
CAPS: An Efficient Whole-Program Critical Paths

Search Framework for Large-Scale Software

Peiyang Li, Zixin Liu, Yuening Su, Hao Wang, Bo Jiang*

State Key Laboratory of Software Development Environment

School of Computer Science and Engineering

Beihang University, China

{lipeiyang, liuzixin, Su_Yuening, wangritian, jiangbo}@buaa.edu.cn

Abstract—Tracking the flow of external inputs in a program with

taint-analysis techniques can help developers better identify

potential security vulnerabilities in the software. However, directly

using the static taint analysis provided by Clang Static Analyzer is

inefficient for large-scale software due to the huge but redundant

ExplodedGraph generated. Therefore, we propose an efficient

Whole-Program Critical Paths Search (CAPS) framework. It first

performs a set of optimizations to reduce the ExplodedGraph of

each function. Then, it constructs a global exploded graph by

inserting call edges among the reduced ExplodedGraphs for each

function within the Neo4j graph database. Finally, it proposes loop

removal and graph segmentation to optimize the search process

for critical paths on the global exploded graph. Our experiments

on 3 large-scale software show that CAPS can significantly

improve the efficiency of critical path search for large-scale

software.

Keywords-component; critical path search; static analysis;

Clang Static Analyzer; ExplodedGraph; taint analysis

I. INTRODUCTION

For modern software systems, external input data has the
potential to trigger its underlying vulnerabilities [1]. Many taint
analysis techniques [2][3][4] have been proposed to identify
these vulnerabilities or to detect privacy leaks. These techniques
typically start by obtaining the control flow graph and data flow
graph of the program. Then, external inputs (e.g., input
parameters) or other untrusted data are marked as sources on the
data flow graph. A taint analysis is performed on the graph to
track the impact of the sources within the program until the sinks
are reached. A typical taint analysis requires the sinks to be
defined and identified in advance. Taint tracking cannot be
performed without the knowledge of the sinks. However,
defining and identifying sinks for large-scale complex software
can be difficult. Furthermore, in our work, we are only interested
in identifying all the paths reachable from a source to guide
manual security check or fuzzing. Therefore, our goal in this
work is to perform whole-program critical paths search for a
large software. In this work, the whole-program critical paths
are defined as all the paths reachable from each public interface
function through static taint analysis by marking each of its
parameter as tainted.

Many program static analysis techniques have been
proposed for program path analysis, such as Clang Static
Analyzer (CSA)[5], SVF[12], Phasar [13], etc. These techniques
typically use symbolic execution or data flow analysis methods

to explore executable paths in a program. Specifically, CSA is a
source code analysis tool that represents all input values (e.g.,
function parameters) as symbolic values and performs path-
sensitive code analysis using symbolic execution techniques.
Given the entry function of a software, it explores all possible
execution paths in the whole program and calculate the symbolic
values of expressions in the program, such that all expressions
related to input values are represented as a function of the input
symbolic values. The set of explored paths is represented using
an ExplodedGraph. However, performing taint analysis by
feeding the entry function to Clang Static Analyzer cannot track
all the critical paths starting from each public interface function.
Furthermore, if we perform inter-procedural taint analysis on
each public interface function, many functions will be repeatedly
analyzed, leading to explosive growth in analysis time.

To address the above problem, we adopt CSA to perform
intra-procedural analysis on all functions to obtain their
respective ExplodedGraphs. Next, we extract the entities and
entity relationships from each ExplodedGraph and add the call
relationships between functions. Then, we import these entities
and relationships into the Neo4j [6] graph database to build the
global exploded graph for the software. Finally, we perform
search on the global exploded graph within the graph database
to find all critical paths for an interface function.

