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Abstract—Tracking the flow of external inputs in a program with 

taint-analysis techniques can help developers better identify 

potential security vulnerabilities in the software. However, directly 

using the static taint analysis provided by Clang Static Analyzer is 

inefficient for large-scale software due to the huge but redundant 

ExplodedGraph generated. Therefore, we propose an efficient 

Whole-Program Critical Paths Search (CAPS) framework. It first 

performs a set of optimizations to reduce the ExplodedGraph of 

each function. Then, it constructs a global exploded graph by 

inserting call edges among the reduced ExplodedGraphs for each 

function within the Neo4j graph database. Finally, it proposes loop 

removal and graph segmentation to optimize the search process 

for critical paths on the global exploded graph. Our experiments 

on 3 large-scale software show that CAPS can significantly 

improve the efficiency of critical path search for large-scale 

software. 
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I.  INTRODUCTION 

For modern software systems, external input data has the 
potential to trigger its underlying vulnerabilities [1]. Many taint 
analysis techniques [2][3][4] have been proposed to identify 
these vulnerabilities or to detect privacy leaks. These techniques 
typically start by obtaining the control flow graph and data flow 
graph of the program. Then, external inputs (e.g., input 
parameters) or other untrusted data are marked as sources on the 
data flow graph. A taint analysis is performed on the graph to 
track the impact of the sources within the program until the sinks 
are reached. A typical taint analysis requires the sinks to be 
defined and identified in advance. Taint tracking cannot be 
performed without the knowledge of the sinks. However, 
defining and identifying sinks for large-scale complex software 
can be difficult. Furthermore, in our work, we are only interested 
in identifying all the paths reachable from a source to guide 
manual security check or fuzzing. Therefore, our goal in this 
work is to perform whole-program critical paths search for a 
large software. In this work, the whole-program critical paths 
are defined as all the paths reachable from each public interface 
function through static taint analysis by marking each of its 
parameter as tainted. 

Many program static analysis techniques have been 
proposed for program path analysis, such as Clang Static 
Analyzer (CSA)[5], SVF[12], Phasar [13], etc. These techniques 
typically use symbolic execution or data flow analysis methods 

to explore executable paths in a program. Specifically, CSA is a 
source code analysis tool that represents all input values (e.g., 
function parameters) as symbolic values and performs path-
sensitive code analysis using symbolic execution techniques. 
Given the entry function of a software, it explores all possible 
execution paths in the whole program and calculate the symbolic 
values of expressions in the program, such that all expressions 
related to input values are represented as a function of the input 
symbolic values. The set of explored paths is represented using 
an ExplodedGraph. However, performing taint analysis by 
feeding the entry function to Clang Static Analyzer cannot track 
all the critical paths starting from each public interface function. 
Furthermore, if we perform inter-procedural taint analysis on 
each public interface function, many functions will be repeatedly 
analyzed, leading to explosive growth in analysis time. 

To address the above problem, we adopt CSA to perform 
intra-procedural analysis on all functions to obtain their 
respective ExplodedGraphs. Next, we extract the entities and 
entity relationships from each ExplodedGraph and add the call 
relationships between functions. Then, we import these entities 
and relationships into the Neo4j [6] graph database to build the 
global exploded graph for the software. Finally, we perform 
search on the global exploded graph within the graph database 
to find all critical paths for an interface function. 

However, we found the above approach to find critical paths 
within the global exploded graph is inefficient due to two 
reasons. First, the ExplodedGraph contains a large number of 
redundant nodes, which makes the search space too large to 
search efficiently. To solve this problem, we propose a technique 
to reduce the scale of the ExplodedGraph by merging and 
deleting nodes that are irrelevant to the tainted function 
parameters. Our experiment shows the technique can reduce the 
scale of the original ExplodedGraph by approximately 80%. 
Second, when searching for the critical path on the global 
exploded graph, we found that there are some loops and repeated 
paths, which further reduce the efficiency of path search. To 
solve this problem, we propose an optimization algorithm for 
path search that can significantly improve its efficiency. Based 
on the above proposals, we build a whole-program Critical Paths 
Search (CAPS) framework for efficient critical path search of 
large-scale software. 

The contributions of this paper are as follows: 

• We build a custom Checker based on CSA, called 
ExplodedGraphEmitChecker. The Checker generates a 
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Figure 1.  The Whole-Program Critical Paths Search (CAPS) Framework.

reduced ExplodedGraph for each functional unit by 
merging and removing nodes that are not related to the 
critical path in the original ExplodedGraph. 

• We extract entities and their relationships from the 
reduced ExplodedGraph of each function and add 
function call relationships, and then use the Neo4j graph 
database to build the global exploded graph for large 
software. 

• We propose an optimized whole-program critical paths 
search method based on the depth-first search algorithm. 
This method reduces the search space through loop 
deletion and graph segmentation, thereby improving the 
efficiency for critical path search. 

• We have systematically evaluated our framework on 3 
large GNU software. The experimental results show that 
it can significantly improve the search efficiency of 
critical paths on the global exploded graph. 

The remaining sections are organized as follows. In Section 
II we detail our proposed whole-program critical paths search 
(CAPS) framework for large software. In Section III we conduct 
experiments with CAPS on 3 large GNU software and discuss 
the experimental results. Sections IV and V present related work 
and conclusions. 

II. WHOLE-PROGRAM CRITICAL PATHS SEARCH 

In this section, we present the Whole-Program Critical Paths 
Search (CAPS) framework as shown in Fig. 1. The framework 
is mainly divided into three modules: ExplodedGraph scale 
reduction, global exploded graph generation, and path search 
optimization. Next we will describe each module in detail. 

