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Abstract—Multi-behavior recommendation has gained significant 
attention in recent years for its ability to outperform single-
behavior models. Current research related to multi-behavior 
models leaves room for improvement in the following two areas. 
First, the noise carried by individual behaviors and the additional 
noise generated during behavior processing is often overlooked, 
and these can ultimately degrade recommendation performance. 
Second, the specific time period of behavioral interactions and the 
frequency of interactions within that time period are also not taken 
into account. To address the above limitations, we propose a multi-
behavior recommendation model integrating dynamic preferences 
(MB-DP) that captures dynamic interests while smoothing and 
denoising multi-behavior information. MB-DP extracts low and 
high-order semantics from various behaviors and unifies the 
measurements to generate interaction predictions. Additionally, it 
analyzes the interaction time and frequency of each behavior using 
gated recurrent units to capture the dynamic preferences of users 
and improve the prediction values. Extensive experimental results 
on two real-world datasets show that MB-DP significantly 
improves recommendation performance compared to the state-of-
the-art baselines. 

Keywords-Recommender System; Multi-behavior; Dynamic 
Preference; Graph Neural Network; Gated Recurrent Unit 

I.  INTRODUCTION 
With the explosive growth of information, users struggle to 

make decisions among countless options [1]. Recommender 
systems based on user behavior modeling are a good solution to 
this problem in various fields. 

The use of behavioral data has increased in fields such as e-
commerce and social networks [2]. However, single interaction 
types inadequately represent user interests, as interactions are 
often multi-typed. Multi-behavior recommendation has become 
a key research direction in recommender systems. Current 
models include deep learning-based and graph neural network-
based approaches. Deep learning-based models consider the 
cascading relationship between behavior types and use multi-
task learning for optimization [3]. Graph neural network-based 
models, like MB-GCN and GHCF, mine high-order interaction 
information between users and items, providing diverse content 
and structural information [4, 5, 6]. 

Multi-behavior recommendation models face two key issues: 
1) existing models don't address noise impact in multi-behavior 
information on recommendation performance, leading to over-

smoothing and affecting personalization [7]; 2) existing models 
do not consider users' dynamic preference information. As 
shown in Figure 1, in a multi-behavior recommendation model 
that does not consider dynamic preferences, two users have the 
same interaction behavior type for i1 , so similar preference 
degrees will be judged. However, by considering dynamic 
preferences over three time periods, we can see that only user u1 
interacts with item i1 in the third period, and u1 has more 
interactions with i1 in the first period, indicating that u1's 
preference for i1 is stronger than u2's. In real-world scenarios, 
users' preferences [8] and item popularity [9] can change over 
time, and capturing changing preferences requires factoring in 
time to capture dynamic preferences from users' multi-behavior. 

Therefore, to address the aforementioned problems, in this 
paper, we propose a novel multi-behavior recommendation 
model integrating dynamic preferences (MB-DP). The goal of 
MB-DP is to establish a recommender system model based on 
multi-behavior learning and optimized prediction values using 
dynamic preferences. Specifically, We learn meta-knowledge 
from behavior interaction patterns, obtaining low and high-order 
personalized semantics. To reduce noise, we normalize initial 
measurements and use multi-layer graph neural networks. MB-
DP analyzes time periods and interaction frequency to capture 
users' dynamic preferences and optimize recommendation 
results. The contributions of our paper are as below:  

(1) We propose MB-DP, a new recommendation network 
that considers multi-behavior patterns and dynamic preferences, 
and extracts personalized semantics while smoothing out noise 
from multiple behaviors. 
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Figure 1. User preferences relate to multi-behavior types. A time-dynamic 
multi-behavior modeling approach captures more information. 



(2) We use gated recurrent units to analyze interaction time 
and frequency, and correct multi-behavior learning results 
towards optimized prediction values. 

(3) We show the effectiveness of MB-DP on two real-world 
datasets and conduct ablation studies to understand the model 
design. MB-DP outperforms baselines from various studies in 
terms of recommendation performance. 

The paper is structured as follows: Section 2 reviews related 
work; Section 3 defines the research problem; Section 4 details 
our MB-DP model; Section 5 presents experimental results; 
Section 6 concludes our work and discusses future research. 