However, we found the above approach to find critical paths
within the global exploded graph is inefficient due to two
reasons. First, the ExplodedGraph contains a large number of
redundant nodes, which makes the search space too large to
search efficiently. To solve this problem, we propose a technique
to reduce the scale of the ExplodedGraph by merging and
deleting nodes that are irrelevant to the tainted function
parameters. Our experiment shows the technique can reduce the
scale of the original ExplodedGraph by approximately 80%.
Second, when searching for the critical path on the global
exploded graph, we found that there are some loops and repeated
paths, which further reduce the efficiency of path search. To
solve this problem, we propose an optimization algorithm for
path search that can significantly improve its efficiency. Based
on the above proposals, we build a whole-program Critical Paths
Search (CAPS) framework for efficient critical path search of
large-scale software.

The contributions of this paper are as follows:

• We build a custom Checker based on CSA, called
ExplodedGraphEmitChecker. The Checker generates a

DOI reference number: 10.18293/SEKE2023-123

Figure 1. The Whole-Program Critical Paths Search (CAPS) Framework.

reduced ExplodedGraph for each functional unit by
merging and removing nodes that are not related to the
critical path in the original ExplodedGraph.

• We extract entities and their relationships from the
reduced ExplodedGraph of each function and add
function call relationships, and then use the Neo4j graph
database to build the global exploded graph for large
software.

• We propose an optimized whole-program critical paths
search method based on the depth-first search algorithm.
This method reduces the search space through loop
deletion and graph segmentation, thereby improving the
efficiency for critical path search.

• We have systematically evaluated our framework on 3
large GNU software. The experimental results show that
it can significantly improve the search efficiency of
critical paths on the global exploded graph.

The remaining sections are organized as follows. In Section
II we detail our proposed whole-program critical paths search
(CAPS) framework for large software. In Section III we conduct
experiments with CAPS on 3 large GNU software and discuss
the experimental results. Sections IV and V present related work
and conclusions.

II. WHOLE-PROGRAM CRITICAL PATHS SEARCH

In this section, we present the Whole-Program Critical Paths
Search (CAPS) framework as shown in Fig. 1. The framework
is mainly divided into three modules: ExplodedGraph scale
reduction, global exploded graph generation, and path search
optimization. Next we will describe each module in detail.

A. ExplodedGraph Scale Reduction

The scale of the original ExplodedGraph is large. Because
CSA's symbolic execution engine generate multiple
ExplodedNodes containing the program state and program
points for each analyzed statement at the corresponding program
location, which can easily cause the rapid growth of the number
of nodes. By analyzing these nodes, it can be discovered that
there are three types of ExplodedNodes in the original
ExplodedGraph that are irrelated to the critical path: a)
Synonymous nodes. These nodes are adjacent in location and
have the same state information. b) Channel nodes. These nodes
have a unique predecessor node and successor node, and do not

involve branching and merging of paths. c) Redundant nodes.
These nodes are not related with program input values and do
not exist on the critical path. In this module, we generate a scale-
reduced ExplodedGraph for each functional unit by processing
the above three types of nodes.

Merging Synonymous Node. If there is a subgraph Gs in
the original ExplodedGraph G where all nodes in Gs have
exactly the same expression information and program state
information, then all nodes in Gs are merged into a single node
ns. The merged node ns inherits all the previous predecessor and
successor relationships between internal nodes and external
nodes in Gs.

Merging Channel Node. If there is a subgraph Gc in the
original ExplodedGraph G where all nodes are channel nodes
(i.e., each node only has one predecessor and one successor),
then all nodes in Gc are merged into a single node nc . The
merged node nc contains all the information of all nodes in Gc
and also retains all the previous predecessor and successor
relationships between internal nodes and external nodes in Gc.

Deleting Redundant Node. If there is a node 𝑛𝑟 in the
ExplodedGraph, and the ProgramState of nr does not contain
any symbolic information about function parameters, then nr
will be deleted, and the original predecessor node and successor
node of nr will be adjacent to each other.

