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Abstract
Containerization is widely used for isolation in various ap-
plications because it is lightweight, scalable, and portable. In
modern distributed systems, seamless inter-process commu-
nication (IPC) between multi-platform containers is essential
for a range of applications and services, including microser-
vices, cloud computing, and Internet of Things (IoT) devices.
However, secure and efficient communication between con-
tainers on the same host is challenging, especially when
different operating systems are involved.

This paper introduces Bindox, a lightweight, efficient, and
secure IPC mechanism that enables seamless communica-
tion across multiple platforms, including Android and Linux.
Bindox uses shared memory for data transfer and imple-
ments a stable client-server architecture, ensuring high per-
formance and ease of maintenance. Additionally, Bindox
provides a robust security mechanism that guarantees confi-
dentiality, integrity, and availability of the communication
channel. Experimental results demonstrate that Bindox out-
performs existing networking and IPC methods in terms of
memory use, latency, and CPU usage, making it a promising
solution for efficient and secure communication between
multi-platform containers.
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1 Introduction
Containerization has emerged as a transformative technol-
ogy in modern computing due to its ability to provide an iso-
lated runtime environment that is lightweight, scalable, and
highly portable. In modern distributed systems, IPC between
containers of different OS images has become increasingly
important. Seamless communication between these multi-
platform containers can enable a wide range of applications
and services, such as microservices, cloud computing, and
Internet of Things (IoT) devices [7].
However, fast and secure communication between con-

tainers on the same host can be challenging, particularly
when different operating systems are involved. Traditional
container communication methods on the same host can
be classified into two categories: (a) networking, which in-
cludes using Docker networking and sharing the host net-
work namespace; (b) IPC. which includes files, shared mem-
ory, UNIX sockets, pipes, semaphores, shared memory, and
message passing. All these methods have their respective
pros and cons (Section 2) and fail to strike a balance between

performance and security. Inappropriate settings of both
methods can introduce significant hazards to the system,
which can be fatal when doing cross-OS interactions.

In recent years, several studies have attempted to address
these challenges by introducing new IPC mechanisms [4, 6,
8, 16]. However, these mechanisms are often limited in terms
of their compatibility with container environments or their
ability to provide both high performance and security [15].
To address these challenges, in this paper, we introduce

Bindox, a fast, secure, lightweight, and cross-system IPC
mechanism that enables communication on and between
multiple operating systems, including Android and Linux.
Bindox leverages shared memory for data transfer to achieve
high performance with zero-copy, which significantly re-
duces the data transfer overhead and improves performance.
Bindox also provides a robust security mechanism that en-
sures the confidentiality, integrity, and availability of the
communication channel.
To demonstrate the effectiveness of Bindox, we compare

it to existing container-on-the-same-host communication
methods, and the results show that Bindox shortens the
transmission latency by 40% on average.
Bindox offers a promising solution for efficient, secure,

and cross-platform communication between heterogeneous
containers on the same host, which is critical for application
performance, security, and cluster scalability. Compared to
other solutions, Bindox has several advantages:

• Lightweight and flexible: Bindox is compatible with
container environments and is suitable for use in var-
ious contexts and applications.

• High efficiency: Bindox achieves zero copy for data
transfer, which reduces data transfer overhead and
improves performance.

• Stable architecture: With a clear client-server archi-
tecture, Bindox simplifies the process of developing
and maintaining the system. Unlike shared memory,
users do not need to consider complex concurrency
synchronization issues.

• Robust security: Bindox provides a robust security
mechanism that ensures the confidentiality and in-
tegrity of communication between processes. This
mechanism helps to prevent unauthorized access, data
tampering, and other security threats.

• Cross-OS compatibility: Bindox supports cross-OS
communication, including Android and Linux.



2 Background and Related Work
2.1 Cross-OS Communication
Communication between different operating systems is a
ubiquitous requirement for modern applications. In fact,
many applications critically depend on services hosted on
the other OS to function properly. The seamless commu-
nication between such diverse services is essential for the
development of robust and feature-rich applications.