II. RELATED WORK 
The use of graph learning methods can uncover higher-order 

connectivity between users and items, with the core idea of 
enhancing node representation using (higher-order) 
neighborhoods [10]. NGCF [11] employs multi-layer graph 
neural networks for higher-order information aggregation, while 
LightGCN [12] preserves user and item embeddings to prevent 
over-smoothing. Zhang et al. proposed a new second-order 
continuous GNN with better interpretability and avoided over-
smoothing [7]. GAMLP [13] captures potential correlations 
between different scale graph knowledge, while InstantGNN [14] 
proposes an incremental calculation method for graph 
representation matrices to address continuous changes in large-
scale dynamic graphs. 

Multi-behavior recommendation models treat added 
behaviors as auxiliary compared to single-behavior models. 
NMTR [3] shares user and item embedding layers across 
behavior types. MB-GCN [5] unifies user-item interaction 
matrices into a graph, capturing behavior strength and semantics 
through propagation layers. MB-GMN [6] uses meta-learning to 
incorporate multiple behavior patterns and learn behavior 
representations related to behavior types. GHCF [4] jointly 
embeds node representations and relationships into multi-
relational prediction using GCN and performs non-sampling 
optimization under multi-task learning. S-MBRec [15] performs 
GCN for each behavior, differentiating the importance of 
different behaviors through a supervised task, and capturing the 
commonality of embeddings between target and auxiliary 
behaviors with a star-shaped contrastive learning task. However, 
existing multi-behavior recommendation models often overlook 
the positive impact of users' dynamic preferences on 
recommendations. MB-DP addresses this issue by designing a 
dynamic preference module.  

Although the above multi-behavior recommendation models 
consider the impact of multiple behaviors on personalized 
recommendations, they do not consider the important time factor 
in real-world scenarios, where customer preferences for items 
change over time [16]. SASRec [17] identifies relevant items 
from user history to predict the next item in each time period. 
FISSA [18] improves SASRec by incorporating a global 
representation learning module that balances local and global 
representations using candidate item information. DUMN [19] 
designs a user memory network to model long-term interests in 
a granular way. Considering the influence of time length, URPI-
GRU [20] learns users’ short-term preferences through a GRU 
model and uses K-nearest neighbor sequence mining to explore 

users’ long-term preferences. However, these models typically 
do not sufficiently extract high-order content and structural 
information from interactions. 

III. PROBLEM DEFINITION 
We represent the set of users and items with U	=	{u1,	u2,	…,	

uM}  and I = {i1, i2, …, iN} , respectively. To capture multi-
behavior interactions, we use a three-dimensional matrix X	∈ 
RK× M× N  where xu,i

k  = 1  if there is an interaction of the k-th 
behavior category between user u and item i, and 0 otherwise. 
To capture temporal information, we use a four-dimensional 
matrix T	∈	RM×N×D×K  where tu,i

d,k	=	z  represents the number of 
interactions of the k-th behavior category between user u and 
item i during the d-th time period. We formulate the problem as 
predicting the probability of user um  performing the target 
behavior on item in using X and T as inputs. 

IV. METHODOLOGY 
We now introduce the details of our proposed MB-DP model, 

as shown in Figure 2. It consists of three core modules.  

A. Behavior Semantic Extraction Module 
Different behaviors represent various user preferences, 

making some irrelevant interactions act as noise. Previous 
multi-behavior models focus on preference differences, while 
our goal is to extract user-specific behavior semantics. 

1) Low-order Personalized Semantic Extraction 
We use a method inspired by MB-GMN [6] to learn meta-

knowledge in multi-behavior interaction patterns and obtain 
personalized user and item embeddings with behavior semantic 
information. To obtain the initial contextualized user 
embedding H#u

k  ∈ RM×3dim , we concatenate the behavior 
embedding Eb

k  ∈ RM×dim of the user under behavior k, the user 
embedding Eu ∈ RM×dim, and the project interaction information 
embedding Eu,Nk  in the second dimension: 

H#u
k  = Eb

k  ⊕ Eu ⊕ Eu,N
k ,   (1) 

 
Figure 2. The architecture of MB-DP. It consists of three core modules, 
from left to right, behavior semantic extraction, behavior relationship 
denoising, and dynamic preferences extraction 

 



where Eu,Nk 	∈	RM×dim is obtained by normalizing the interaction 
matrix Rk	∈	RM×N and performing a cross item with the project 
embedding Ei	∈	RN×dim.  