Based on the above method, we reduced the number of nodes
in the original ExplodedGraph, thereby reducing the scale of the
ExplodedGraph and improving the efficiency of the subsequent
critical path search. It should be noted that the above method is
proposed under the premise of satisfying the following two
principles:

• Graph isomorphism. When all nodes in a subgraph G'
are merged into a single node n, if an external node of
the G' is a predecessor node of a node in G', then it is
also a predecessor node of node 𝑛; if an external node
of the G' is a successor node of a node in G', then it is
also a successor node of node 𝑛.

• Information consistency. If the state information and
function call information in the node exists in the
original ExplodedGraph, it still exists in the reduced
ExplodedGraph.

Graph isomorphism ensures the synonymity of paths in the
reduced ExplodedGraph. That is to say, any path passing
through any node in subgraph G' in the original ExplodedGraph

will also pass through the merged node 𝑛 in the reduced
ExplodedGraph. Information consistency ensures that any path
search strategy on the original ExplodedGraph and the reduced
ExplodedGraph before and after reduction will yield consistent
results.

B. Global Exploded Graph Generation

We use the graph database Neo4j to build a global exploded
graph for large-scale software. In this graph, each node
represents an entity in the ExplodedGraph (such as a function,
ExplodedNode, expression, or function call point), and each
entity has multiple attribute information as shown in TABLE I.
Edges represent the relationships between these entities. For
example, since an ExplodedGraph corresponding to a function
contains multiple ExplodedNodes, we use INCLUDE to
represent the relationship between the function and the
ExplodedNode, as shown in TABLE II. We extract entities and
relationships between them by parsing the reduced
ExplodedGraph corresponding to each functional unit. However,
there are many functions in a large software, meaning that there
are multiple ExplodedGraphs. In order to build the global
exploded graph, we merge the parsing results corresponding to
all the ExplodedGraphs and import them into Neo4j in batch. In
the global exploded graph, if there is a calling relationship
between functions, we will connect the corresponding reduced
ExplodedGraphs of the functions using the FunCall relationship
in TABLE II.

TABLE I. ENTITIES IN EXPLODEDGRAPH

Entity

Type
Entity Attribute Set Actual Object

DFG
id, line, moduleName, parameters,

szFun, szOrg
Function

Node
id, line, moduleName, szFun,

szpretty

Simplified

ExplodedNode

Exp id, szExpName, szExpValue Expression

FunCall

id, moduleName,

szFileOfFuncFirstDecl, szFun,

szPrototype, szRareStmt

Function call
point

TABLE II. RELATIONSHIP BETWEEN ENTITIES

Relationship Start End Quantity ratio

ENTRY DFG Node 1:1

INCLUDE DFG Node 1:n

NEXT Node Node n:m

EXP Node Exp 1:n

CALL Node FunCall 1:1

CALLEE FunCall DFG 1:1

In TABLE I. , line represents the actual location of the entity
in the source code; moduleName represents the project filename
that the entity belongs to; szFun represents the function that the
entity belongs to and its parameters; szOrg represents the
absolute path of the project file that the entity belongs to;
szpretty represents the source code statement; szExpName
represents the source expression; szExpValue represents the
symbol value corresponding to the source expression;
szFileOfFuncFirstDecl represents the file address where the
called function is located; szPrototype represents the name and
parameters of the called function; szRareStmt represents the
function call statement. In TABLE II. , ENTRY represents the

relationship between a function and its entry node, where each
function has only one entry; INCLUDE represents the
relationship between a function and its ordinary nodes; NEXT
represents the sequential relationship between nodes; EXP
represents the relationship between a node and multiple
expressions within the node; CALL represents the relationship
between a node and its function call points; CALLEE represents
the relationship between a function call point and the called
function.

