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Abstract—Few-shot object detection (FSOD), which involves
training the detector with few annotated data to detect novel
objects, has aroused a wide range of research interests. However,
the performance of FSOD is still limited by insufficient data.
Existing works usually adopt fine-tuning paradigm, which first
uses rich base classes for pre-training and then uses them to
carve the novel class feature space. In the fine-tuning phase, the
balance space learned by the pre-trained model will be broken
leading to an intersection between the feature space of novel and
base classes, which makes it difficult to distinguish the difference
between them. Contrastive learning has been shown to learn a
balanced feature space and enhance the discriminability of the
learned features. Here, we present Few-Shot object detection via
Instance-wise and Prototype Contrastive Learning (FS-IPCL),
which introduces contrastive learning to learn a balanced feature
space. FS-IPCL uses instance-wise and prototype contrastive loss
during feature learning to enhance the intra-class compactness
and inter-class separability of samples. In this way, the base
and novel classes can be evenly distributed in the feature
space, improving the class boundary to alleviate the confusion
problem of the novel classes. Extensive experimental results on
the PASCAL VOC and MS-COCO datasets demonstrate the
effectiveness of the proposed method and achieve state-of-the-
art performance.

Index Terms—Few-shot object detection; Contrastive learning;
Graph convolutional network.

I. INTRODUCTION

With the widespread use of Deep Convolutional Neural
Networks (DCNN) [1], [2] in recent years, object detection [3]
algorithms based on DCNN have also advanced significantly.
To assure the effectiveness of its detectors, object detection
nevertheless depends on a sizable volume of annotated data.
However, it requires considerable labor and time to get enough
annotated data in the real world. Deep detectors are prone
to overfitting when trained with only a few data, and their
detection accuracy cannot be compared with that of detectors
with a large amount of data. As opposed to that a child may
quickly pick up novel categories and visual concepts by using
a few examples. Therefore, most researchers are working to
close this gap to give machines good perception capabilities.

Few-shot learning follows the principle of picking up new
ideas rapidly, which can achieve promising performance with
limited data. As a branch of few-shot learning, few-shot
object detection (FSOD) is a more complex task compared
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to few-shot classification because it requires to locate the
objects additional. The majority of FSOD approaches fol-
low the meta-learning paradigm. The two-stage fine-tuning
method (TFA) [4] has recently demonstrated more potential
for improving FSOD because of its efficiency and simplicity
compared to meta-learning techniques. To address the issue
of sparse scale distribution of objects in FSOD, MPSR [5]
proposes a multi-scale positive sample refining method on
the basis of TFA. Nevertheless, the application difficulty of
the method is increased due to the requirement for manual
selection in its forward refinement branch. In this work, we
find that fine-tuning using novel class samples is hard to learn
a balanced discriminative feature space, making it difficult for
the model to distinguish the features of the base classes and
the novel classes.

Contrastive learning has been shown to learn a balanced
feature space [6]. Since the distances and differences between
categories are more obvious, contrastive learning can enhance
the discriminability of the learned features. FSCE [7] uses su-
pervised batch contrastive learning [8] to simulate the instance-
level similarity and inter-class distinction of object proposal
embeddings. It produces a more balanced feature space by
optimizing the instance contrast loss, which can separate all
instances well. However, since the model can distinguish dif-
ferent instances using low-level image differences, the learned
feature embeddings may not capture the semantic knowledge
of the objects. Inspired by FSCE, we introduce contrastive
learning into FSOD with prototype contrastive learning. Pro-
totypes are described as “representative embeddings of a class
of semantically similar instances” [9]. It aggregates instances
of the same class to obtain a compact image representation,
which can capture some basic semantic structure of a single
class.

