
An Effective Method for Constructing Knowledge
Graph to Search Reusable ROS Nodes

Y uxin Zhao1,2, Xinjun Mao1,2
∗
, Sun Bo1,2, Tanghaoran Zhang1,2, Shuo Y ang1,2

1College of Computer,National University of Defense Technology, Changsha, China
2Key Laboratory of Software Engineering for Complex Systems, National University of Defense Technology, Changsha, China

{yuxinzhao, xjmao, sunbo, zhangthr, yangshuo11} @nudt.edu.cn

Abstract—Developing robot software is difficult for most soft-
ware engineers as it requires multi-discipline knowledge such as
robotics, AI, and software engineering. Robot Operating Systems
(ROS) provides a software development framework and lots of
reusable ROS Nodes that encapsulate various robotics functions,
which can simplify robot software development in terms of
software reuse. However, searching and reusing required ROS
Nodes from thousands of ROS Nodes is still challenging due to the
scattered distribution of ROS Node information and the need for
adequate search methods. In this paper, we present an effective
method to construct a ROS Node knowledge graph in support of
searching and reusing ROS Nodes. Our method uses multiple
data sources, including open-source ROS software in Github
and ROS wiki community. We extract two-tuple functional
information and task-related noun phrases from the ROS Node
description and ROS communication interactions from the ROS
Node source code. The constructed ROS Node knowledge graph
(RNKG) contains 14,065 entities and 15,767 relations. It provides
rich semantic information to comprehensively and precisely
describe ROS Nodes, their services, and related interaction topics
and messages.

Index Terms—Knowledge Graph, ROS Nodes, Robotics soft-
ware development

I. INTRODUCTION

Robot gradually plays an essential role in many fields,
including autonomous vehicles, factories, healthcare, services,
and commerce. A robot is a software-intensive system that
needs several robotics software components to accomplish task
requirements cooperatively. The advent of Robot Operating
System (ROS) [12] simplifies robot software development.
ROS is the most popular framework in robotics which is
designed to be modular at a fine-grained scale, and its fun-
damental concepts Node, Message, Topic, and Service. ROS
Node can offer a specific function for robotics tasks and
a sequence of ROS Nodes to complete complicated robot
mission [14] to construct robotics software. So, ROS Node is
a proper component to reuse for developing robotics software.

However, without in-depth knowledge of ROS Nodes and
their interactions, reusing ROS Nodes is difficult [1]. From a
developer’s point of view, developing robotics software usually
requires a series of ROS Nodes from different ROS packages.
It is especially difficult for developers with less experience
to find ROS Nodes and make ROS Nodes cooperative. Thus,
in ROS-based robotics software development, a large portion

* Corresponding author.

of development efforts has been investigated into searching
ROS Node, especially when their descriptions information
and interactions are difficult to obtain. Therefore, searching
applicable ROS Nodes is necessary for more efficient software
development.

In this paper, we constructed a ROS Node Knowledge
Graph (RNKG), a domain knowledge graph that captures the
basic computation graph concepts of ROS and the relationship
between different ROS concepts. The KG serves as the foun-
dation for recognizing developer demands, inferring developer
needs, recommending a proper ROS Node, and offering ROS
knowledge for accelerating robotics software development.
Our main contributions are summarized as follows:

• present a systematic method to construct a ROS domain
knowledge graph, extracting two-tuple functional infor-
mation and task-related noun phrases from the ROS Node
description, and ROS communication interactions from
the ROS Node source code.

• propose RNKG, a domain knowledge graph that provides
rich semantics information to comprehensively and pre-
cisely describe the ROS Nodes, their services, and related
interaction topics and messages.

• evaluate the completeness and the correctness of RNKG
to show that the ROS knowledge extraction method is
effective.

The rest of the paper is organized as follows. In the next sec-
tion, we review previous studies on this topic. We illustrate the
methodology of constructing a ROS Node knowledge graph in
Section III. We evaluate the completeness and correctness of
constructed knowledge graph in Section IV. We discuss the
threats to validity in Section V. Finally, we conclude our work
and discuss future directions in Section VI.

II. RELATED WORK

Due to the excellent performance of knowledge graphs in
various application scenarios (question answering, recommen-
dation, and information retrieval), the research on domain
knowledge graphs [7] in various fields continues to deepen.
However, due to the strong domain characteristics of the
collected knowledge, researchers need to design different
knowledge extraction methods and relation extraction methods
to solve the knowledge graph construction tasks in different
knowledge types like extracting knowledge from network

encyclopedia and web content [15], from Wikipedia [16] and
Chinese texts [8].