C. Path Search Optimization

The complexity of the original ExplodedGraph structure
greatly affects the efficiency of path search on the global
exploded graph. Because CSA caches and reuses some of the
same ExplodedNodes in order to improve analysis performance
and avoid repeated calculations during the process of generating
the ExplodedGraph of the functional unit. However, this caching
and reuse mechanism may lead to a reverse path from the current
node to the previous node, forming a loop, which indirectly leads
to an infinite loop of the path search algorithm. In addition, the
number of paths of ExplodedGraph corresponding to complex
functions is usually exponential, which greatly affects the search
efficiency. Therefore, in order to improve the search efficiency
of the critical path on the global exploded graph, we propose the
CAPS framework. CAPS first optimizes the intra-function path
search method based on the naive DFS (Depth First Search)
algorithm. The optimizations include loop removal and graph
segmentation. After the search for intra-function paths is
completed, CAPS combines multiple intra-function paths to
generate a complete cross-function path based on the global
exploded graph, achieving whole-program tracing of the
parameters.

The task of searching intra-function paths can be described
as IntraPathSet = searchIntraPath (Func, SelectParamSet). Its
inputs are a function (Func) and a set of parameter symbol
values (SelectParamSet), and its output is a set of parameter-
related intra-function paths. An intra-function path refers to a
path that satisfies the following conditions:

• The path is an ordered list of nodes in the
ExplodedGraph of a function (Func).

• The starting node of the path is the unique entry node of
the ExplodedGraph.

• The ending node of a path is the target node in the
ExplodedGraph, i.e., the node that contains one of the
parameters in SelectParamSet.

1) Graph Optimization
Before searching intra-function paths on ExplodedGraph,

CAPS sequentially performs the following optimization
processes: loop deletion and graph segmentation.

a) Loop Deletion: The loop deletion transforms the

ExplodedGraph into a Directed Acyclic Graph (DAG) by

deleting some edges from the original ExplodedGraph.

Specifically, the CAPS first performs a DFS traversal on the

original ExplodedGraph starting from the entry node, to define

the priority of all nodes. The later a node is traversed by the

DFS, the higher its priority is. Then CAPS deletes all edges that

satisfy the following condition (i.e., loop edges):

Priority(st) ≤ Priority(en), where st and en are respectively

the starting and ending nodes of the edge.

b) Graph Segmentation: Graph segmentation is another

method to solve the problem of exponential intra-function path

number. It makes use of redundant information among intra-

function paths and changes the path’s data representation. The

purpose of graph segmentation is to divide the nodes of a DAG

graph into two sets S1 and S2, which are close in size (Fig. 2).

Graph segmentation satisfies the following principles:

• Any intra-function path ending at S1 node (a node in set
S1) contains no S2 node.

• Any intra-function path ending at S2 node contains a
special S1 node called barrierNode (Barrier Node),
which can divide this path into two parts: the former part
is a path contains no S2 node (An intra-function path
ending at barrierNode), the latter part is a path contains
no S1 node.

In this way, all intra-function paths that have the same
barrierNode can be jointly represented as <FormerPathSet> ⨂
<LatterPathSet>. FormerPathSet is a set of several intra-
function paths ending at barrierNode. LatterPathSet is a set of
several paths contain no S1 node. The symbol ⨂ represents the
Cartesian product of two sets. This path representation can save
storage space, and limits the DFS path search range to set S1 or
S2 (instead of the entire ExplodedGraph). As shown in Fig. 2.

Figure 2. (a) The node set S1，S2 and barrier node in graph segmentation.

(b) All the paths represented by symbol ⨂ from node 1 to node 8.

2) Search of Intra-function and Cross-function Path
The task of intra-function path search can be described as

IntraPathSet = searchIntraPath (Func, SelectParamSet).
Because of the existence of graph segmentation algorithm, the
elements of IntraPathSet have the form innerpath =
<formerpathset> ⨂ <Latterpathset>. If the ending node of an
intra-function path has function call, then the path can be
extended to other functions. In the process of cross-function path
search, the procedure of searchIntraPath(Func, SelectParamSet)
is called continuously, and several intra-function paths are
combined into a complete cross-function path.