We propose Few-Shot object detection via Instance-wise
and Prototypical Contrastive Learning (FS-IPCL). Specifically,
the instance-wise contrastive loss (ICL) improves the simi-
larity of instances from the same class, and the prototype
contrastive loss (PCL) improves the similarity between an
instance and its corresponding prototype, so that the model
learns more class-related semantic knowledge. However, two
problems arise when contrastive learning is applied to FSOD:
(1) there may be background noise in contrast samples; (2)
there may exist positive and negative sample coupling [10].
That is, low quality positive samples will decrease the gradient



of a batch of informative negative samples and vice versa. To
address these two problems, we screen contrast samples to
obtain high-quality positive and negative samples and decou-
pling them. Additionally, the prototype constructed using the
features extracted in the initial stage may not be very reliable,
and the feature representation of the image will constantly
change during training. To obtain a representative prototype
embedding, we adopt graph convolutional network (GCN) [11]
to dynamically update the prototypes. Our approach has three
main contributions:

• The instance and prototype contrastive loss are designed
to learn a balanced discriminative feature space, im-
proving by selecting high-quality positive and negative
samples and decoupling them.

• To get more accurate prototype feature embeddings, GCN
is used to dynamically update the prototypes in prototyp-
ical contrastive loss.

• A significant number of experiments are conducted by
our method on the Pascal VOC and MS-COCO datasets,
and new state-of-the-art results are achieved.

II. RELATION WORK

Few-Shot Object Detection. Currently, the commonly used
FSOD methods are mainly based on meta-learning and fine-
tuning paradigms. Following the meta learning methods,
FSRW [12] proposes a reweighting module to extract the
global features of the support image. For fine-tuning paradigm,
TFA [4] first applies the two-stage fine-tuning method to
FSOD, and proposes a new few-shot evaluation method.
DeFRCN [13] uses a decoupling approach to solve the multi-
stage and multi-task conflict problem when the Faster R-CNN
detection framework is applied to FSOD. Our approach is also
based on a two-stage fine-tuning paradigm.
Contrastive learning. Contrastive learning uses contrast to
bring together similar classes and distinguish classes by
constructing pairs of positive and negative samples. Most
contrastive learning methods map features to unit hyperspheres
for representation learning. A direct matching of uniformly
sampled points on the unit hypersphere can provide a good
representation. Existing contrastive learning is divided into
two main categories, instance-wise contrastive learning [6] and
prototypical contrastive learning [9]. Instance-wise contrastive
learning brings similar instances close together and different
instances far apart by comparing instance information from
different samples. Prototypical contrastive learning represents
the semantic structure of a class by using prototypes of image
clusters. Some methods [14] have also used both instance-
wise contrast learning and prototypical contrast learning. In
this paper, contrastive learning is introduced into FSOD by
mapping features onto unit hypersphere and instance-wise
contrast learning and prototype contrast learning.

III. METHOD

Our proposed method FS-IPCL uses two-stage training. The
base classes training step uses a rich base-class dataset to
train the model. During the fine-tuning phase, we fine-tune the

model using a relatively balanced small amount of base-class
data and novel classes data (N-way K-shot). And the backbone
feature extractor is frozen while the rest of the structure is fine-
tuned. Meanwhile, we introduce ICL and PCL to supervise the
RoI feature extractor, and jointly optimize the contrastive loss
and the original classification and regression objectives. Our
method’s overall architecture is shown in Figure 1.

A. Problem Setting
Our problem setting for FSOD follows the standard problem

setting of previous works [4], [7], [13]. Our dataset is divided
into a base set Dbase with rich annotated instances, and a
novel support set Dnovel with only a few annotated instances
per category. The class Cbase in our base set Dbase and the
class Cnovel in the novel support set Dnovel do not overlap,
that is, Cbase ∩ Cnovel = ∅. Our goal is to learn a robust
detector which can recognize and localize the query set Dquery

pairs without annotated instances, where the class Cquery ⊆
Cbase ∪ Cnovel in Dquery.

B. Instance-wise and Prototypical Contrastive Loss
Since generic detectors struggle to capture discriminative

region proposal features from a limited number of shots, we
propose two contrastive losses to better distinguish feature
representations of the novel classes: (1) ICL reduces similarity
between object candidates from different classes and increases
similarity between object candidates within the same category
by comparing various RoI features. (2) PCL compares the RoI
feature of the object with the prototype, making the object
candidate box close to its corresponding class prototype and
far away from other class prototypes. PCL first acquires the
initial prototype c

′ ∈ Rdp×K and then utilizes the prototype
updating operation to dynamically update the prototype. The
prototype updates part which is described in III-C.

