepMultiple.

Hyper-parameter tuning: We conducted a grid search for
learning rate and weight decay, the learning search range was{
1e−2, 1e−3, 1e−4, 1e−5

}
, and the learning rate is finally set
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to 1e−3, the weight decay search range was {0.01, 0.1, 1},
and the weight decay was finally selected to be 0.1. During
the training, we used the early stopping to train and set the
batch size to 64 then trained a total of 500 epochs. We use
Adam optimizer with a default value and normalize the input
by zero-mean.

Metrics: In this work, we use Weighted-F1 as the metric
in the evaluation and the results are averaged over the 5 runs.
The formula of Weighted-F1 is described as follows.

Weighted− F1 =

C∑
i=1

w(i) 2 · Precision(i) · Recall(i)

Precision(i) +Recall(i)
(9)

where for a given class i, w(i) represents the proportion of
this class in the total sample, Precision(i), Recall(i) are the
precision and recall of the i-th class respectively.

C. Numerical Analysis

1) Performance of our model: As shown in Fig.5, the Con-
fusion Matrix shows the overall performance of DeepMultiple
with the kalman filter at an interval width of 0.5s. The overall
accuracy rate is 98.12% and the accuracy rate of all ten
activities is above 96%. It can be found that our model can
extract important features well in single reader-antenna tag
non-attachment scenarios.

2) Impact of time interval width and filter preprocessing:
In order to compare the impact of the time interval and filter
preprocessing, we evaluated the performance of the model with
different filters at different time interval widths. From Fig.
6, we can find that the model performs best when the time
interval width is set to 0.5s. The highest Weighted-F1 score
is 0.981 with the Kalman filter and the lowest Weighted-F1
score is 0.967 with the mean filter under this setting. In the
subsequent experiments, the default is to compare performance
with the Kalman filter at an interval width of 0.5s.

3) Impact of phase calibration: In order to verify that
phase unwrapping and phase smoothing can also improve
the accuracy of activity recognition, we further evaluate the
performance of the model with calibration and no-calibration.
As shown in Fig.7, we can find that our model has achieved

TABLE I
WEIGHTED-F1 SCORES ON DIFFERENT ALGORITHMS

Model Dataset
D1 D2 D3 D4 D5 D6

DeepMultiple 0.941 0.976 0.968 0.981 0.973 0.962
CNN 0.448 0.728 0.742 0.756 0.770 0.759

DeepConv [16] 0.509 0.790 0.834 0.867 0.796 0.851
CNN-GRU 0.520 0.848 0.892 0.900 0.890 0.906
TagFree [8] 0.562 0.829 0.890 0.909 0.878 0.889

AttnSense [17] 0.659 0.848 0.861 0.895 0.836 0.871

higher recognition accuracy with calibration, which directly
demonstrates the effectiveness of our phase calibration.

4) Compared Algorithms: In this section, DeepMultiple is
compared with the baseline algorithm under the RFAC (D1),
RFAC-Hampel (D2), RFAC-Gauss (D3), RFAC-Kalman (D4),
RFAC-Median (D5) and RFAC-Mean (D6).

Through Table I, we find that the recognition accuracy of all
models was improved after the filtering process, which proves
the effectiveness of the filtering algorithm. In addition, we find
that DeepMultiple always achieves the highest Weighted-F1
score regardless of filtering, which proves its strong robust-
ness and generalization ability. In contrast, baselines without
filtering have poor performance and cannot perform multi-
object activity recognition in a complex multipath environ-
ment. There is no doubt that the performance of DeepMultiple
is significantly better than the latest method in this field.

5) Ablation Study: To verify that the dilated convolution
module and ProbSparse self-attention mechanism proposed
by our model contribute to the effectiveness of activity
recognition, we have performed two variants of our model,
DeepMultiple CConv using vanilla convolutions instead of
dilated convolutions and DeepMultiple CAttn using vanilla
self-attention mechanism instead of ProbSparse self-attention.
The result is shown in Fig.8.

By comparing the experimental performance of DeepMul-
tiple, DeepMultiple CConv and DeepMultiple CAttn, it can
be seen that the accuracy of the model using the dilated
convolution has been improved in all ten activities. The overall
recognition accuracy increased by 4.7%. The reason for this
phenomenon is that vanilla convolution causes feature frag-
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mentation when extracting features in the frequency domain,
which can be solved by dilated convolution. Compared to the
vanilla self-attention, using ProbSparse self-attention brings
a 27.5% increase in global recognition accuracy. It can be
concluded that the query sparsity of ProbSparse self-attention
can effectively improve the performance of model recognition
and prevent overfitting.

VI. CONCLUSION

In this paper, we propose DeepMultiple for multi-object ac-
tivity recognition in complex multi-path environments. Deep-
Multiple not only applies the dilated convolution to feature
extraction in the frequency domain, but it also reduces the
calculation of the parameters with the selective ProbSparse
attention and improves the recognition accuracy. Experimental
results show that the accuracy of this model can reach 98.12%,
which is superior to the state-of-the-art model in this field.
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