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Abstract—Requirements traceability (RT) is crucial for 

requirement management and impact analysis of requirement 

change in software development. The applications of machine 

learning (ML) technologies to RT have received much attention. 

In this paper, we aim to provide the state-of-the-art progress of 

the studies on the intersection of ML and RT. A systematic 

mapping study (SMS) is conducted and 26 studies have been 

identified as primary studies. The results present 32 ML 

technologies and 7 enhancement strategies for establishing trace 

links. Besides, 46 datasets are utilized for validating the 

performance of these ML technologies. Additionally, the overall 

quality of these primary studies is at a good level. This study 

indicates that numerous studies have proved the potential of 

utilizing ML technologies for predicting emerging trace links in 

RT by utilizing existing traceability information. Moreover, 

open-source datasets are the most popular, which greatly 

improves the reproducibility of studies. However, there is still a 

gap between academia and industrial application because of the 

lack of industrial practice and guidance from practitioners. 

Keywords—requirements traceability, machine learning, 

quality assessment, systematic mapping study. 

I. INTRODUCTION 

Requirements traceability (RT) is “ the ability to describe 
and follow the life of a requirement, in both a forwards and 
backwards direction” [1]. It is one of the vital activities in 
Requirements engineering (RE). It is beneficial for software 
development that RT helps to identify the origin of 
requirements, analyze the impact of requirements change and 
trace the relationships between requirements and other 
artifacts [2]. This ensures the needs of stakeholders are always 
met in development process, and promotes the transparency 
and traceability of the software development process. 

There are various technologies such as information 

retrieval (IR) and machine learning (ML) approaches. 

However, it cannot use historical information for prediction, 

which leads to poor universality. Especially some informal 

products still require a lot of manual intervention. After 2017, 

increasing ML technologies are developed and applied to RT 

to obtain complete requirements trace links. It can learn from 

existing traceability information to obtain characteristics. The 

applications of ML in RT approaches have been emerging as 

a hot topic with the efforts of researchers and practitioners. 

However, there has been no systematic literature review about 

the status of ML-based RT approaches over the past ten years. 

It prompts us to summarize the progress of ML-based RT. 
In this paper, we provide evidence-based insights of the 

intersection of ML and RT. We hope that it can help 
researchers and practitioners better understand ML-based 
tracing approaches and extend them through the novel study. 

 
*  Corresponding author: Bangchao Wang. 

This paper is structured into six main sections: Section I 
provides an introduction to the background. Section II 
introduces the related work and research questions (RQs). 
Section III and Section IV provide the execution process of 
the SMS method and the findings, respectively. Section V 
discusses the validity threat and potential research directions. 
At last, the conclusion is summarized in Section VI. 

II. RELATED WORK 

As far as we know, there are some relevant reviews about 
RT. Wang et al. provide a review of the intersection of RT and 
IR. They have summarized 21 enhancement strategies that can 
improve the performance of four kinds of IR technologies [3]. 
Torkar et al. have concluded available tools and galore 
techniques for RT [4]. However, they don't pay close attention 
to the state-of-the-art progress of ML-based RT approaches. 
Tufail et al. have performed a systematic review and identified 
seven kinds of RT models, ten challenges, and fourteen tools 
[2]. However, they don't summarize the specific technologies 
to guide researchers. 

Wang et al. have conducted a systematic literature review 
and discussed challenges associated with RT activities [5]. 
They also summarize RT technologies that include ML 
technologies and evaluate the overall quality of primary 
studies. It is noted that the time interval of their work is 2006–
2016, which indicates that more novel technologies haven't 
been covered. The ML-based SE approaches have been 
reviewed by Mezouar et al. [6]. However, their work doesn't 
focus on the RT field. 

