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Abstract—Automatic monitoring and evaluation of chronic 

wounds usually requires massive labeled data sets for 

segmentation training. Because of the high cost of time and labor, 

these data are usually difficult to obtain. In order to improve the 

segmentation effect of the wound image with a small number of 

labeled samples for training, this paper proposes an image 

segmentation framework based on self-supervision,  summarize a 

relatively optimal pre-training task for chronic wound image 

segmentation, minimizes the redundancy between the symmetric 

network projection output by learning the feature information of 

two views generated by the same chronic wound image under 

different distortion transformation, and finally learns valuable 

knowledge that is conducive to the downstream wound image 

segmentation task. In addition, this framework also optimize the 

network structure and loss of the segmentation model. The 

experimental results show that after self-supervised learning pre-

training with a full amount of unlabeled data, the segmentation 

framework can achieve significant improvement in precision(up to 

8%), recall(up to 5%), and MIoU(up to 9%) by fine-tuning with 

only a small amount of labeled data, This can provide a clear 

optimization direction for the application of self-supervised 

learning to specific image segmentation. 
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I.  INTRODUCTION 

Chronic wound is a kind of wound that cannot be healed in a 
short time through regular treatment. In wound healing, 
clinicians need to continuously measure and evaluate the wound 
to monitor the healing process and treatment effect. The 
development of computer technology has brought convenience 
to the whole work process. Among them, chronic wound image 
segmentation is an essential step in computer wound 
measurement. The current mainstream depth convolution neural 
network (DCNN) performs well in medical image segmentation 
[1-2].  

However, this model based on supervised learning needs a 
lot of labeled data to train a model with good results. In chronic 
wounds, obtaining data sets with large-scale pixel labeling is 
time-consuming, labor-consuming, expensive, and requires a 
professional clinical experience. In order to reduce the burden of 
annotation, many methods other than supervised learning have 
been proposed to improve the labeling efficiency of medical 
imaging, including semi-supervised learning [3-4], self-
supervised learning [5-8], transfer learning [9-10], in which self-
supervised learning has obvious advantages over other methods. 
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There is no need for any labeling data during the pre-training 
phase. It can learn the useful representation of unlabeled data 
through pre-training tasks to better solve the problem of scarcity 
of labeled data. Many articles have proved its effectiveness [11-
14] on well-known public data sets (such as ImageNet [15]). 
However, the related research on specific image segmentation, 
especially chronic wound images, is still relatively rare. So we 
plan to introduce a self-supervised learning method, targeted 
optimization for chronic wounds, to improve the segmentation 
effect when the data on chronic wounds are scarce. 

The main contribution of this research is to propose a 
network framework for chronic wound image segmentation 
based on self-supervised learning, which we named SWS-NET. 
In this framework, many unlabeled data are used in the pre-
training phase to get useful knowledge for downstream 
segmentation tasks, which is learned by comparing the similarity 
of the same image under different distortions from the unlabeled 
data. Compared with the mainstream segmentation models (such 
as Unet), it improves the segmentation precision of chronic 
wound images in the case of sparsely labeled data. In this process, 
we focus on the effect of the pre-training model trained by 
different distortion methods on the image segmentation task of 
chronic wounds. Finally, we summarize a relatively optimal pre-
training task for chronic wound image segmentation. 

We subsequently developed a small program to realize the 
segmentation application of chronic wound images on mobile 
devices such as mobile phones. Therefore, we also made some 
lightweight modifications to the convolution module of the 
segmentation network. 

II. RELATED WORK 

A. Image Segmentation 

Currently, the encoder-decoder structure is one of the most 
popular end-to-end image segmentation frameworks. The full 
convolution network (FCN) [1] based on this structure has 
achieved relatively successful image segmentation results, but it 
reduces the interpretability of the model, resulting in poor 
segmentation results for specific types of images (such as 
medical images). With further research, Ronneberger et al [2]. 
proposed an encoder-decoder structure with high applicability, 
namely U-Net, which provides a more reliable backbone 
network for wound image segmentation framework. Deeplab 
[16] is similar to it, but the network structure will be much more 
complex, which is not convenient for subsequent improvement.  