The cloud platform is a typical example of cross-OS com-
munication. With the emergence of various cloud-native
technologies, such as Docker and Kubernetes, cloud comput-
ing have been widely adopted [12, 17], and the performance
of IPC is crucial for achieving efficient cloud services. To
extend the computing power of mobile devices and enable
the cloud-based execution of Android applications, various
approaches have been proposed for Android cloudification.
For example, Android Emulator [2] and Cuttlefish [5] use
virtual machines as isolation units to ensure that Android
can run on any platform. To make the system lighter, An-
box [1] places Android into a container. Another solution,
CARE [13], further cloudifies the Android system into a
cloud-native system by streamlining Android services. In
Android cloudification, Android applications are hosted on
different operating systems, usually Linux. These VMs and
containers rely on communication with the host to enable
file sharing, network stack, and hardware device sharing.
Moreover, the cloud Android applications can also utilize
services on the host machine to function properly.
Autonomous car software serves as another example of

Android-Linux communication. Typically, automotive soft-
ware is divided into two main regions: automotive machine
vision (AMV) and in-vehicle infotainment (IVI) [14]. The
AMV region is responsible for the advanced driver assis-
tance systems (ADAS) using a real-time Linux system [9],
whereas the IVI region provides driving information and
entertainment by utilizing an Android system [10] that is
specifically tailored for consumer applications. Despite their
distinct purpose, the two regions interact in various scenar-
ios, sharing files, images, videos and sensor data on the same
host. A common scenario is that an Android camera ser-
vice transfers captured camera data to a Linux-based image
analysis and processing module for vehicle and driver state
analysis. Another example is that a real-time application
running on Linux makes a decision, it needs to communicate
to the media service running on Android, which can then
notify the user through graphics or audio.

2.2 Container Communication On the Same Host
There are several methods for enabling communication be-
tween containers running on the same host, including net-
working and IPC methods. Networking methods encompass
the use of Docker networking and sharing the host network

namespace, while IPC methods include pipe, message pass-
ing, shared memory, UNIX sockets, semaphores, and signal.
While these methods can provide fast and efficient commu-
nication, they fail to balance performance and security.
Networking methods allow containers to communicate

directly with each other using IP addresses. However, it may
cause considerable overhead due to the network protocol and
stack, and it may pose security risks if not properly isolated
from other networks.
While IPC methods, especially those that utilize shared

memory, offer rapid and effective communication, their con-
figuration and management can be intricate due to distinct
namespaces. In addition, each IPC technique has restrictions,
and inappropriate settings could result in substantial safety
hazards, especially in cross-OS interactions. Thus, it is imper-
ative to carefully consider the potential risks and carefully
tailor the IPC method to the specific application and envi-
ronment to ensure efficient and secure communication.

• Pipe: Pipes are half-duplex and limited to one-way
communication between processes. To achieve bi-directional
communication, two pipes are needed.Moreover, pipes
are commonly used between parent and child pro-
cesses and have a relatively small buffer size.

• Message queue: Message queues buffer size limits the
amount of data to be transmitted. Moreover, message
queues can lead to synchronization issues including
deadlocks and priority inversion, which can nega-
tively impact system performance.

• Sharedmemory: Sharedmemory is a high-performance
IPC method that directly attaches shared buffers to a
process’s virtual address space. However, the synchro-
nization between processes is left to the responsibility
of the processes themselves. Furthermore, it may leak
confidential data without proper access restriction.

• UNIX domain socket: Unlike network sockets, UNIX
domain sockets are based on file system path names
and do not require processing through the network
protocol stack, thus offering higher performance and
lower latency. However, UNIX domain sockets can
introduce security risks if the socket is not properly
secured. It is important to ensure that the socket is
properly permissioned and that appropriate access
controls are in place to restrict access. Moreover, they
do not support more advanced features such as multi-
casting, which are often used in distributed systems.

• Semaphore: Semaphores aremainly used as lockmech-
anisms to prevent multiple processes from accessing
shared resources simultaneously. Therefore, they are
mainly used for inter-process and inter-thread syn-
chronization.