Due to the powerful knowledge reasoning ability and rec-
ommendation of knowledge graphs, knowledge graphs have
also been deeply studied in the field of robotics and have
made a lot of breakthroughs. Applying the knowledge graph
to the knowledge reasoning state enhances the robot’s ability
to process environmental information [5]. Besides, it plays an
indispensable role in promoting the development of robot soft-
ware based on the power of recommendation. The ROS-related
knowledge graph can be used in searching ROS Package [4]
and ROS message [2] to simplify the process of developing
robotics software.

In the research process, the knowledge reasoning ability
and recommendation searchability of the knowledge graph will
effectively help ROS developers find the ROS Node they need.

III. METHODOLOGY

This section introduces the ontologies of knowledge in our
KG, and then we will describe our method to construct a
robotics-specific knowledge graph RNKG. Fig.1 shows the
whole method of our approach and introduces the method of
constructing the ROS Node Knowledge Graph.

2023/3/9 09:49 Untitled Diagram-2.svg

file:///Users/zhaoyuxin/Downloads/Untitled Diagram-2.svg 1/1

Source Code

Extract belonging
Information of ROS Node RNKG

User Description ROS Node

KG Construction

ROS Node Search

GitHub

ROS Wiki

Extract ROS Node
Communication Information

Extract Functional
and Noun Features

Calculate the Similarity of
Functional and Noun Features

ROS Text
Description

Extract ROS Node Functional
and Noun Features

Structured
Content

ROS package
& ROS Repos

Functionality &
ROS features

 Communication
Information

Fig. 1. The Overall method of our approach.

A. The ontology of RNKG

Before building the knowledge graph, we need to clarify
the ontology and relationships contained in the ROS Node
knowledge graph, so as to realize the guidance of entity
extraction and relationship extraction. We show our core on-
tology in Fig.2. The ontology in the knowledge graph includes
description information for ROS Node and common concepts
of basic Computation Graph concepts of ROS.
2023/3/3 16:28 Untitled Diagram (6).svg

file:///Users/zhaoyuxin/Downloads/Untitled Diagram (6).svg 1/1

ROS Node
name

sub_topic

pub_topic

has_subscribed_topics

has_publisher_topics

Service_called

Service

has_provided_service

has_service_called

Package

has_package_name

 node_features

has_features

topic_message

has_message_type

has_message_type

service_message

has_message_type

has_message_type

repository

has_repos

Node

pub_topic
has_published_topics

topic_message

has_message_type

Fig. 2. The core ontology of RNKG.

B. Extract ROS Node Communication Information

We extract entity and relation related to ROS Node com-
munication from the ROS Node source code in GitHub. To
successfully extract the ROS Node information we need, we
use pattern-matching based method [3] to realize the entity
extraction of ROS Node.

C. Extract ROS Node Functional and Noun Features

We extract two-tuple functional information and task-related
noun phrases from ROS Node description to distinguish dif-
ferent ROS Nodes.

Since ROS knowledge has strong domain characteristics,
there are a large number of abbreviations (e.g., "ICP" means
"Interactive Closest Point"). To fully understand the knowledge
of ROS Node description, we build a local ROS dictionary
and replace the ROS domain concepts in the text (specialized
Nouns) with natural language description that users are more
familiar.

For the ROS Node description, the type of each word tag is
determined by the Part-Of-Speech Tagger in Fig.3. The part-
of-speech tagger determines the syntactic category of each
token and stores it in the POS feature, encoded in uppercase
abbreviations. [9].

2023/3/9 14:50 localhost:9000

localhost:9000 1/2

Part-of-Speech:

Register two pointclouds based on Interactive Closest Point like registration technique .
NNP CD NNS VBN IN JJ NNP NNP IN NN NN .

1

Named Entity Recognition:

Register two pointclouds based on Interactive Closest Point like registration technique .
2.0

NUMBER

1

Basic Dependencies:

Register two pointclouds based on Interactive Closest Point like registration technique .
NNP CD NNS VBN IN JJ NNP NNP IN NN NN .compoundnummod compound

compound amod case
case nmod

case
nmod

punct

1

Enhanced++ Dependencies:

Register two pointclouds based on Interactive Closest Point like registration technique .
NNP CD NNS VBN IN JJ NNP NNP IN NN NN .fixed compoundnummod compound

compound amod case
nmod:likecase

nmod:based_on
punct

1

CoreNLP Tools:

Enter a TokensRegex (http://nlp.stanford.edu/software/tokensregex.shtml) expression to run against the above sentence:

Visualisation provided using the brat visualisation/annotation software (http://brat.nlplab.org/).