Since Unet was proposed, it has been concerned and applied 
by many scholars, such as Attention Unet [17] proposed by O. 
Oktay et al., and the initial convolution layer introduced by 
Narinder Singh Punn et al. [18], which further strengthens 
feature extraction. However, this leads to time-consuming 
training process, and when annotation data of chronic wound 
images are scarce, it is easy to over-fit. After that, Francois 
Chollet et al. proposed an RCA-IUnet network structure [19], 
which discusses and uses depthwise separable convolutions, 
integrates the advantages of attention filter, mixing pool, and 
initial convolution layer, reduces the complexity of convolution 
neural network structure, and provides a good solution for the 
segmentation model of this article. 

B. Self-supervised Learning 

Given the lack of annotation samples, more and more 
scholars have focused on the research of self-supervised learning. 

The agent tasks of early self-supervised learning are usually 
geometric transformation prediction, flip, rotation angle 
prediction [20], and jigsaw puzzle [21]. These methods in the 
initial phase of self-supervision need a well-defined task to be 
effective for a specific image, and reasonable constraints[22] are 
needed to prevent the model from obtaining trivial constant (i.e., 
collapsed) embeddings. 

At present, the well-known contrastive learning methods are 
MoCo [23], SimCLR [13], BYOL [12], SimSiam [24], and 
Barlow Twins [25]. These methods adopt specific methods to 
avoid model collapse, which increase the complexity of the 
model, and rely heavily on the comparison of negative samples. 
Barlow Twins proposed a new optimization direction to avoid 
these problems. Inspired by biology [26], remove redundancy 
between networks, which brings a lot of inspiration to our 
framework. 

Figure 1.  The overall architecture of the pre-training phase 

III. METHOD 

As shown in Figure 1, we have constructed a self-supervised 
learning framework to explore and learn the multi-dimensional 
features of unlabeled data sets by pre-training the encoder of the 
segmentation model and finally fine tune the pre-trained encoder 
with a small amount of labeled data downstream. This 
framework is mainly composed of several parts: First, the 
distortion module generates two distortion views for all images 
in the same batch sampled from the data set; the second is the 
encoder module, which will be used for pre-training and applied 
to the downstream segmentation task; then there is the projection 
module, which is responsible for projecting the three-
dimensional features output by the encoder into the one-
dimensional space, and narrowing the distance between positive 
examples in this space. Finally, the decoder module is used to 
fine-tune the downstream segmentation tasks and restore the 
prediction mask image through upsampling. 

A. Self-Supervision Phase 

Figure 2.  Example of pre-task in pre-training phase (the top is the original 

image) 



At this phase, we have set up four image distortion methods 
in the distortion module: rotation&flip, grayscale, crop, and 
color jitter. By assigning different weights to the probabilities of 
these distortion modes, we made targeted optimization on the 
chronic wound image and finally obtained an optimal distortion 
strategy. The processed image effect is shown in the Figure 2. 

The decoder is modified from the original Unet framework 
(see Figure 3). After the coder trains two distorted pictures with 
shared parameters, the training data is projected into a one-
dimensional space. The projection network consists of two 
layers, each containing full connection, ReLU activation, and 
batch normalization processing. Finally, we use the loss to make 
the correlation matrix of the features from different perspectives 
close to the identity. The definition of loss as expressed in Eq. 1 
and 2. 
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where λ is a constant, weighing the importance of the first 
and second terms of loss, and C is a cross-correlation matrix 
calculated along the batch dimension between the outputs of two 
identical networks. b represents the batch index of the input 
sample, and i, j represents the network output's vector dimension. 
Ultimately, the value of C will range from -1 to 1, -1 means 
completely irrelevant, and 1 means complete correlation. 

After we use many unlabeled chronic wound data sets for the 
pre-training of contrastive learning, the improvement effect is 
still relatively limited compared to classification tasks. From the 
related paper [27-29], we can know that this is because the 
comparison of different distortions of the same image is more 
focused on extracting the global representation. However, it is 
constrained to improving segmentation effect, such as pixel-by-
pixel prediction tasks. To solve this problem, Xiangyun Zhao et 
al. [30] proposed a pre-training feature extractor using pixel-by-
pixel, label-based contrast loss. Through experiments, we found 
that the loss of Barlow Twins is also suitable for this pre-training 
strategy, After application, the segmentation effect has been 
further improved. 

B. Segmentation Training Phase 

Our segmentation framework is shown in Figure 3, which 
can be divided into two parts: the encoder and the decoder. The 
encoder is divided into four downsamples, and the decoder is the 
corresponding four upsampling. Then, by splicing the fragments 
in the upsampling process and the downsampling process, The 
stitching retains more dimension and location information, 
allowing the following neural network layer to freely choose 
between shallow and deep features, which is more advantageous 
for semantic segmentation tasks. 