However, there has been no review about the application 
of ML in RT field in the past decade. It is desired to 
comprehensively analyze these ML techniques to understand 
emerging study directions in RT. The aim of this paper is to 
systematically investigate ML-based tracing approaches over 
the last decade. Besides, the overall degree of quality is 
quantified to provide a reference for researchers. In summary, 
this study has addressed four RQs to provide the current 
progress of the studies on the intersection of ML and RT: 

RQ1: What are the publication times and venues of 
primary studies? 
 RQ2: Which ML approaches and strategies are applied to 
RT? 

RQ3: Which datasets are utilized for ML-based RT 
approaches? 

RQ4: What is the overall quality of primary studies? 

III. RESEARCH METHOD 

This SMS has followed the guidance provided by [7]. In 
this section, a detailed search strategy, classification process 
and quality assessment method are defined to conduct SMS. 
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Fig. 1. Search Process and Results 

A. Search Strategy 

 In this section, the search terms and databases are 
described for searching. Besides, selection criteria are 
proposed to screen primary studies. The whole search process 
is shown in Fig. 1. 

1) Search Scope and Terms 

Five common databases are selected as follows: ACM 

Digital Library, IEEE Xplorer, Science Direct, SpringerLink 

and EI Compendex. These databases cover a wide range of 

studies related to ML and RT. In addition, this SMS is 

conducted based on relevant literature from the past ten years, 

with a search period from January 2013 to December 2022. 
According to the four RQs of this study, the based search 

terms are defined as "requirements traceability" and "machine 
learning". In order to refine these search terms, alternative and 
related terms in the RT field are used to iteratively retrieve 5 
databases according to the PICO standard [3]. The finalized 
search terms are as follows:  

Population: requirements traceability, requirements trace, 
requirements tracing, requirements traceability recovery. 

Intervention: machine learning, ML, supervised learning, 
unsupervised learning, semi-supervised learning, 
reinforcement learning. 

After determining search terms, logical operators (i.e., OR 
and AND) can be used to connect strings to build more 
complex search queries. The search string is formulated as 
follows: ("requirements traceability" OR "requirements trace" 
OR "requirements tracing" OR "requirements traceability 
recovery") AND ("machine learning" OR "ML" OR 
"supervised learning" OR "unsupervised learning" OR "semi-
supervised learning" OR "reinforcement learning"). 

2) Study selection criteria 

In this step, inclusion and exclusion criteria are designed 
to select primary studies that are related to this research. The 
following are the inclusion and exclusion selection criteria: 

• Inclusion selection criteria: 

I1: The study is published from January 2013 to 

December 2022. 

I2: The study is written in English. 

I3: The study with the more detailed description is 

selected when multiple authors have the same study. 

• Exclusion selection criteria: 
E1: The study is a review or gray literature. 
E2: The study with less than 3 pages. 
E3: Duplicate studies with the same authors. 

E4: The study is not related to the application of ML in 

RT. 

3) Study selection procedure 

The Zotero tool is used to perform the search and selection 

process. Firstly, we utilize search strings constructed in III.A 

to retrieve 910 literatures from five digital libraries. Among 

them, EI Compendex contains nearly one-third of literature 

(302/910). Secondly, the Zotero tool is employed to remove 

duplicates resulting in 713 unique studies. Next, inclusion and 

exclusion criteria (I1-I2, E1-E3) are applied to perform a 

coarse-grained filter on these 713 studies. Subsequently, I3 

and E4 criteria are employed to exclude irrelevant literatures 

based on their titles, abstract and keywords. A total of 221 

relevant papers are obtained after this round of filtering. 

Finally, 25 literatures are selected by reading the full text. In 

addition, snowballing is performed to prevent the omission of 

related studies. Ultimately, 26 literatures are strictly selected 

as the primary studies. 

B. Data Classification and Analysis 

After determining 26 primary studies, the data items that 

need to be extracted from each primary study have been 

confirmed by discussing according to our goals. Afterwards, 

the first two authors extracted data from all the primary studies 

separately. We have compared these two extraction reports to 

identify controversial points. Finally, all authors have 

discussed and determined the final results through the seminar. 