— Text to annotate —

Register two pointclouds based on Interactive Closest Point like registration technique.

— Annotations —
parts-of-speech named entities dependency parse

— Language —
English

Submit

TokensRegex Semgrex Tregex

Matche.g., (?$foxtype [{pos:JJ}]+) fox

Fig. 3. An example of Part-Of-Speech tagger.

The next step in explaining ROS Node description is to
eliminate the meaning of words. We need to combine single
words into the most extensive phrase as much as possible to
enhance the knowledge extraction of ROS Node description.
We use two-tuple functional information and task-related Noun
phrases to summarize ROS Node description.

For two-tuple functional information, we rely on the term
Dependency Parsing (DP) [11] to examine the dependencies
between the phrases of ROS Node description in Fig.4. We
use ′obj′ : (register, pointclouds) to describe the function of
ROS Node.

2023/3/9 15:10 localhost:9000

localhost:9000 1/2

Part-of-Speech:

register two pointclouds based on Interactive Closest Point like registration technique .
VB CD NNS VBN IN JJ NNP NNP IN NN NN .

1

Named Entity Recognition:

register two pointclouds based on Interactive Closest Point like registration technique .
2.0

NUMBER

1

Basic Dependencies:

register two pointclouds based on Interactive Closest Point like registration technique .
VB CD NNS VBN IN JJ NNP NNP IN NN NN .compoundnummod compound

obj amod case
case nmod

case
advcl

punct

1

Enhanced++ Dependencies:

register two pointclouds based on Interactive Closest Point like registration technique .
VB CD NNS VBN IN JJ NNP NNP IN NN NN .fixed compoundnummod compound

obj amod case
nmod:likecase

advcl:based_on
punct

1

CoreNLP Tools:

Enter a TokensRegex (http://nlp.stanford.edu/software/tokensregex.shtml) expression to run against the above sentence:

Visualisation provided using the brat visualisation/annotation software (http://brat.nlplab.org/).

— Text to annotate —

register two pointclouds based on Interactive Closest Point like registration technique.

— Annotations —
parts-of-speech named entities dependency parse

— Language —
English

Submit

TokensRegex Semgrex Tregex

Matche.g., (?$foxtype [{pos:JJ}]+) fox

Fig. 4. An example of extracting two-tuple functional information.

For task-related Noun phrases, we use NP-chunking [17]
to extract the ROS Node-related information in Fig.5, and we
can get task-related Noun phrases "two pointclouds, interactive
closest point, registration technique".

D. Constructed RNKG

So far, we have successfully constructed a knowledge graph
containing ROS Node knowledge using the previous three
extraction knowledge methods. The resulting RNKG consists
of 14,065 entities and 15,767 relationships. Using Neo4j [10]

S

register VB Task Description

two CD pointclouds NNS

based VBN on IN Task Description

Interactive JJ Closest NNP Point NNP

like IN Task Description

registration NN technique NN

. . . .

Fig. 5. Extracting noun phrases from ROS Node description.

to form the ROS Node domain knowledge graph, we store the
structured triad data.

IV. EVALUATION

In our constructed RNKG, the quality of ROS Node
knowledge is essential, so we measure the completeness and
correctness of ROS Node knowledge extraction to verify the
usefulness of the ROS Node knowledge extraction method.

• RQ1- How is the completeness of the knowledge cap-
tured in the constructed RNKG?

• RQ2- How is the correctness of the knowledge captured
in the constructed RNKG?

A. The completeness of RNKG.

The dataset required to build the knowledge graph was
collected in GitHub. The completeness of RNKG refers to
whether it contains all needed ROS Node information, includ-
ing ROS Node Name, Topic, Service, and Message.

1) Protocol: we measure whether RNKG contains all ROS
Node-related knowledge. Based on the relevant conclusions
of other studies [6] [13], we constructed a verification dataset
(randomly extracting 345 Node data, 345 Topic data, 345
Service data, and 345 message data) from ROS Wiki. The
measure is whether the extracted validation data can be found
in RNKG.

2) Results and Analysis: The results are shown in Table I.
90% of the ROS Node, Topic, and Service in the verification
data set can be found in RNKG, and 98% of ROS Node
in the verification dataset can be found in RNKG. Although
the Message in the verification data set is less than 90%, its
accuracy is still considerable. These data fully illustrate that
the ROS Node knowledge contained in RNKG is complete.

More than 90% ROS Node knowledge extracted from ROS
Wiki can be found in RNKG.