Inspired by supervised batch contrastive learning method
[8], our ICL and PCL are designed as follows with suitable for
FSOD. Specifically, we adopt the selected N+ positive sam-
ples and N− negative samples to reduce the noise influence
in the samples. And we remove the similarity calculation of
positive samples in the denominator to alleviate the influence
of the coupling of positive and negative samples.
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Fig. 1. Overview of our proposed FS-IPCL. The RPN and RoI feature extractors are fine-tuned in our approach in addition to the bounding box classifier
and bounding box regressor. To introduce contrast learning, we select the RoI features for ICL, extracting features for the ground truth of all support images
to compute prototype vectors for each class, and utilize them for PCL, while dynamically updating the prototypes. The intra-class consistency and inter-class
separability are maximized by optimizing ICL and PCL.

where yi is the label of the ground truth, and
∼
z i = zi

∥zi∥
represents the feature normalization operation.

∼
z i ·

∼
z j denotes

the inner (dot) product between the i − th and j − th
proposal in the projected hypersphere denotes the inner (dot)
product.

∼
z i ·

∼
cj denotes the inner product between the i− th

proposal and the j− th class prototype feature. τ denotes the
temperature parameter.

Sample selection strategy. Unlike image classification,
which uses the semantic information of the whole image,
our model classifies based on the classification signals in the
candidate boxes generated by RPN. Considering that most of
the candidate boxes may be offset from the object instance,
the information in the candidate box does not describe the
corresponding instance accurately enough, so the contrast
samples are screened. We use the Intersection over Union
(IoU) score ui between proposal and its matching ground truth
bounding box to select the corresponding samples. Referring
to most of the IoU threshold screening methods, we take the
samples with ui greater than 0.7 as the foreground instances
of the N+ samples. At the same time, N− samples with ui

less than 0.3 are selected as background samples. By selecting
the samples, we can obtain the instance objects containing
more information and reduce the background interference in
the comparison. Besides, the selecting eliminates most of the
samples and reduces the amount of calculation of the model.

Decoupling strategy for positive and negative samples.
Inspired by decoupled contrastive learning [10], we further
modify the contrastive loss. Decoupled contrastive learning
uses a large number of experiments to prove that the currently
widely used cross-entropy (InfoNCE) [15] loss has obvious
positive and negative coupling effects, which reduces the effect
of the model in small batch learning and affects the training
efficiency of the model. Therefore, we use the decoupling strat-

egy of positive and negative samples in the contrast loss. By
directly removing the similarity between the positive sample
pairs in the denominator, the ratio of the sum of similarities
for all positive sample pairs to the sum of similarities for
all negative sample pairs can be computed directly. This
allows the model to optimize positive and negative sample
pairs separately, decoupling their influences. And the training
efficiency of contrastive learning is improved.

Subsequently, we use the Prototype Calibration Module
(PCB) in [13] to further refine our classification scores. And
the classifier of cosine similarity in TFA is adopted in the
fine-tuning step.

C. Prototype Updates

Since the representation of the image is constantly updated
during the training process, the prototype feature embeddings
need to be maintained to make the obtained prototype-like
feature embeddings more representative. Therefore, we dy-
namically update the prototypes during training. The prototype
update part is shown in Figure 2. For K classes, their initial
prototypes are first obtained. The backbone network is used
to extract original image features for a given support set S,
and then RoI Pooling and ground-truth box are used to obtain
the object instance embedding representation fi. The initial
prototype representation of each class is obtained by means
of the mean value. The formula is:

c
′

K =
1

|SK |
∑

(fi,yi)∈SK

fi. (3)

Since the candidate boxes may be biased and contain a
lot of background noise, we screen the N features used to
update. The B RoI features are selected by the IoU score ui

of the prediction box and the ground truth of the corresponding
prediction class greater than threshold φ.