• Signal: Signals are not suitable for information ex-
change but are instead useful for process interrupt
control, such as handling illegal memory access or
killing a process.
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Figure 1. Bindox architecture

3 Bindox: Design and Implementation
3.1 Bindox Architecture
This section details the components of the Bindox design.
Aiming at a user-friendly, secure-by-design, and cross-OS
adaptive architecture, Bindox takes advantage of a stable
client-server model to enable efficient and scalable IPC in a
heterogeneous multi-OS container environment. As shown
in Fig. 1, communications in Bindox involve four compo-
nents: client, server, Coordinator, and Bindox Driver. In
Bindox, clients and servers can be deployed on any host
process or container. Coordinator is a daemon process run-
ning on the host, managing and serving all the clients and
servers. Bindox Driver is implemented as a kernel module
responsible for handling the low-level communication be-
tween different processes.

Client and server: Clients and servers are responsible for
initiating and responding to communication requests, respec-
tively. One server can handle clients in different platform
containers, as shown in Fig. 2. Clients and servers can be im-
plemented with the Bindox library, which is compatible with
various operating systems, including Android and Linux.
Upon each server’s start, Driver creates a corresponding
service node in the kernel space, which is the communica-
tion endpoint used to send messages between clients and
services.

Coordinator: The Coordinator is a daemon process that
serves as a central and secure registry for managing and
accessing Bindox services. It maintains a table of available
Bindox service references and provides service registration
and discovery functionalities. The Coordinator also leverages
the Bindox Driver to enforce security checks, ensuring that
only authorized processes can access registered services.

Figure 2. Bindox client-server communications

Coordinator makes it easier for developers to create complex
and scalable applications that can communicate with other
OS applications using Bindox.
Driver: The Driver is the core component of the entire

communication system, responsible for creating and man-
aging Bindox service nodes, handling the communication
protocol, managing service references, and implementing
security checks. The Driver is compatible with various OS
kernels. It implements the low-level communication proto-
col, including sending and receiving message operations,
and tracks and manages service references to services to
automatically release resources when clients are no longer
using them.

3.2 Bindox Communication Model
This sectionwill explain the communication process in Bindox
in detail. Given the scenario that on an autonomous vehi-
cle, the advanced driver assistance system (ADAS) needs
to access camera data, analyze, and process the images to
determine whether the driver is experiencing driver fatigue.
The host system is a real-time operating system, Automotive
Grade Linux (AGL) [3], which is a collaborative open-source
project used by multiple car manufacturers. The image pro-
cessing program runs in a Linux container, while the camera
image capture program runs in an Android container. As
shown in Fig. 1, the image processing program acts as a client
and requests image capture data from the camera service.
Coordinator Setup: Before using Bindox for communi-

cation, the Coordinator process must be started on the host.
This process registers itself as Coordinator at the Driver and
serves as a service registry and search center for further
Bindox communications.

Service Registration: Upon starting the camera service,
the server sends the service name and registration request to
Coordinator through Driver. Driver creates the correspond-
ing service node in the kernel and its reference, then for-
wards the service name and service reference to Coordinator.
After receiving the data, Coordinator appends the name and
service reference to the local table.
Service Discovery: The image processing application

uses the service name to query access to the camera service
3



(a) Traditional IPC datapath (b) Bindox datapath

Figure 3. IPC and Bindox datapaths

from Coordinator via Driver. Driver first validates the re-
quest source, user capability, and requested data integrity,
then forwards the request to the Coordinator. In service dis-
covery, Coordinator’s role is similar to Domain Name System
(DNS), as it converts the requesting service name into service
reference for clients. After Coordinator returns the service
reference to the client, the camera service node now has two
references: one in the Coordinator and one in the client. If
more clients request the service in the future, the number of
references to the camera service will increase accordingly.
Service Request and Respond: The image processing

application can call the camera service through the service
reference returned by Coordinator. Bindox Driver accom-
plishes all the low-level communication and security checks.
Bindox security assurance includes user authentication, per-
mission validation, and data integrity checking. However, all
these details are hidden by Bindox Driver and Bindox user
library, making Bindox concise and user-friendly.

3.3 Bindox Data Transfer
In addition to supporting cross-platform container commu-
nication, the most remarkable feature of Bindox is its high
performance . Bindox achieves zero-copy during the trans-
mission process, therebyminimizing the overhead associated
with multiple copies.