To balance the degree of information acquisition of the 
contextualized user embedding and the user embedding Eu 
under behavior k, we pass the initial contextualized user 
embedding H#u

k 	through a linear layer with an input length of 
3dim, an output length of dim, and apply LeakyReLU for non-
linear activation. This yields the contextually balanced user 
embedding Hu

k  ∈ RM×dim: 

Hu
k  = LeakyReLu *MLP +H#u

k,-.       (2) 

To address the problem of low efficiency in meta-learning 
caused by high dimensionality, we use low-rank decomposition 
to transform meta-learning by learning two low-rank 
projections, V.u

k,1 ∈ RM×dim×rank  and V.u
k,2 ∈ RM×rank×dim  for 

behavior k, and obtain the contextualized user embedding Eubk/  
as follows: 

𝐸1+,- 	= 	𝑜𝑝𝑒𝑟𝑎𝑡𝑒 +𝑜𝑝𝑒𝑟𝑎𝑡𝑒9𝐸+, 𝑉<+-,.=
-
, 𝑉<+-,/, ,  

𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝑎, 𝑏) = 𝑠𝑢𝑚(𝑢𝑛𝑠𝑞𝑢𝑒𝑒𝑧𝑒(𝑎) ⊙ 𝑏). (3)  

Here, V.u
k,1 and V.u

k,2 are obtained by applying a Linear layer 
with input length dim  and output length rank × dim  to the 
contextually embedded user embedding Hu

k  after information 
balancing, and then reshaping the resulting tensor into 
RM×dim×rank and RM×rank×dim respectively. 

By concatenating E#ub
k  with Eu , we obtain the user 

embedding Eub
k  ∈ RM×2dim  with personalized behavioral 

semantic information. 

2) High-order Connected Semantic Extraction Module 
We use graph neural networks to capture the similarity 

between users or items influenced by different behaviors. 

Under behavior k, we define the adjacency matrix 
Ak ∈ R(M+N)×(M+N) as follows: 

 Ak = H 0 Xk

XkT
0
I. (4) 

We use the symmetric normalization matrix A#k ∈ 
R(M+N)×(M+N)  to smooth the input matrix that needs to be 
processed, and the symmetric normalization matrix is defined as 
follows: 

 A#k = Dk
-12AkDk

-12. (5) 

Here, Dk is a diagonal matrix of size (M+N) × (M+N), and 
the values on the diagonal of Dk  represent the number of 
non−zero elements in each row of the adjacency matrix Ak. The 
input matrix Ek,(0) ∈ R(M+N)× 2dim of the graph neural network at 
layer 0 is obtained by concatenating Eub

k  and Eib
k , which have 

personalized semantic information for behavior k. 

The propagation rule for each layer of the graph neural 
network is: 

 Ek,(l+1) = A#k⊗Ek,(l). (6) 

Finally, the final graph neural network output embedding 
matrix is obtained as follows: 

 Ek = mean9Ek,(0), Ek,(1), …, Ek,(L)=. (7) 

We split Ek  into two embedding matrices according to 
[M, N], representing the final user embedding E.u

k 	∈	RM×2dim and 
item embedding E.i

k	∈	RN×2dim respectively under behavior k: 

 E.u
k , E.i

k ⟵ split9Ek, [M, N]=. (8) 

B. Behavior Relationship Denoising Module 
The initial embeddings of each behavior cannot be 

uniformly scaled, which leads to different measurement scales 
of the high−order personalized semantics carried by each 
behavior type. In order to reduce the noise brought by multi-
behavior interaction, we additionally treat all types of behaviors 
as a new behavior. To maintain the consistent shape with the 
high-order semantic output of each behavior, we concatenate 
the initial user embedding Eu ∈ RM×dim  and item embeddings 
Ei ∈ RM×dim  to themselves, resulting in new user embedding 
Eu̇ ∈ RM×2dim and new item embedding Ei̇  ∈ RM×2dim: 

 Eu̇ = Eu	⊕	Eu, Ei̇  = Ei	⊕	Ei. (9) 

After performing high-order connected semantic extraction 
on them, we obtain Ė.u ∈ RN×2dim and Ė.i ∈ RN×2dim. 

C. Dynamic Preferences Extraction Module 
Most multi-behavior models that use graph neural networks 

consider only the interaction adjacency matrix between users 
and items, which ignores the varying user preferences for an 
item based on behavior frequency and order. To address this, we 
propose a dynamic preferences extraction module to capture the 
occurrence frequency of each behavior interaction and analyze 
dynamic preferences for optimizing prediction results.  