The extraction report for consultation is generated in a Word 

file. Additionally, the technical report and detailed search 

process are available on the website (https://github.com/WT 

U-intelligent-software-development/ML-based-RT-SMS). 

C. Quality Assessment 

During the quality assessment phase, the quality of all 

primary studies has been evaluated. Table I presents that these 

primary studies are rigorously assessed based on four 

dimensions selected according to the technology transfer 

model [8]. Each evaluation dimension is divided into different 

levels of evidence for precise quantification, and Table I 

provides a detailed description of these evidence levels and 

their corresponding scores. Then, the scores obtained from 

these evaluations are utilized to conduct a comprehensive 

analysis to reflect the extent to which these studies support 

technology transfer.  
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TABLE I QUALITY ASSESSMENT METHOD 

Items Question Description 

Research 

Method 
What research method is used in the evaluation? 

Level 1: Evidence obtained from demonstration or toy examples (0.2). 

Level 2: Evidence obtained from expert opinions or observations (0.4). 

Level 3: Evidence obtained from academic studies, such as controlled experiments (0.6). 

Level 4: Evidence obtained from industrial studies, such as case study (0.8). 

Level 5: Evidence obtained from industrial practice (1.0). 

Context In what context is the tracing technology validated? 
Level 1: Evaluation conducted in academic context (0.6). 

Level 2: Evaluation conducted in industry context (1.0). 

Subjects What subjects are used in the evaluation? 

Level 1: Evaluation conducted by student (0.6). 

Level 2: Evaluation conducted by researcher (0.8). 

Level 3: Evaluation conducted by practitioner (1.0). 

Dataset 

Source 

Whether or not the primary study provides the 

dataset source? 

Level 1: None of dataset sources are provided (0.6). 

Level 2: A portion of dataset sources are provided (0.8). 

Level 3: All dataset sources are provided (1.0). 

The first evaluation dimension used for quality assessment 

(Research Method) is proposed by Alves et al. [9]. It is one of 

the key factors to ensure the credibility and effectiveness of 

research results. The correct selection and appropriate 

interpretation of research methods are one of the key factors 

to ensure the credibility and effectiveness of research results. 

Context and Subjects proposed by Ivarsson et al. [10] are 

adopted as the second and third dimensions. Context includes 

industrial context and academic context. Validation in the 

academic environment provides support for industrial 

applications. The subject usually includes different roles such 

as students, researchers, and practitioners. Various subjects 

represent different research abilities and levels of experience. 

In addition, providing a dataset source can increase the 

credibility of study and provide more opportunities for other 

researchers to expand their research. Therefore, the source of 

the dataset has been added as the final evaluation dimension. 

Finally, the evaluation method proposed by Wang et al. [5] 

has been utilized to assign scores to each evidence level.  

IV. RESULTS 

A. RQ1: What are the publication times and venues of 

primary studies? 

Fig. 2 shows the number of studies published per year in 

this field and the distribution of venues from 2013 to 2022. A 

total of 26 primary studies are published, covering 7 types of 

journals and 10 types of conferences. We can see that studies 

have become plentiful since 2017. Requirement Engineering 

Conference (RE Conference) and International Conference on 

Software Engineering (ICSE) are the venues with the most 

publications. It should be noted that the underlined venues are 

conferences and their names are abbreviations due to the space 

limit. The full names of venues are recorded in the technical 

reports if readers are interested. 

B. RQ2: Which ML approaches and strategies are applied to 

RT? 

The illustration of the general process of ML-based RT 

approaches is shown in Fig. 3. It is usually divided into three 

stages: preprocessing stage, link generation stage, and link 

refinement stage. The preprocessing stage includes the data 

preprocessing process and the generation of the feature vector 

process. The main task of the link generation stage is to filter 

out candidate links. The link refinement stage optimizes the 

candidate links generated in the link generation stage.  