In networking and conventional IPC, including pipes, mes-
sage queues, and Unix sockets, at least two copies are needed
during the message transfer. As depicted in Fig. 3a, these
communication methods suffer from expensive copy oper-
ations, as at least two copies are required during message
passing, which is particularly costly in frequent or high-
volume communication scenarios.

To address these problems, Bindox proposes a new trans-
fer method, Mapping Delivery. As shown in Fig. 3b, Mapping
Delivery uses memory mapping to map the sender and the
receiver user space buffers to the same physical memory,
ensuring that data transfer from sender to receiver is only a
logical copy without actual overhead. It is achieved through
Bindox Driver. During communication, Bindox Driver pro-
vides a shared memory region that can be accessed by multi-
ple processes, and establishes a mapping between memory,
server’s and client’s user space addresses.

Through Mapping Delivery, Bindox can efficiently share
memory between different processes in a secure and con-
trolled manner. Mapping Delivery provides a shared mem-
ory region that can be accessed by multiple processes, and
Bindox facilitates the communication and coordination be-
tween these processes. This combination allows for the cre-
ation of efficient IPC channels while maintaining a high level
of security and access control. Specifically,Mapping Delivery
provides a mechanism for allocating and sharing memory,
while Bindox security design ensures that only authorized
processes can access this memory and enforces strict security
policies to prevent unauthorized access or tampering. This
innovative approach enables the development of complex
and highly performant systems while ensuring the security
and integrity of shared data.

3.4 Bindox Security
The security mechanism of Bindox provides a robust de-
fense against unauthorized access and helps to maintain the
confidentiality, integrity, and availability of the system.
One of the innovative features of the Bindox security

mechanism is the centralized Coordinator, which acts as a
registry for all the available services in the system. Through
Coordinator, Driver can checks the permission of clients
asking for services. This enables the system to enforce fine-
grained access control over the services and prevent unau-
thorized access or tampering.
Another innovative feature of the Bindox security mech-

anism is its use of permissions to control the interactions
between components. It is based on the principle of least
privilege, where every component of the system has only the
minimum required permissions to perform its function. This
is achieved through a series of access controls that limit the
interactions between components. In Bindox, Bindox Driver
mediates the interactions between processes and ensures
that only authorized processes can access a particular ser-
vice or component, and it prevents malicious components
from causing harm to the system.

4 Evaluation
In this part, we present our evaluation of Bindox. We com-
pare Bindox with networking and IPC methods, and try to
answer the following questions:

• How does Bindox improve communication latency?
• What is the memory usage of Bindox during commu-
nications?

• What is the CPU usage of Bindox during communica-
tions?

4.1 Environment Setup
Configuration: All the experiments are conducted on a
server running Ubuntu 22.04 LTS with Linux kernel 5.15, six
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Figure 4. Average latency of message transfer iteration

Intel(R) Core(TM) i5-9400 CPUs at 2.90 GHz, and 15 GiB of
physical memory.

Benchmarks: In the benchmark, the client process is held
in a Docker Android container, and the server is running
on the Linux host. Client and server alternately update the
content of a fixed amount of memory and transfer the mem-
ory content to each other. Each iteration involves both client
and server setting and passing memory once. To simulate
real-world applications that often involve large-scale, precise,
and secure data transfer, the memory size are set to 128MB,
256MB, 512MB, and 1GB. To ensure statistical accuracy, the
iteration is set to 100 times during testing. This benchmark
is designed to evaluate the efficiency and effectiveness of
Bindox in handling data transfers.
Baselines: To illustrate the performance improvements

brought by Bindox, we take networking and IPC methods
as the baselines. In the networking baselines, the client con-
tainer uses the host network. Three different network proto-
cols are used: gRPC, TCP, and UDP*. gRPC is a modern open
source Remote Procedure Call (RPC) framework that can run
in any environment. It implements the same client-server ar-
chitecture and security checks for communication as Bindox,
but uses HTTP/2 as the underlying transport protocol. UDP*
is a custom protocol built on top of UDP that guarantees
transimission order and reliability, as we have found that in
real-world scenarios, using UDP to transmit large amounts
of data, even on the same host, often results in disorder and
dropped packets. For IPC methods, we use UNIX domain
socket as a baseline, as UNIX domain socket is widely used
in container communication.