D. Limitation

However, we found that the critical path search method,
which searches based on the symbol value of function
parameters, is limited by the analysis ability of the CSA itself,
and sometimes the complete path cannot be tracked. The specific
reason is that CSA is currently unable to accurately infer the
symbol values of some expressions (e.g., floating-point

variables, complex type variables, function return values, etc.),
which causes the interruption of the propagation of parameter
symbol values.

III. EXPERIMENT AND EVALUATION

In this section, we conduct experiments on 3 large-scale
open-source GNU software and evaluate our CAPS.

A. Reasearch Questions

RQ1: Can CAPS effectively reduce the scale of the
ExplodedGraph?

RQ2: Can CAPS effectively improve the efficiency of
critical path search for large-scale software?

B. Experiment Design

1) Subject Programs
We selected three real large-scale GNU software to evaluate

CAPS, as shown in TABLE III. Tar [7] is a widely used
archiving and packaging software on UNIX and UNIX-like
systems, which can combine multiple files into a single file. In
addition, Tar also has other file operation functions, such as
extraction, storage, etc. Mailutils [8] is a protocol-independent
framework for email processing. It provides a set of libraries for
doing almost any mail-related task on any existing mailbox
format, using a consistent format-independent API. M4 [9] is a
macro processor in the sense that it copies its input to the output
expanding macros as it goes. Besides just doing macro
expansion, M4 has built-in functions for including named files,
running UNIX commands, doing integer arithmetic,
manipulating text in various ways, recursion etc.

TABLE III. PROJECTS USED IN OUR EXPERIMENT

Subject Version Loc

Tar 1.33 102k

Mailutils 3.13 209k

M4 1.4.19 142k

2) Experiment Setup
We performed our experiments on a desktop with Intel(R)

Core(TM) i7-10700 CPU @ 2.90GHz and 32GB of memory.
The operating system is Ubuntu 20.04 LTS. The version number
of Clang used to generate the ExplodedGraph for the functional
unit is 15.0.0. The version number of the graph database Neo4j
used to build the global exploded graph for the software is 4.3.12.

3) Experiment Procedure
For each open-source software, we first use CAPS to

generate a reduced global exploded graph, and then compare it
with the unreduced global exploded graph in terms of node and
relationship counts to verify the effectiveness of CAPS in
achieving ExplodedGraph scale reduction. Next, we use the
naive depth-first search algorithm as a baseline to verify the
performance advantages of the path search optimization method
in CAPS on the reduced global exploded graph.

We define metrics Path Search Rate (PSR) and Weighted
Rate Ratio (WRR) to evaluate the search efficiency of search
algorithms in critical path search. PSR is the ratio of the number
of critical paths found to the search time when searching for the
critical path of a parameter of a function in the global exploded

graph. Because it is impossible to calculate the PSR of all
function parameters within a limited amount of time in a large
software with numerous functions and parameters. Therefore, in
order to effectively evaluate the performance of search
algorithms in the global exploded graph, we first randomly select
200 functions parameters from the software for critical path
search, and choose the parameters with path counts in the top
25% as the experimental validation set for calculating their PSR
metrics. We chose parameters that involve more critical path
numbers as our validation set because functions with fewer
critical paths have very small differences in PSR between CAPS
and DFS, which can be almost negligible. Then, we compare the
performance of CAPS and naive DFS algorithms according to
(1), where PSRCAPS(i) and PSRDFS(i) respectively represent the
search rate of these two methods when performing critical path
search on the i th function parameters.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑅𝑎𝑡𝑒 𝑅𝑎𝑡𝑖𝑜(𝑊𝑅𝑅) =

∑
𝑃𝑆𝑅𝐶𝐴𝑃𝑆(𝑖)
𝑃𝑆𝑅𝐷𝐹𝑆(𝑖)

𝑛
𝑖=1

𝑛
(1)

C. Result and Analysis

In this section, we present our experimental results and
analyze the research questions proposed in III(A).