Fig. 2. Each subgraph consists of a class prototype feature and its corre-
sponding class RoI features as nodes, and the edge is the cosine similarity
between the feature vectors. The information of RoI features is aggregated
into the corresponding class prototypes by the way of GCN.

K subgraphs G = (V,E) are constructed by using the
class prototypes and the selected B RoI features, where V
and E represent the node set and edge set. The node set
V of each subgraph consists of a class prototype and the
RoI features of its corresponding class. Edges are constructed
between prototype and RoI features, and between RoI features
to represent the relationships between them. Thereinto, the
information from the RoI features of the associated class
can be transferred to the prototype to update its features by
creating edges between the prototype and RoI features. By
constructing edges between RoI features, different RoI feature
information can be used to enrich the original RoI feature
information. The adjacency matrix A is used to represent this
relationship. In general, considering that the same class have
more similar features, we adopt cosine similarity to obtain the
similarity between prototype and RoI features, and between
RoI features, thereby obtaining the adjacency matrix A. Then,
it is normalized to acquire the normalized adjacency matrix
A

′
.The formula is:
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where D denotes the diagonal degree matrix and Dii =∑
j

Aij . For simplicity, AxK
i

K is simply denoted as A, and the

similarity calculation between RoI features is also calculated
by referring to (4).

Using the feature similarity size provided by the adjacency
matrix A, we adopt GCN to aggregate the feature information
of the candidate boxes into the corresponding class prototypes.
For each prototype cK , the effect of each layer of GCN is
equivalent to the weight sum of its corresponding class’s RoI
features, and each prototype is updated as follows:

cK =
1

BK
c
′

K +
∑

xK
i ∈xBK

A
′
·xK

i . (6)

D. Loss Function

The loss function consists of the classification and bounding
box loss functions of RPN and RCNN in Faster R-CNN, as
well as the ICL and PCL of the contrastive learning module.

L = Lrpn + Lcls + Lreg + λiclLICL + λpclLPCL, (7)

λicl and λpcl are set to 0.5 respectively, to balance the loss.

IV. EXPERIMENTS

In this section, we first provide a description of the few-shot
object detection datasets and detection settings. Following this,
we will present our detection results and ablation studies of
our approach on Pascal VOC dataset. Finally, we provide the
detection results on the MS COCO benchmark.

A. Experimental Setting

Existing benchmarks. We adopt the dataset settings of
previous works [4], [13] to ensure that our method can be
fairly compared. As for PASCAL VOC, we use three random
split groups with 20 classes each, and each group is randomly
classified into 15 base classes and 5 novel classes. Each
novel class contains K=1/2/3/5/10 annotated samples from the
combination of PASCAL VOC’s 2007 and 2012’s trainval. The
detection ability of novel classes is assessed using nAP50,
which is the IoU threshold with an average precision of 0.5
for the novel classes. For MS-COCO, we split the 80 classes
into two separate datasets: a base class dataset consisting
of 60 classes, and a novel class dataset consisting of the
remaining 20 classes, where K=10/30. Similarly, we evaluate
the detection performance of novel classes by employing nAP
and nAP75 with different IoU thresholds.

Implementation Details. Our model framework uses Faster
R-CNN [3], and ResNet-101 [1] is adapted as our backbone.
All experiments are trained on 1 RTX3090 GPU, and the
batch size is set to 4. The solver using standard SGD with
momentum set to 0.09 and weight decay of 5e-5. During the
base training phase, we set the learning rate to 0.005, and
adjust it to 0.01 in the fine-tuning phase.