In the convolution module part, each module is composed of 
two depth separation convolutions [31-32] and one ordinary 
convolution. We use deep separation convolution to replace the 
ordinary convolution in the original Unet framework, which 
makes the network more lightweight and convenient for our 
fine-tuning and application on mobile devices.

Figure 3.  The architecture of the segmentation model 



In the loss function part, we use the loss, which combines the 
binary cross entropy and the dice coefficient, as shown in Eqs 3, 
4, and 5. However, the cross entropy loss will be dominated by 
the class with more pixels for the wound image that only 
accounts for a small part of the background area. For smaller 
objects, it is difficult to learn their characteristics, thus reducing 
the effectiveness of the network. To alleviate this problem, we 
introduce the Dice coefficient loss. The Dice coefficient 
calculates the intersection ratio between the segmented 
prediction result area and the ground truth area, neglects a large 
number of background pixels, and solves the problem of 
imbalance between positive and negative samples. 

                        ℒBCE = −(1 − y)log(1 − x) − ylog(x)                   (3) 

                                        ℒDice = 1 −
2|X∩Y|

|X|+|Y|
                              (4) 

                                   ℒ𝐹𝑖𝑛𝑎𝑙 = 𝜆ℒ𝐵𝐶𝐸 + 𝜇ℒ𝐷𝑖𝑐𝑒                        (5) 

In the above formula, x represents the actual pixel value, and 
y represents the predicted pixel value. X represents the number 
of pixels of the real wound segmented, and Y represents the 
number of pixels of the predicted wound because the intersection 
ratio will increase with the improvement of the effect. In order 
to conform to the optimization direction of the loss, a subtraction 
process is made, and the value is kept between 0 and 1. λ and μ 
represent the weight parameter of the loss function.  

IV. EXPERIMENT 

In this article, our experiment can be roughly divided into 
three stages: dataset processing, segmentation experiment, and 
ablation experiment: The processing of data sets is an important 
part of self-supervised learning, including the division of 

training sets and test sets and the setting of pre-tasks; In the part 
of segmentation experiment, we tested the segmentation effect 
under different amounts of data, and prove that our proposed 
framework can improve the accuracy obviously when the 
labeled data is scarce. Finally, in the ablation experiment part, 
we verified the influence of the models trained by different 
distortion methods on the experimental results. 

A. Dataset processing 

Our dataset is from the chronic wound dataset publicly 
available on Kaggle, with a total of 1010 chronic wound images 
and their corresponding segmented mask images. In order to use 
additional chronic wound data for self-supervised pre-training, 
we used the multi-category dataset of chronic wound images 
also publicly available on Kaggle, with a total of 2023 images, 
classified into diabetes foot ulcer, burns, normal, pressure ulcer, 
skin tear, surgical wound, trauma, and venous wound. It can 
balance different types of wound samples in the dataset and 
avoid the abnormal error of segmentation of a particular wound 
type caused by the scarcity of specific types of samples. We need 
to divide the data volume of pre-training data to verify its effect 
under different data volumes. The specific division is shown in 
the Table 1. 

TABLE I.  DIVISION OF DATASET IN THE SEGMENTATION TASK PHASE 

 10% 20% 30% 40% 50% 

Test Dataset 110 110 110 110 110 

Training Dataset 74 144 216 289 360 

Validation Dataset 18 36 54 72 90 

TABLE II.  EXPERIMENTAL RESULTS UNDER DIFFERENT DATA VOLUMES 

Data volume 10% 20% 30% 40% 50% 

pre-training has no has no has no has no has no 

Precision 0.622 0.581 0.784 0.704 0.867 0.817 0.914 0.897 0.934 0.941 

Recall 0.403 0.311 0.582 0.543 0.709 0.654 0.771 0.737 0.831 0.776 

MIoU 0.547 0.455 0.693 0.606 0.783 0.732 0.829 0.805 0.862 0.844 

 

B. Segmentation experiment 

The framework is based on a Python 3.8 environment and 
developed with the TensorFlow V2.6 library. Before the training 
starts, all the pictures are adjusted to 256×256, the batch size of 
each training step is set to 8, use the SGD optimizer with a 
learning rate of 1e-3 and momentum parameter of 0.9. The 
weight decay parameter of the full connection layer is set to 4e-
3. Finally, we use 10%, 20%, 30%, 40%, and 50% data volumes 
to verify the effect of contrastive learning, and the results are 
shown in Table II. 