1) Answering RQ1
TABLE IV. presents the comparison results of the number

of nodes and edges in the global exploded graph of 3 GNU
software before and after reduction. The “original” and “reduced”
respectively represent the global exploded graph before and after
reduction. The “reduction rate” shows the percentage decrease
in the number of nodes or edges in the reduced graph compared
to the original one. According to TABLE IV. , we can see that
CAPS has the best performance in reducing the global exploded
graph of M4, and its reduction rate of node and edge counts is
85.14% and 83.47%. Especially the reduction rate of the number
of edges is 6.45% and 8.61% higher than that of Tar and
Mailutils, respectively. Regarding the reduction of nodes, CAPS
shows comparable performance with Tar and Mailutils,
achieving reduction of 80.58% and 80.17%. Overall, the average
reduction rate of nodes and edges is 81.96% and 78.45%
respectively, which indicates the effectiveness of CAPS in
ExplodedGraph scale reduction.

TABLE IV. COMPARISON OF THE NUMBER OF NODES AND EDGES BEFORE

AND AFTER GLOBAL EXPLODED GRAPH REDUCTION

Project Node Edge

Tar

original 20,026,774 138,976,378

reduced 3,889,400 31,938,078

reduction rate 80.58% 77.02%

Mailutils

original 25,972,727 186,716,558

reduced 5,149,298 46,940,666

reduction rate 80.17% 74.86%

M4

original 12,027,333 86,891,874

reduced 1,787,609 14,360,459

reduction rate 85.14% 83.47%

Furthermore, from the reduction rate of the number of nodes,
we can further analyze that most of the nodes in the original
ExplodedGraph are irrelevant to function parameters. Therefore,
by optimizing and removing these nodes, we can greatly
improve the efficiency of subsequent critical path search.

2) Answering RQ2
TABLE V. shows the weighted rate ratio (WRR) of the 3

GNU software after critical path search using CAPS and naive
DFS algorithms at five different search time of 30s, 60s, 90s,
120s and 150s. Larger WRR indicates that CAPS is more
efficient than naive DFS in critical path search. According to
TABLE V. , we can see that for Mailutils, the average WRR is
the highest, reaching 41.56. On the other hand, for Tar, the
average WRR is lowest, only 7.39. Furthermore, for the same
project, the WRR does not increase linearly with the increase in
search time. These indicate that the performance advantage of
CAPS over the naive DFS algorithm may be affected by the
intrinsic structure of the software.

When we observe the WRR under different software and
different search time, we can find that their values are all larger
than 1, and the minimum value is 1.82, which shows that CAPS
outperforms the naive DFS algorithms in critical path search
efficiency, regardless of the software and the search time. From
the above experimental results, we conclude that the CAPS is
capable of effectively improving the search efficiency of the
critical path for large-scale software.

TABLE V. COMPARISON OF WRR AT DIFFERENT SEARCH TIME

Project
Weighted Rate Ratio

Avg
30s 60s 90s 120s 150s

Tar 4.16 1.91 1.82 25.46 3.6 7.39

Mailutils 40.18 7.3 34.34 37.64 88.35 41.56

M4 21.86 18.99 12.14 19.49 56.53 25.80

IV. RELATED WORK

In this section, we review related works on taint analysis and
global exploded graph generation.