Using a one-layer unidirectional GRU with ReLU activation 
function, we extract preferences information for each behavior 
interaction in each time period, analyze the changes in 
preference levels, and obtain T<u2,i ̅ ∈ Rdgruout , where dgruout is the 
length of current time period information output by this 
unidirectional GRU. 

 T<u2,i ̅ = ReLu +GRU9Tu2,i ̅=,. (10) 

To obtain the initial preference coefficient P.u2,i ̅ for user u<	and 
item i,̅ we pass T<u2,i ̅	through a linear layer with input length dgruout	
and output length 1. 

To improve the robustness of the model, we optimize the 
initial preferences coefficients based on comparisons of P.u2 for 
all items. The resulting final preferences coefficient matrix P ∈ 
RM×N represents user u<'s preferences for item i,̅ where P.u2,i ̅ is the 
coefficient. We first aggregate initial coefficients for all items 
using a Softmax layer to obtain P.u2 ∈ RN for user u<. To preserve 



diversity, we multiply P.u2  by N to obtain the final preferences 
coefficient of user u< for all items: 

 Pu2 = Softmax(P.u2) ∗ N. (11) 

D. Model Training 
Inspired by LightGCN [12], for model training using Mini-

Batch method, the trainable parameters are divided into two 
parts: 1) the initial user and item embeddings Φ = E(0) that are 
affected by the Mini−Batch size, and 2) the other parameters Θ. 
We use the Bayesian Personalized Ranking (BPR) loss, which is 
a pairwise loss that maximizes the difference between the 
positive samples (items with high user ratings) and negative 
samples (items with low user ratings) to improve the 
effectiveness of the recommender system. During the training 
phase, we optimize the following objective defined by using the 
Adam algorithm: 

 LBPR	=	-∑ ∑ ∑ lnσ (yYu2i ̅ 	-	yYuj4 )j∈̅Nui∈̅Nu
M
u2=1  

+	λ +ZE(0)Z
F

2
+‖Θ‖F

2,, (12) 

where λ is the coefficient controlling L2 regularization and yYu2i ̅ 
represents the final preferences prediction value of user u<  for 
item i.̅ Its calculation formula is: 

 yYu2i ̅	=	y<u2,i ̅	×	Iu2,i	2 	=	
Ė4u
k
	⊗	 Ė4i

kT
 +	 ∑ E4u	

	kK
k=0 ⊗	E4i

kT

K	+	1
	×	Pu2,i ̅. (13)	

V. EXPERIMENTS 
This section conducts experiments on two real-world 

datasets to evaluate the performance of our MB-DP by 
comparing it with various recommendation techniques. Our goal 
is to answer the following questions: 

• RQ1: How does MB-DP perform when competing with 
various recommendation baselines? 

• RQ2: How do the sub-modules in MB-DP affect its 
recommendation performance? 

• RQ3: How does different configurations of key 
hyperparameters affect the performance of MB-DP? 

A. Experimental Settings 
Datasets. We evaluate our model on two real-world datasets: 

UserBehavior Data from Taobao, an e-commerce platform in 
China, and IJCAI Data from Tmall, a shopping platform. 
UserBehavior Data includes four types of user-item interactions 
and corresponding timestamps, while IJCAI Data contains the 
shopping logs of anonymous users before and after "Double 
Eleven". We use the purchase behavior as the target behavior 
and summarized the dataset information in Table I. 

Evaluation Protocols. For performance evaluation in top-N 
recommendation tasks, we use two widely adopted metrics: 
Normalized Discounted Cumulative Gain (NDCG@10) and Hit 
Rate (HR@10). We use leave-one-out evaluation for training 
and test set split, and reserve the first interaction after the last 
time period as the test dataset. We randomly select 99 
uninteracted items for each user as negative examples. 

Methods for Comparison. To comprehensively evaluate the 
performance, we evaluate the performance of MB-DP by 
comparing it with various baselines from different research 
directions, including MF, NGCF [11], LightGCN [12], NGCF-
M, LightGCN-M, and MB-GMN [6]. MF is a traditional matrix 
factorization approach. NGCF is a model that uses graph neural 
networks to generate node embeddings by propagating 
embeddings over the user-item bipartite graph, allowing for 
higher-order information aggregation. LightGCN is an 
improvement on GCN and is used in recommender systems to 
address training and prediction on large-scale graphs. NGCF-M 
and LightGCN-M treat all interaction behaviors as one and train 
using the NGCF and LightGCN models, respectively. MB-
GMN is a model that uses graph meta-network technology to 
solve the problem of multi-behavior recommendation, learning 
the relationships between users and items using graph meta-
networks and using attention mechanisms to handle 
relationships between different behaviors. 