B. Experiments on PASCAL VOC

1) Comparisons with State-of-the-art Methods: Our
method is compared with the previous state-of-the-art
methods on the experimental results of three random splits
of PASCAL VOC, as shown in Table I. It can be seen
that FS-IPCL demonstrates better performance than existing
FSOD methods in the majority of experimental conditions.
Specifically, for Novel Split 1, our method improves by 3.8%
(40.2% vs. 44.0%) in the 1-shot setting, 3.6% (53.6% vs.
57.2%) in the 2-shot setting, an improvement of 0.8% (58.2%
vs. 59.0%) in the 3-shot setting and 0.7% (63.6% vs. 64.3%)
in the 5-shot setting. In the 10-shot scenario, our method
is on par with the current best performing method and a
0.8% improvement over the second best performing method
(59.7% vs. 66.5%). In the remaining two splits, although
the existence of FS-IPCL is lower than other methods, the



TABLE I
EXPERIMENTAL RESULTS ON THREE SPLITS OF PASCAL VOC. WE EVALUATE THE PERFORMANCE OF OUR METHOD ON 3 SPLITS USING NAP50.

BOLDFACE INDICATES SOTA RESULTS.

Method / Shots Venue Novel Split 1 Novel Split 2 Novel Split 3 Avg.1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN-ft [16] ICCV 2019 9.9 15.6 31.6 38.0 52.0 9.4 13.8 17.4 21.9 39.7 8.1 13.9 19 23.9 44.6 24.3
FSRW [12] ICCV 2019 14.2 23.6 29.8 36.5 35.6 12.3 19.6 25.1 31.4 29.8 12.5 21.3 26.8 33.8 31.0 25.6

TFA w/cos [4] ICML 2020 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6 34.7
Viewpoint [17] ECCV 2020 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6 36.7

MPSR [5] ECCV 2020 34.7 42.6 46.1 49.4 56.7 22.6 30.5 31.0 36.7 43.3 27.5 32.5 38.2 44.6 50.0 39.1
QA-FewDet [18] ICCV 2021 41.0 33.2 35.3 47.5 52.0 23.5 29.4 37.9 35.9 37.1 33.2 29.4 37.6 39.8 41.4 36.9

FSCE [7] CVPR 2021 32.9 44.0 46.8 52.9 59.7 23.7 30.6 38.4 43.0 48.5 22.6 33.4 39.5 47.3 54.0 41.2
DeFRCN [13] ICCV 2021 40.2 53.6 58.2 63.6 66.5 29.5 39.7 43.4 48.1 52.8 35.0 38.3 52.9 57.7 60.8 49.4

Meta Faster R-CNN [19] AAAI 2022 40.2 30.5 33.3 42.3 46.9 26.8 32.0 39.0 37.7 37.4 34.0 32.5 34.4 42.7 44.3 36.9

Ours This work 44.0 57.2 59.0 64.3 66.5 31.6 39.2 43.5 47.1 51.1 38.4 50.1 52.1 58.1 59.8 50.8

overall average performance of our method is the best, with
an improvement of 1.4%.

In the setting of 2-shot of split1, we visualiz the bounding
boxes with confidence greater than 0.7, as shown in Figure 3.
The successful and failure detection cases are shown to help
us analyze the error types. In the successful cases, our model
performs well in detection of some novel classes, particularly
under challenging conditions such as complex background and
low illumination. In the case of failure, there are more missed
and false detections for the novel class of small objects and
similar objects. The probably reasons are that the multi-scale
feature extractor is not used in our approach and there are not
many examples to compare in 2-shot.

TABLE II
VALIDATION OF FS-IPCL ON INDIVIDUAL MODULES.

Ablation choice/Metrics 1 2 3 5 10

ICL PCL cos PCB nAP50
✓ 40.2 53.1 57.8 61.8 64.7

✓ ✓ 43.0 53.3 58.7 63.1 65.8
✓ ✓ 42.3 55.5 57.9 63.0 65.6

✓ ✓ ✓ 42.8 55.0 58.6 63.9 66.4
✓ ✓ ✓ 43.4 54.8 58.3 63.9 66.1

✓ ✓ ✓ ✓ 44.0 57.2 59.0 64.3 66.5

2) Ablation Study: Ablation for each module of FS-
IPCL. The effectiveness of modules showing in the Table II,
we confirm the effectiveness of the ICL and PCL modules
separately. From the experimental results, we can see that
both ICL and PCL improve the effect of using the model
alone. However, from the last three rows of Table II, it can
be seen that the combination of ICL and PCL has the best
effect. It is probably because the ICL compares objects based
on local instance structure, while PCL uses global semantics to
construct of the object and compare global semantic structures
information of the object. These two losses are complementary
and are able to combine local contrast and global contrast.