A. Taint analysis

Taint analysis techniques [10][11] are commonly used to
identify information flows in programs, tracking the movement
of sensitive information from a set of sensitive sources to
sensitive sinks. Sui et al. [12] have developed a static analysis
tool called SVF, which integrates the functionalities of pointer
analysis, value flow analysis, and taint analysis. The tool takes
LLVM IR (Intermediate Representation) as input and uses
analysis modules such as Program Assignment Graph (PAG)
and Control Flow Graph (CFG) provided by LLVM to perform
whole-program pointer analysis, draw Sparse Value-Flow
Graph (SVFG) value flow graph, and ultimately obtain the flow
representation of each data element within the program. Phasar
[13] is a large-scale C/C++ program static analysis framework
developed by Philipp et al. It performs data flow and control
flow analysis based on the LLVM-IR of the input program to
obtain the Interprocedural Control Flow Graph (ICFG) data flow
graph. Then, the framework uses the Interprocedural Finite
Distributive Subset (IFDS) algorithm to achieve complete taint
analysis. Additionally, Phasar also includes a simple Boomerang
pointer analysis tool, enabling it to detect some synonym pointer
propagation during program execution and fill in the missing
parts of the IFDS algorithm analysis. She et al. [14] proposed a
novel end-to-end method to track information flow by using
neural network, called Neutaint. It models target program
computations that occur between taint sources and sinks, and

automatically learns information flow by observing a set of
different execution traces. Experimental results show that
Neutaint can achieve an average accuracy rate of 68%. Zhang et
al. [15] developed FastDroid, a tool for detecting sensitive data
leaks in Android applications. It first constructs a taint value
graph (TVG) by flow-insensitive taint analysis to describe the
taint propagation process. Then, potential taint flows are
extracted from TVG. Finally, it compares the potential taint
flows with the control flow graph to obtain the real taint flows.
The results show that FastDroid can improve the analysis
efficiency while ensuring high precision and recall. However,
compared with CAPS, most of the above methods are only
suitable for local program analysis, and cannot perform whole
program critical path search and taint analysis.

B. Global exploded Graph generation

The global exploded graph [16] can describe program paths
within functions as well as between functions through edges.
Building the global exploded graph can help analysis tools more
accurately understand program behavior and achieve global
static analysis [17]. Gharibi et al. [18] developed a program
analysis tool called code2graph that can automatically analyze
source code, construct its static call graph, generate all possible
execution paths of the system, and calculate their similarities.
Abdelaziz et al. [19] designed a toolkit for building code
knowledge graphs called GraphGen4Code. GraphGen4Code
uses generic techniques to capture code semantics, and key
nodes in the graph represent classes, functions, and methods.
Edges represent the call relationship between functions. It can
serve applications such as program search, code understanding,
error detection, and code automation. However, the program
graph constructed by the above methods based on the control
flow graph and call graph, and its granularity is relatively coarse.
In contrast, the global exploded graph constructed by CAPS is
composed of program point and program state, and the
granularity is smaller, thus providing more accurate analysis.

V. CONCLUSION

Many taint analysis techniques have been proposed to track
the flow of external inputs in the program, so as to identify
potential security vulnerabilities in the software. However, these
techniques require the sinks to be defined and identified in
advance, which is difficult for large-scale software. If static taint
analysis is performed directly on the original ExplodedGraph
generated by Clang Static Analyzer, although the sinks does not
need to be identified, there are many nodes in the original
ExplodedGraph that are irrelevant to external input, which
makes the search of the critical path inefficient. Therefore, we
propose an efficient Whole-Program Critical Paths Search
(CAPS) framework. The framework first implements
ExplodedGraph reduction corresponding to each function
through node merging and deleting. Then, it utilizes the entities
and relationships existing in the reduced ExplodedGraph of each
function and the calling relationship between functions, to
construct a global exploded graph for large-scale software within
Neo4j graph database. Finally, it optimizes the critical path
search process by loop removal and graph segmentation. Our

experimental results on 3 large GNU software demonstrate that
CAPS can significantly reduce the original ExplodedGraph scale
and improve the efficiency of critical path search on the global
exploded graph for large-scale software.

For future work, we plan to explore more efficient
algorithms and optimization techniques to improve the
efficiency of whole-program critical paths search. Furthermore,
we will attempt to resolve the breakpoint issue currently
encountered during critical path searching to enhance the
completeness of the path.