Parameter Settings. We use PyTorch to implement the MB-
DP model, and optimize the parameters using the Adam 
optimizer with a learning rate of 1𝑒:/ . The regularization 
coefficient 𝜆 is chosen from {0.05, 0.01, 0.005, 0.001, 0.0005, 
0.0001}, and the batch size used during training is chosen from 
{32, 128, 256, 512, 1024, 2048}. By default, the hidden 
dimension of MB-DP is set to 64, the low-rank dimension is set 
to 4, and the hidden dimension of 𝐺𝑅𝑈 is set to 16. The number 
of graph neural network layers in MB-DP is searched from {1, 
2, 3, 4}. The neural network baselines used in the experiments 
are either implemented using their original code or with the 
above parameter settings. 

B. Performance Validation (RQ1) 
We evaluate the performance of predicting target user 

interaction behavior on different datasets and summarized the 
following observations: 

Table II displays the performance of recommending top-𝑁 
items for different target behavior types. From the results 
presented, we observe that MB-DP consistently achieves the 
best performance in top-N recommendations for different N 
values. This indicates that MB-DP has an advantage over other 
baselines in providing the correct interactive items and has a 
higher probability of doing so. Such performance differences 
can be attributed to its effective extraction of user multi-behavior 
information and dynamic preferences. 

Our evaluation shows that incorporating user-item multi-
behavior information into recommendation models improves 
performance, particularly with GNN-based models that capture 
higher-order relationships through stacked information 
propagation layers. We also find that MB-DP outperforms 
several multi-behavior recommendation model baselines, 
including MB-GMN and LightGCN, by effectively extracting 
dynamic preferences for multi-behavior. The significant 

TABLE I.  THE PREPROCESSED DATASETS 

Dataset User# Item# Interaction# Behavior types 
UserBehavior 38042 28747 599977 {pv, fav, cart, buy} 

IJCAI 11854 21356 184995 {pv, fav, cart, buy} 
 



performance gap between MB-DP and these baselines 
demonstrates the advantage of our method in capturing the 
dynamic preferences of users and items. In contrast, the GNN-
based baselines aggregate unique features of behavior 
perception patterns or user behavior patterns but ignore dynamic 
preferences. 

C. Model Ablation Study (RQ2) 
To evaluate the design submodules of MB-DP, we consider 

five model variants: w/o MBeh, w/o Meta, w/o MGcn, w/o 
Fuse, and w/o DI. These variants respectively remove the use of 
multiple behaviors in behavior semantic extraction, the low-
order personalized semantic module, the high-order connected 
semantic extraction module, the behavior relationship denoising 
module, and the dynamic preferences extraction module.  

Table III summarizes the results of ablation experiments on 
different datasets. The following conclusions can be drawn from 
the experimental results: 1) Using multi-behavioral interaction 
information is effective in this type of recommendation, as w/o 
MBeh performs poorly compared to MB-DP. 2) The 
performance of MB-DP is better than that of w/o Meta, 
indicating that different behaviors have different meanings for 
each user and help in user behavior modeling. 3) Graph neural 
networks can differentiate between user-to-user or item-to-item 
behavior differences, showing the efficacy of incorporating 
interaction structure in behavior perception or user behavior 
patterns. 4) High-order connected semantic extraction by 
treating all behavior types as a new type reduces behavior noise, 
and the absence of behavior relationship denoising in w/o Fuse 
leads to consistently poor performance across various top-N 
recommendation settings. 5) Dynamic preferences extraction 
positively impacts recommendation performance as time 

information helps to obtain users' preference changes for 
different items and determine their current preference level. 

D. Hyperparameter Study (RQ3) 
We experiment with different parameter settings for MB-DP 

to evaluate its performance with varying configurations of key 
hyperparameters: hidden state dimension, low-rank 
decomposition dimension, and number of layers in the graph 
neural network. The results are presented in Figure3-Figure5, 
where the y-axis shows the performance increase ratio compared 
to the default setting of MB-DP. 