We have selected precision, recall, and MIoU as our 
evaluation indicators, and their calculation formula is shown in 
Eqs 6, 7, 8: 

                                         Precesion =
TP
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                                  (6) 

                                              Recall =
TP
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                                   (7)  

                                      MIoU =
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∑
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From the experimental results, we can see that compared 
with the model without self-supervised pre-training, the self-
supervised framework we proposed can achieve a certain 
improvement under different fine-tuning data amounts such as 
10%, 20%, 30%, 40%, 50%, and can achieve a more significant 
improvement when the data volume is low, for example, in the 
case of 20% data volume, it can achieve more than eight 
percentage points of improvement. 

Figure 4.  Precision comparison chart 

Figure 5.  Recall comparison chart 

By observing the Figures 4 and Figure 5, we can find that, 
on the whole, both the precision and the recall rate show more 
obvious advantages than the model without pre-training under 
small data volume, but the trend of its curve is still slightly 
different. With the increase in data volume, the improved range 
of precision shows a trend of increasing and decreasing. When 
the data volume is large enough, the precision may even be lower 
than the model directly trained by supervised learning. With the 
increase in the amount of data, the increase in recall shows a 
trend of decreasing at first and then increasing. There is a 
negative correlation between recall and accuracy. Since the two 
evaluation indicators, precision and recall rate, have their 
respective focus, in order to more fairly evaluate the 
improvement effect under different data volumes, we draw the 
improvement effect diagram of MIoU (see Figure 6). Through 
observation, our model has significantly improved when the data 
volume is small. Although the gap between the precision will be 
gradually narrowed after the data volume is increased, this more 

balanced indicator can prove the effectiveness of the self-
supervised pre-training framework. 

Figure 6.  MIoU comparison chart  

C. Ablation experiment for pre-task 

Our current pre-task applies four mainstream pre-tasks: 
rotation&flipping, grayscale image, clipping, and color jitter. At 
the same time, a comparison between the original image and the 
mask image is added to improve further the learning effect of the 
pre-task on the segmented task. In this part of experiment, we 
gradually remove the superimposed distortion method to 
evaluate the accuracy impact. Through previous experiments, 
we can achieve more remarkable improvement in 20% of the 
labeled data sets, making the ablation experiment intuitive. So 
the ablation experiment is also carried out with 20% data volume. 
The specific results are shown in Figure 7. 

Through vertical comparison, our improved Unet framework 
can consistently achieve higher segmentation precision than the 
original Unet framework, which shows that the primary 
performance of our improved segmentation model exceeds the 
original Unet model. At the same time, the gap between the 
original model and our model is gradually reducing with the 
gradual reduction of distortion. It can also be proved that some 
of the fine-tuning we have done are targeted optimization for 
these distortion tasks. 

Figure 7.  The influence of different image distortion on the result 



Through horizontal comparison, we can see that the most 
important factor affecting the segmentation precision is the 
contrastive learning between the original and mask images. 
Moreover, in the segmentation task, the importance of grayscale 
is no less than the color jitter, which differs from the result of the 
previous different distortion methods on the classification task. 
In the classification task, the impact of color jitter accounts for a 
large proportion, leading to the model not being robust enough 
to remove some distortion methods. Therefore, a good pre-task 
is the key to the effectiveness of the self-supervised learning 
framework. The single-image distortion method may even have 
the opposite effect. 

V. CONCLUSION AND PROSPECT 

We propose a network framework for chronic wound image 
segmentation based on self-supervised learning, alleviate the 
problem of the scarcity of chronic wound labeling data and 
provide a better segmentation accuracy for the segmentation of 
chronic wound images than the mainstream benchmark. In this 
process, we also discussed the effect of the pre-training model 
trained by different distortion methods on the downstream 
segmentation task. Through experiments, the effectiveness of 
our experiment has been proved, which provides reference 
methods and ideas for further research and application. 

However, there are also some areas that need to be improved 
during the experiment. According to the experimental data, the 
recall rate has been at a relatively low level. What causes the low 
recall rate and what optimization methods can improve the recall 
rate. At present, there are two reasons to guess: one is the image 
quality problem in the data set, and the other is the loss function 
in the fine-tuning stage, which needs to be further explored by 
later generations. 
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