4.2 Transmission Latency
In this experiment, we present the average latency of mes-
sage transfer iterations of Bindox.

Fig. 4 presents the time cost of different methods. We can
witness that Bindox transfer latency is significantly lower
than that of other communication methods. When trans-
mitting data ranging from 128MB to 1G, the average trans-
fer iteration time cost of Bindox is 40.7%, 39.2%, 39.5%, and
20.8% lower than that of TCP, the suboptimal communica-
tion method, respectively. Even with extra security checks,
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Figure 5. Total memory usage of client and server
Bindox has a significant performance advantage in handling
reliable data transfer.
As Fig. 4 shows, gRPC has a much higher transmission

time. This is because gRPC uses Protocol Buffers [11] as
both its Interface Definition Language (IDL) and underlying
message interchange format. Protocol Buffers types have
language-specific implementations and require more data
serialization and deserialization operations during transmis-
sion. Additionally, to ensure security, gRPC implements en-
cryption transmission and authorization checks during func-
tion invocation, leading to a increased transmission time.
UDP* is based on the UDP protocol. It uses slicing and

blocking to achieve reliable transmission, leading to a higher
cost. The transmission cost of a UNIX domain socket is
slightly lower than that of TCP. Although UNIX domain
socket does not pass through the network stack, its band-
width is lower than TCP. While UNIX domain socket has a
significant performance advantage when transmitting small
amounts of data (e.g., 1KB) compared to TCP, when trans-
mitting large amounts of data, the time consumed by UNIX
domain socket is comparable to that of TCP.

4.3 Memory usage
In this experiment, we measured the total memory usage of
both client and server during transmission for each method.

As Fig. 5 presents, Bindox had a consistent memory usage
pattern duringmessage transmission. Thememory consump-
tion was stable and remained at about the size of the trans-
mitted data. This is because Bindox uses a Mapping Delivery
that avoids the need to copy data between processes.
In contrast, TCP, UDP, and UNIX domain socket all re-

quire data copying between the user space and kernel space,
resulting in memory consumption that is twice the size of
the transmitted data. As for gRPC, its memory consumption
is observed to be highly variable during message transmis-
sion, and the average value is several times of the size of the
transmitted data, as gRPC requires serialization and deserial-
ization operations during data transmission, which increases
memory usage.
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Figure 6. Total CPU usage of client and server

4.4 CPU usage
This experiment shows the total CPU usage of both client and
server during transmission for each communication method.

As Fig. 6 shows, the total CPU usage of client and server of
Bindox is relatively stable and lower than that of other meth-
ods. This can be attributed to the efficient design of Bindox
Mapping Delivery, which utilizes shared memory to reduce
the overhead of context switching and data serialization.
gRPC’s is based on HTTP/2 protocol, leading to a higher

CPU cost. However, its underlying message interchange for-
mat, Protocol Buffers, alleviates the CPU usage for message
serialization and deserialization. For TCP and UDP*, these
protocols rely on the operating system’s network stack to
process packets, resulting in frequent context switching and
increased CPU overhead. Moreover, TCP and UDP* require
additional overhead to handle packet fragmentation, retrans-
missions, and flow control. Additionally, TCP and UDP* per-
form checksum calculations on each packet, which also in-
creases CPU usage. For Unix domain socket, it involves copy-
ing data between user and kernel space, and in the case of
large data volumes, the CPU is polling for the kernel buffer
to become available, resulting in significant CPU overhead.

5 Conclusion
Bindox offers a promising solution for efficient, secure, and
cross-platform communication between heterogeneous con-
tainers on the same host. Compared to other solutions, Bindox
is lightweight, flexible, and container-compatible, with a sta-
ble client-server architecture that simplifies development
and maintenance. Additionally, Bindox provides a robust
security mechanism that ensures the confidentiality and in-
tegrity of communication.
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