 

Fig. 2. Number of Studies and Distribution of Venues Per Year 

Table II shows the stages in which ML technologies are 

applied and their frequency of utilization. 32 ML technologies 

have been used 76 times. Fig. 3 shows the enhancement 

strategies applied in each stage. Researchers focus on link 

classification and representation learning strategies in 7 

enhancement strategies.  

Random Forest, Decision Tree, and Naive Bayes are the 

most frequently used ML models in the link generation stage. 

On the one hand, the time cost of calculating the similarity 

between each pair of artifacts is reduced. On the other hand, it 

abandons the similarity calculation and transforms it into 

classification tasks to obtain more complete trace links. 

Word2vec and doc2vec are also utilized frequently in the 

preprocessing stage. They are trained by context to bridge the 

semantic gap. It is noted that three-fourths of ML models have 

been used less than three times. Many ML technologies, such 

as deep learning models, are limited by the scale of the dataset. 

Besides, the increased complexity of the applications of some 

technologies for RT is a potential reason.  

C. RQ3: Which datasets are utilized for ML-based RT 

approaches? 

The datasets used in each primary study are summarized 

to analyze datasets used to verify ML-based RT approaches. 

Table III shows the specific information, source links, 

frequency of use, and primary studies of these datasets. There 

are 46 datasets that have been used 100 times in total. Datasets 

that have a source link and are used more than four times are 

chosen to display because of space limitations. If you need 

more detailed information, please see the technical report  

        

    

    

    

    

    

    

    

    

    

    

                

        

                          

            

        

                      

                                                    

      



 
Fig. 3. The General Process of ML-based Requirements Traceability 

TABLE II. LIST OF ML TECHNOLOGIES AND APPLYING STAGE FOR REQUIREMENTS TRACEABILITY 

ML Technologies Strategies Applying Stage Freq. 

Random Forest Link Classification [11][13][14][15][16][17][18][19]  G 8 

Decision Tree Link Classification [11][14][16][17][19][20][21][22]  G 8 

Naive Bayes Link Classification [13][14][16][17][19][20][21][22]  G 8 

K Nearest Neighbor (KNN) Link Classification [11][13][14][17][19][21]  G 6 

Word2vec Representation Learning [12][23][24][25][26]  P 5 

Paragraph Vector (Doc2vec) Representation Learning [11][25][27]  P 3 

Support Vector Machine (SVM) Link Classification [13][20][28] G 3 

Feedforward Neural Network (FNN) Semantically Similar Words Extraction[24], Link Classification [29] P, G 2 

Gradient Boosting Decision Tree (GBDT) Link Classification [11][20]  G 2 

Logistic Regression Link Classification [13][16] G 2 

Hierarchical Agglomerative Clustering (HAC) Semantically Similar Words Extraction [30][31] P 2 

Recurrent Neural Networks (RNN) Representation Learning [26], Link Classification [29] P, G 2 

Active Learning (AL) Link Classification [18][32] G 2 

Bagging Link Classification [16][21] G 2 

Bidirectional Encoder Representation from Transformers (Bert) Representation Learning [27] P 1 

Long Short-Term Memory (LSTM) Representation Learning [26] P 1 

Bi-directional Gated Recurrent Unit (Bi-GRU) Representation Learning [26]  P 1 

Fasttext Representation Learning [27] P 1 

Global Vectors (GloVe) Representation Learning [23]  P 1 

K-medoids Semantically Similar Words Extraction [31] P 1 

Single Link Clustering Automatically Build Ontology [28] P 1 

Bi-directional Long Short-Term Memory (Bi-LSTM) Representation Learning [26] P 1 

Gated Recurrent Unit (GRU) Representation Learning [26] P 1 

Universal Sentence Encoder (USE) Representation Learning [27] P 1 

K-means Documents Clustering [33] G 1 

Logit Boost Link Classification [21] G 1 

Hierarchical Bayesian Network Link Classification [34] G 1 

Label Spreading  Link Classification [23] G 1 

Ranking SVM Learn to Rank [12] G 1 

RankBoost Learn to Rank [29] G 1 

Reinforcement Learning (RL) Link Classification [35] G 1 

Spectral Clustering Graph Clustering [36] R 1 

Note: “P” represents Preprocessing Stage, “G” represents Links Generation Stage, “R” represents Links Refinement Stage. 