B. The correctness of Node knowledge in RNKG

To evaluate the correctness of entity extraction method
and relation extraction method, we should check whether
we proposed method can successfully extract the required

TABLE I
THE COMPLETENESS OF RNKG.

Category Node name Topic Service Message
From ROS Wiki 345 345 345 345
From RNKG 340 332 317 308
Contained Percentage 98.55% 96.23% 91.88% 89.27%

TABLE II
EXPERIMENTAL RESULTS OF ENTITY EXTRACTION.

Category Precision Recall F1

sub_topics 87.50% 87.72% 87.60%
pub_topics 87.93% 86.44% 87.17%

service 95.71% 97.14% 96.14%
service_called 89.71% 86.97% 88.31%

service_message 93.63% 88.55% 91.01%
topic_message 92.07% 94.37% 93.20%

package 93.45% 91.74% 92.58%
repository 94.31% 96.51% 95.38%

TABLE III
EXPERIMENTAL RESULTS OF RELATION EXTRACTION.

Category Precision Recall F1

(sub_topics, message_type) 69.55% 81.72% 75.14%
(pub_topics, message_type) 87.72% 86.44% 87.07%

(service, message_type) 83.80% 87.14% 85.43%
(service_called, message_type) 74.52% 86.97% 80.26%

entities (sub_topics, pub_topics, service, service_called, ser-
vice_message, package, and repository), and build correct
relation between different entities.

1) Protocol: We obtained the knowledge of 355 ROS
Nodes from ROS Wiki and RNKG, respectively. The knowl-
edge provided in ROS Wiki is correct, and we need to measure
the correctness of the knowledge in RNKG. We will calculate
the correctness of entity extraction and relation extraction
separately.

2) Results: The results of entity extraction are shown in Ta-
ble.II. Generally speaking, the entity extraction of the RNKG
knowledge graph is accurate and as complete as possible. The
main reason for the high accuracy of entity extraction is that
RNKG is in the ROS domain, and the dataset is composed
of source code. Entity extraction from code data is simpler
than analyzing language from natural language. The format of
code data is fixed and strict, so it will naturally have a higher
accuracy rate when combined with a template-based approach.

From Table.II shows that the F1 of sub_topics and
pub_topics is 87.60%, which is relatively low compared to
other entities. One of the main reasons for this is that the
code parameter settings of different ROS Node programs are
different, and entity extraction is very difficult. It is difficult
to distinguish what kind of parameter it is according to the
string, so the accuracy of sub_topics and pub_topics is not
very high.

For the relationship extraction between different enti-
ties, we determine it by analyzing the unique API in
the ROS program because different entities must be im-
plemented through specific API calls, so for the relation-

ship in RNKG ("has_subscribed_topics, has_published_topics,
has_service, has_service_called, has_package, has_repos,
has_features") are accurate. But we need to specifically ex-
plain "has_message_type" in Table.III to explain some po-
tential problems and impacts we found in verifying the
correctness of the relationship. We can see that the F1 of
(sub_topics, message_type) and (service, message_type) are
87.07% and 85.43% respectively, which are relatively high.
But the F1 of (pub_topics, message_type) and (service_called,
message_type) are 75.14% and 80.26% respectively, which
are relatively low. The main reason is that when extracting
subscribe topics and service called relationships, we need
to analyze the Callback Function further. This process will
cause errors in identification information and interfere with
relationship extraction.

The ROS Node knowledge extracted by our method has
more than 80% correctness and can be used to guide
practice and development.

V. THREATS TO VALIDITY

External validity. For the ROS-related extraction work
of the dataset, we admit that our entity extraction method
and relation extraction method from ROS Code has some
flaws. There is still a large amount of knowledge in the code,
which requires more detailed mining. Although there may
be some erroneous data in the knowledge graph dataset and
missing information in data extraction,we do not consider this
a significant threat to external validity.

Internal validity. In the experimental verification process
of RNKG, we randomly verified the completeness and cor-
rectness of ROS Node in RNKG. Additionally, we randomly
selected ROS Node to evaluate the effectiveness of RNKG.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a method to construct a robotics
knowledge graph RNKG with 14,065 entities and 15,767
relations for better serving ROS developers. We systematically
introduce how it is automatically built from source code
knowledge from GitHub and text description from ROS Wiki.
We proposed an algorithm for searching ROS Node based
on user description. Finally, we use three experiments to
illustrate the information quality of RNKG and the possibility
of implementing ROS Node search.