The hidden state dimension (dim) of MB-DP is varied from 
8 to 64, and increasing dim improves the recommendation 
performance, but the improvement became relatively flat when 
dim > 32 for top-N recommendation beyond N = 1. Low-rank 
decomposition dimension (rank) is varied from 4 to 16, and the 
impact of rank on recommendation performance is found to be 
not significant. We also vary the number of graph neural 
network layers (layer) from 1 to 4 and find that increasing layers 
decrease the Top-1 recommendation performance due to 
overfitting, while increasing hit rate for Top-N recommendation 
with little effect on the recommendation order.  

TABLE III.  PERFORMANCE COMPARISON OF DIFFERENT VARIANTS 

Metrics UserBehavior IJCAI 
HR@10 NDCG@10 HR@10 NDCG@10 

w/o MBeh 0.5240 0.3906 0.5959 0.4633 
w/o Meta 0.5534 0.4546 0.6360 0.5452 

w/o MGcn 0.5242 0.4277 0.6088 0.5316 
w/o Fuse 0.4839 0.3730 0.5856 0.4507 
w/o DI 0.5569 0.4596 0.6445 0.5585 
MB-DP 0.5635 0.4705 0.6553 0.5676 

 

TABLE II.  OVERALL MODEL PERFORMANCE ON USERBEHAVIOR AND IJCAI DATASETS, WITH THE METRICS OF HR@𝑁 AND NDCG@𝑁 

Dataset Method HR@N NDCG@N 
N=1 N=5 N=10 N=20 N=1 N=5 N=10 N=20 

UserBehavior 

MF 0.0766 0.1528 0.2000 0.2891 0.0766 0.1175 0.1325 0.1549 
NGCF 0.1280 0.1975 0.2566 0.3539 0.1280 0.1630 0.1819 0.2063 

lightGCN 0.1313 0.1907 0.2453 0.3386 0.1313 0.1613 0.1788 0.2021 
NGCF-M 0.1365 0.3419 0.4691 0.6153 0.1365 0.2417 0.2827 0.3197 

lightGCN-M 0.3505 0.4861 0.5499 0.6375 0.3505 0.4229 0.4434 0.4655 
MB-GMN 0.1357 0.2555 0.3506 0.4852 0.1357 0.1965 0.2280 0.2610 
MB-DP 0.3944 0.5014 0.5635 0.6485 0.3944 0.4506 0.4705 0.4919 

Improvement 12.53% 3.15% 2.47% 1.74% 12.53% 6.53% 6.11% 5.68% 

IJCAI 

MF 0.0105 0.0649 0.1151 0.2133 0.0105 0.0372 0.0534 0.0780 
NGCF 0.0366 0.1148 0.2014 0.3295 0.0366 0.0749 0.1026 0.1347 

lightGCN 0.0424 0.1095 0.1775 0.2751 0.0424 0.0749 0.0967 0.1213 
NGCF-M 0.1936 0.4326 0.5683 0.7073 0.1936 0.3157 0.3596 0.3948 

lightGCN-M 0.4381 0.5757 0.6349 0.7137 0.4381 0.5121 0.5311 0.5509 
MB-GMN 0.0384 0.1572 0.2666 0.4212 0.0384 0.0982 0.1321 0.1725 
MB-DP 0.4969 0.5949 0.6553 0.7313 0.4969 0.5482 0.5676 0.5868 

Improvement 13.43% 3.32% 3.22% 2.47% 13.43% 7.06% 6.88% 6.51% 
 

 
Figure 3. Effect of hidden state dimensionality on MB-DP 

 



VI. CONCLUSION 
In this paper, we propose a multi-behavior recommendation 

model integrating dynamic preferences (MB-DP), which 
reduces the impact of noise on recommendation performance 
when exploiting information from multiple types of interaction 
behavior and improves recommendation accuracy by utilizing 
information about users’ dynamic interests for items. We 
conduct extensive experiments on two real-world datasets, and 
the results show that MB-DP significantly outperforms various 
state-of-the-art baselines. Furthermore, we find that dynamic 
preferences contribute to the final recommendation performance. 
In future work, we will further explore how the connections 
between behaviors and the diverse semantics of behaviors affect 
the recommendation quality, and seek general ways to mitigate 
this impact for better recommendation performance. 
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Figure 4. Effect of low-rank dimensionality on MB-DP 

 

 
Figure 5. Effect of GNN layers on MB-DP 