TABLE III. DATASETS AND INFORMATION FROM PRIMARY STUDIES 

Dataset 

Name 
Source Artifacts Target Artifacts 

True 

link 
Source Link Freq. Primary studies 

eTour Use Case Code 366 

http://www.coest.org 

12 
[11][12][13][14][15][18] 
[19][20][21][25][32][34] 

EasyClinic 
Use Case 

Code 93 

9 
[12][13][14][18][19] 

[21][25][32][36]  

Interaction Diagram 26 

Use Case 53 

Test Case Use Case 93 

iTrust 
Use Case Code 534 

9 
[12][13][14][17][18] 

[19][22][25][34] Requirement Code 535 

SMOS Use Case Code 1045 8 
[11][13][14][15] 
[18][19][32][34] 

CM-1 

High-level requirement Low-level design document Unclear 

7 
[12][14][19][24] 

[25][35][36] 

High-level requirement Low-level requirement 45 

Requirement Design 46 

Requirement Use Case Unclear 

eAnci Use Case Code 567 7 [11][13][14][15][18][19][32] 

MODIS High-level requirement Low-level requirement 41 http://promise.site.uottawa.ca/SERepository 4 [12][18][24][32] 

Note1: There are 23 open-source datasets with only one usage frequency, i.e., Albergate, GANNT, CCHIT, EBT, LibEST, Selex SI, Chess, Gantt, JHotDraw, 

ARC-IT, DASHBUILDER, JBTM, Accumulo, Ignite, Isis, Tika, Care2x, ClearHealth, Physician, Trial Implementations, PatientOS, PracticeOne, WorldVistA. 
Note2: There are 16 datasets without the source link, i.e., Pine, Drools, Lucene, PTC, Waterloo, AIRFLOW, ANY23, IMMUTANT, CAF and 7 unnamed datasets. 
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mentioned in Section III.B. 

Nearly 65% (30/46) of datasets that are used in primary 

studies are open-source datasets. These open-source datasets 

have been used 81 times (81%, 81/100). Besides, less than 27% 

(7/26) of primary studies don’t fully use open-source datasets. 

More importantly, the majority (59/81) of all open-source 

datasets are provided by CoEST. Moreover, eTour, 

EasyClinic, and iTrust are the three most popular open-source 

datasets. 

D. RQ4: What is the overall quality of primary studies? 

Fig. 4 has summarized the overall quality of each 

assessment dimension. Fig. 5 uses box diagrams to analyze the 

overall quality of all primary studies comprehensively. The 

following information could be obtained by analyzing the data 

listed in Fig. 4 and Fig. 5: 

a) The vast majority of studies (around 85%) use the 

experiment research method, while only 15% (4/26) of 

primary studies the use case study research method. It 

indicates that most studies lack validation in real industrial 

environments, which hinders researchers from understanding 

more complex phenomena. 

b) More than half of primary studies (17/26, around 65%) 

are validated in the academic context. According to the 

technology transfer model [8], these studies have a large gap 

from actual industrial applications, and industrial validation 

(such as static and dynamic validation) is still needed before 

the final solution can be released.  

c) Only two primary studies subjects are practitioners. It 

indicates that most studies lack guidance from practitioners' 

practical and professional industry knowledge. Therefore, it is 

suggested that more practitioners can participate in evaluation 

and validation. 