REFERENCES

[1] A. M. Alashjee, S. Duraibi, J. J. I. J. o. C. S. Song, and Security, “Dynamic
Taint Analysis Tools: A Review,” vol. 13, no. 6, pp. 231-244, 2019.

[2] J. Zhang, Y. Wang, L. Qiu and J. Rubin, “Analyzing Android Taint
Analysis Tools: FlowDroid, Amandroid, and DroidSafe,” in IEEE
Transactions on Software Engineering, vol. 48, no. 10, pp. 4014-4040, 1
Oct. 2022.

[3] A. Davanian, Z. Qi, Y. Qu, and H. Yin, “DECAF++: Elastic Whole-
System Dynamic Taint Analysis,” in RAID, 2019, pp. 31-45.

[4] J. Liang et al., “PATA: Fuzzing with path aware taint analysis,” in 2022
IEEE Symposium on Security and Privacy (SP), 2022, pp. 1-17: IEEE.

[5] Clang Static Analyzer. https://clang-analyzer.llvm.org/. Last access, 2023.

[6] Neo4j. https://neo4j.com/. Last access, 2023.

[7] Tar. https://www.gnu.org/software/tar/. Last access, 2023.

[8] Mailutils. https://mailutils.org/. Last access, 2023.

[9] M4. https://www.gnu.org/software/m4/. Last access, 2023.

[10] J. Zhang, Y. Wang, L. Qiu, and J. J. I. T. o. S. E. Rubin, “Analyzing
android taint analysis tools: FlowDroid, Amandroid, and DroidSafe,” vol.
48, no. 10, pp. 4014-4040, 2021.

[11] S. Arzt et al., “Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps,” vol. 49, no. 6, pp. 259-
269, 2014.

[12] Y. Sui and J. Xue, “SVF: interprocedural static value-flow analysis in
LLVM,” in Proceedings of the 25th international conference on compiler
construction, 2016, pp. 265-266.

[13] P. D. Schubert, B. Hermann, and E. Bodden, “Phasar: An inter-procedural
static analysis framework for c/c++,” in Tools and Algorithms for the
Construction and Analysis of Systems: 25th International Conference,
TACAS 2019, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6–
11, 2019, Proceedings, Part II 25, 2019, pp. 393-410: Springer.

[14] D. She, Y. Chen, A. Shah, B. Ray and S. Jana, “Neutaint: Efficient
Dynamic Taint Analysis with Neural Networks,” 2020 IEEE Symposium
on Security and Privacy (SP), San Francisco, CA, USA, 2020, pp. 1527-
1543.

[15] J. Zhang, C. Tian and Z. Duan, “FastDroid: Efficient Taint Analysis for
Android Applications,” 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion),
Montreal, QC, Canada, 2019, pp. 236-237

[16] H. J. U. d. S. Theiling, Diss, “Control flow graphs for real-time systems
analysis,” 2002.

[17] W. Jia, Y. Wang, Y. Zhang, and Y. Gong, “Whole program paths
generation method,” in 2018 IEEE 9th International Conference on
Software Engineering and Service Science (ICSESS), 2018, pp. 1-4: IEEE.

[18] G. Gharibi, R. Tripathi, and Y. Lee, “Code2graph: automatic generation
of static call graphs for python source code,” in Proceedings of the 33rd
ACM/IEEE international conference on automated software engineering,
2018, pp. 880-883.

[19] I. Abdelaziz, J. Dolby, J. McCusker, and K. Srinivas, “A toolkit for
generating code knowledge graphs,” in Proceedings of the 11th on
knowledge capture conference, 2021, pp. 137-144.

https://clang-analyzer.llvm.org/
https://neo4j.com/
https://www.gnu.org/software/tar/
https://mailutils.org/
https://www.gnu.org/software/m4/