Ablation for decoupling positive and negative sample
strategy. To further verify the effectiveness of the decoupled
positive and negative sample strategy, we conduct explicit
experiments to show its performance. Better performance is
achieved by decoupling the positive and negative samples in
the contrastive loss, as demonstrated in Table III.

TABLE III
ABLATION EXPERIMENTS FOR DECOUPLING STRATEGY FOR POSITIVE

AND NEGATIVE SAMPLES IN FS-IPCL.

Decouple the positive
and negative samples

Novel Spilt 1
3 5 10

× 58.3 62.6 65.2
✓ 58.6 63.9 66.4

Fig. 3. We present the visualization results of the 2-shot object detection on
the Pascal VOC dataset, where the bounding box score is greater than 0.7.
The green box indicates successful cases of our FS-IPCL, while the red box
represents the failure cases.

Ablation for prototype updates. We validate the effec-
tiveness of our prototype updates. Meanwhile, we adopt IoU
threshold to control the RoI features that need to be propagated
for information. We test the effect of prototype update for RoI
features with threshold greater than 0.7 and threshold greater
than 0.5, and the experimental results are shown in Table IV.
It turns out that the dynamic update of the prototype using RoI
features with high IoU is better. This may be due to the fact
that features with low IoU may contain a lot of background
noise, causing the updated prototype feature embeddings to
deviate from its class semantic center.



TABLE IV
ABLATION EXPERIMENTS FOR PROTOTYPE UPDATES IN FS-IPCL.

Prototype updates Threshold Novel Spilt 1
3 5 10

× - 56.4 64.2 65.5
✓ ui > 0.5 57.5 63.9 66.0
✓ ui > 0.7 59.0 64.3 66.5

C. Experiments on MS-COCO

With more categories than Pascal VOC, the MS-COCO
dataset contains more complex scenarios, making the detection
of the model on the MS-COCO dataset more challenging. We
validate the effectiveness of our model on 10 and 30 shots of
MS-COCO. The results of the model’s detection in the novel
class are presented in Table V. It can be seen that our method
has an accuracy improvement of 0.6%∼3.1% compared with
most of the current methods.

TABLE V
RESULTS FOR 10 AND 30 SHOT ON THE MS-COCO DATASET.

Method 10-shot 30-shot
nAP nAP75 nAP nAP75

FRCN-ft [16] 5.5 5.5 7.4 7.4
FSRW [12] 5.6 4.6 9.1 7.6

TFA w/cos [4] 9.1 8.8 12.1 12.0
Viewpoint [17] 10.7 6.5 15.9 15.1

MPSR [5] 9.8 9.7 14.1 14.2
QA-FewDet [18] 10.2 9.0 11.5 10.3

FSCE [7] 11.1 9.8 15.3 14.2
Meta Faster R-CNN [19] 9.7 9.0 11.3 10.6

ours 12.7 12.9 16.5 16.8

V. CONCLUSION

In this work, we have proposed a novel approach by
combining instance-wise contrastive learning and prototype
contrastive learning to learn a balanced feature space. The
instance-wise and prototype contrastive loss have been uti-
lized to maximize the inter-class distance and minimize the
intra-class distance of the novel class, and the discriminative
features of the novel class have been obtained to improve the
classification performance of the model for the novel class.
In order to better utilize positive and negative samples for
contrastive learning, a contrastive sample selecting scheme and
a decoupling approach of positive and negative samples have
been employed to improve the contrastive loss. Additionally,
the prototypes have been dynamically updated using GCN to
produce more representative prototype embeddings. Compar-
ative experiments with several state-of-the-art methods based
on meta-learning and fine-tuning have proved the proposed
model always achieving competitive results. Our work takes a
supervised contrastive learning approach to advance research
in FSOD. In the future, we will further explore how to
introduce unsupervised contrastive learning into FSOD to drive
the development of this field.
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