 

Fig. 4. The Distribution of Quality Score of Each Assessment Dimensions 

 
Fig. 5. Overall Quality Assessment Scores of All Primary Studies 

d) Half of the studies don’t provide a dataset source. The 

lack of datasets source not only affects reproducibility but also 

reduces the transparency and credibility of the study. It is 

noted that the four studies [11][19][24][30] not provide 

dataset sources because of confidentiality. 

We have calculated the sum of the quality scores for each 

primary study. It should be noted that each quality assessment 

criterion has a maximum score of 1, and the full quality score 

for each study is 4. The quality levels are divided into four 

categories (poor: 0-1.99, middle: 2.0-2.59, good: 2.6-3.19, 

excellent: 3.2-4) [5][10]. From Fig. 5, the quality scores are 

mainly concentrated between 2.6 and 3.1. Moreover, the 

median and mean scores suggest that the overall quality of 

primary studies is at a "good" level. This proves that this SMS 

is trustworthy.  

V. DISCUSSION 

A. Validity Threats Discussion 

The threats that influence processes and the findings of this 
SMS are introduced in this section. They are divided into 
internal validity, external validity, conclusion validity, and 
construction validity. Four threats are introduced as follows: 

Internal validity: To avoid the risk of internal threats, 

data extraction and classification should be carefully 

conducted to ensure their accuracy. Therefore, in this study, 

the first two authors collaborated closely and conducted 

repeated reviews to minimize potential errors. 

External validity: External validity concerns the 

generality of the conclusions of our SMS. For instance, 

whether the primary studies can represent the research 

questions of the review topic. In order to mitigate the threat, 

multiple search processes have been conducted and the search 

terms were constantly adjusted to improve the coverage. 

Conclusion validity: The literature may be excluded 

wrongly. Therefore, the first two authors simultaneously 

conducted the screening process and determined the final 

primary study through discussion among the entire authors. 

Construction validity: Construction validity is concerned 

with the deviation of the studied concept from the studied 

topic. The based search terms are "requirements traceability" 

and "machine learning" To reduce the impact, synonyms or 

alternative terms are used for searching to maximize coverage. 

B. Future Research Directions 

This SMS has illuminated several future research 
directions with great potential for further exploration in RT. 

Firstly, the mainstream ML models applied to RT are 
traditional models such as Random Forest, Decision Tree, and 
Naive Bayes at present. With the development of ML or deep 
learning, the applications of novel technologies to RT are a 
potential future research direction. 

Secondly, due to the ability of different technologies to 
handle different features, mining a combination of multiple 
machine learning techniques may improve the accuracy of 
feature based link recognition. 

Finally, the utilization of many types of features may lead 
to feature redundancy and even have a counterproductive 
effect. Exploring a suitable feature selection approach to 
improve the performance of models is worth study. 

VI. CONCLUSION 

This SMS presents that ML techniques are playing a role 
in RT and researchers pay more attention to applying ML to 

  

        

        
      

                            

      
        

          

       

   

   

   

   

      

   

 

 

 

  

   

   

   

   

   

   

   

   

   

    

          

            

        
     

      
          

    
          

         
     

          
                           

 
 

   

         

   

    

         
         

    
          

      
          

    
        

     

          

 



RT to obtain accurate and complete trace links. The following 
conclusions can be drawn: 

1) Seven enhancement strategies have been conducted to 
support the establishment of trace links. ML models can learn 
from existing traceability information to predict new links. 
Moreover, link classification has attracted much attention to 
distinguish whether artifacts have trace links.  

2) Open-source datasets are more popular than closed-
source datasets. Besides, CoEST is the most popular source of 
datasets. In order to make the study more reproducible, 
researchers are suggested to use open-source datasets. 

3) The overall quality is at a good level. This indicates that 
the research level in this field is relatively good, and the 
selected literature is representative and reliable. However, it is 
also noticed that the research method lowers the overall 
quality. It is suggested that researchers can verify and evaluate 
in the realistic industrial environment. 
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