In the future, we plan to do in-depth follow-up research
based on RNKG. And after in-depth mining of robot software
project, the new data acquired by it is integrated into the
constructed RNKG. We will continually enlarge RNKG to
cover emerging ROS Node. On the other hand, we can better
apply the reasoning ability of the knowledge map to the
development tasks of robot software and use better semantic
technology to support developers in searching for the ROS
Node they need.

VII. ACKNOWLEDGEMENT

This work was supported by the Key Laboratory of Software
Engineering for Complex Systems and the National Science
Foundation of China under granted number 62172426.

REFERENCES

[1] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann.
Engineering robotics software architectures with exchangeable model
transformations. In 2017 First IEEE International Conference on
Robotic Computing (IRC), pages 172–179. IEEE, 2017.

[2] Sun Bo, Xinjun Mao, Shuo Yang, and Long Chen. Towards an efficient
searching approach of ros message by knowledge graph. In 2022
IEEE 46th Annual Computers, Software, and Applications Conference
(COMPSAC), pages 934–943. IEEE, 2022.

[3] Chia-Hui Chang and Shao-Chen Lui. Iepad: Information extraction
based on pattern discovery. In Proceedings of the 10th international
conference on World Wide Web, pages 681–688, 2001.

[4] Long Chen, Xinjun Mao, Yinyuan Zhang, Shuo Yang, and Shuo Wang.
An efficient ros package searching approach powered by knowledge
graph. In Proceedings of the International Conference on Software
Engineering and Knowledge Engineering, pages 411–416, 2021.

[5] Angel Daruna, Mehul Gupta, Mohan Sridharan, and Sonia Chernova.
Continual learning of knowledge graph embeddings. IEEE Robotics
and Automation Letters, 6(2):1128–1135, 2021.

[6] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei
Liu, and Xuejiao Zhao. Improving api caveats accessibility by mining
api caveats knowledge graph. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 183–193. IEEE,
2018.

[7] Jinjiao Lin, Yanze Zhao, Weiyuan Huang, Chunfang Liu, and Haitao
Pu. Domain knowledge graph-based research progress of knowledge
representation. Neural Computing and Applications, 33:681–690, 2021.

[8] Shuang Liu, Hui Yang, Jiayi Li, and Simon Kolmanič. Preliminary
study on the knowledge graph construction of chinese ancient history
and culture. Information, 11(4):186, 2020.

[9] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose
Finkel, Steven Bethard, and David McClosky. The stanford corenlp nat-
ural language processing toolkit. In Proceedings of 52nd annual meeting
of the association for computational linguistics: system demonstrations,
pages 55–60, 2014.

[10] Justin J Miller. Graph database applications and concepts with neo4j.
In Proceedings of the southern association for information systems
conference, Atlanta, GA, USA, volume 2324, 2013.

[11] Maxim Mozgovoy and Roman Efimov. Wordbricks: a virtual language
lab inspired by scratch environment and dependency grammars. Human-
centric Computing and Information Sciences, 3:1–9, 2013.

[12] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[13] Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming
Zhu, and Jianling Sun. Api-misuse detection driven by fine-grained api-
constraint knowledge graph. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, pages
461–472, 2020.

[14] Redmond Ramin Shamshiri, Ibrahim A Hameed, Lenka Pitonakova,
Cornelia Weltzien, Siva K Balasundram, Ian J Yule, Tony E Grift,
and Girish Chowdhary. Simulation software and virtual environments
for acceleration of agricultural robotics: Features highlights and perfor-
mance comparison. International Journal of Agricultural and Biological
Engineering, 11(4):15–31, 2018.

[15] Haoze Yu, Haisheng Li, Dianhui Mao, and Qiang Cai. A relationship
extraction method for domain knowledge graph construction. World
Wide Web, 23:735–753, 2020.

[16] Haoze Yu, Haisheng Li, Dianhui Mao, and Qiang Cai. A domain
knowledge graph construction method based on wikipedia. Journal of
Information Science, 47(6):783–793, 2021.

[17] Xuejiao Zhao, Zhenchang Xing, Muhammad Ashad Kabir, Naoya
Sawada, Jing Li, and Shang-Wei Lin. Hdskg: Harvesting domain
specific knowledge graph from content of webpages. In 2017 IEEE
24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 56–67, 2017.

	Introduction
	Related Work
	Methodology
	The ontology of RNKG
	Extract ROS Node Communication Information
	Extract ROS Node Functional and Noun Features
	Constructed RNKG

	Evaluation
	The completeness of RNKG.
	Protocol
	Results and Analysis

	The correctness of Node knowledge in RNKG
	Protocol
	Results

	Threats to validity
	Conclusion and future work
	Acknowledgement
	References