A. ExplodedGraph Scale Reduction 

The scale of the original ExplodedGraph is large. Because 
CSA's symbolic execution engine generate multiple 
ExplodedNodes containing the program state and program 
points for each analyzed statement at the corresponding program 
location, which can easily cause the rapid growth of the number 
of nodes. By analyzing these nodes, it can be discovered that 
there are three types of ExplodedNodes in the original 
ExplodedGraph that are irrelated to the critical path: a) 
Synonymous nodes. These nodes are adjacent in location and 
have the same state information. b) Channel nodes. These nodes 
have a unique predecessor node and successor node, and do not 

involve branching and merging of paths. c) Redundant nodes. 
These nodes are not related with program input values and do 
not exist on the critical path. In this module, we generate a scale-
reduced ExplodedGraph for each functional unit by processing 
the above three types of nodes. 

Merging Synonymous Node. If there is a subgraph Gs in 
the original ExplodedGraph G  where all nodes in Gs  have 
exactly the same expression information and program state 
information, then all nodes in Gs are merged into a single node 
ns. The merged node ns inherits all the previous predecessor and 
successor relationships between internal nodes and external 
nodes in Gs. 

Merging Channel Node. If there is a subgraph Gc  in the 
original ExplodedGraph G where all nodes are channel nodes 
(i.e., each node only has one predecessor and one successor), 
then all nodes in Gc  are merged into a single node nc . The 
merged node nc contains all the information of all nodes in Gc 
and also retains all the previous predecessor and successor 
relationships between internal nodes and external nodes in Gc. 

Deleting Redundant Node. If there is a node 𝑛𝑟  in the 
ExplodedGraph, and the ProgramState of nr  does not contain 
any symbolic information about function parameters, then nr 
will be deleted, and the original predecessor node and successor 
node of nr will be adjacent to each other. 

Based on the above method, we reduced the number of nodes 
in the original ExplodedGraph, thereby reducing the scale of the 
ExplodedGraph and improving the efficiency of the subsequent 
critical path search. It should be noted that the above method is 
proposed under the premise of satisfying the following two 
principles: 

• Graph isomorphism. When all nodes in a subgraph G' 
are merged into a single node n, if an external node of 
the G' is a predecessor node of a node in G', then it is 
also a predecessor node of node 𝑛; if an external node 
of the G' is a successor node of a node in G', then it is 
also a successor node of node 𝑛. 

• Information consistency. If the state information and 
function call information in the node exists in the 
original ExplodedGraph, it still exists in the reduced 
ExplodedGraph. 

Graph isomorphism ensures the synonymity of paths in the 
reduced ExplodedGraph. That is to say, any path passing 
through any node in subgraph G' in the original ExplodedGraph 



will also pass through the merged node 𝑛  in the reduced 
ExplodedGraph. Information consistency ensures that any path 
search strategy on the original ExplodedGraph and the reduced 
ExplodedGraph before and after reduction will yield consistent 
results. 

B. Global Exploded Graph Generation 

We use the graph database Neo4j to build a global exploded 
graph for large-scale software. In this graph, each node 
represents an entity in the ExplodedGraph (such as a function, 
ExplodedNode, expression, or function call point), and each 
entity has multiple attribute information as shown in TABLE I.  
Edges represent the relationships between these entities. For 
example, since an ExplodedGraph corresponding to a function 
contains multiple ExplodedNodes, we use INCLUDE to 
represent the relationship between the function and the 
ExplodedNode, as shown in TABLE II. We extract entities and 
relationships between them by parsing the reduced   
ExplodedGraph corresponding to each functional unit. However, 
there are many functions in a large software, meaning that there 
are multiple ExplodedGraphs. In order to build the global 
exploded graph, we merge the parsing results corresponding to 
all the ExplodedGraphs and import them into Neo4j in batch. In 
the global exploded graph, if there is a calling relationship 
between functions, we will connect the corresponding reduced 
ExplodedGraphs of the functions using the FunCall relationship 
in TABLE II.  

TABLE I.  ENTITIES IN EXPLODEDGRAPH 

Entity 

Type 
Entity Attribute Set Actual Object 

DFG 
id, line, moduleName, parameters, 

szFun, szOrg 
Function 

Node 
id, line, moduleName, szFun, 

szpretty 

Simplified 

ExplodedNode 

Exp id, szExpName, szExpValue Expression 

FunCall 

id, moduleName, 

szFileOfFuncFirstDecl, szFun, 

szPrototype, szRareStmt 

Function call 
point 

TABLE II.  RELATIONSHIP BETWEEN ENTITIES 

Relationship Start End Quantity ratio 

ENTRY DFG Node 1:1 

INCLUDE DFG Node 1:n 

NEXT Node Node n:m 

EXP Node Exp 1:n 

CALL Node FunCall 1:1 

CALLEE FunCall DFG 1:1 

In TABLE I. , line represents the actual location of the entity 
in the source code; moduleName represents the project filename 
that the entity belongs to; szFun represents the function that the 
entity belongs to and its parameters; szOrg represents the 
absolute path of the project file that the entity belongs to; 
szpretty represents the source code statement; szExpName 
represents the source expression; szExpValue represents the 
symbol value corresponding to the source expression; 
szFileOfFuncFirstDecl represents the file address where the 
called function is located; szPrototype represents the name and 
parameters of the called function; szRareStmt represents the 
function call statement. In TABLE II. , ENTRY represents the 

relationship between a function and its entry node, where each 
function has only one entry; INCLUDE represents the 
relationship between a function and its ordinary nodes; NEXT 
represents the sequential relationship between nodes; EXP 
represents the relationship between a node and multiple 
expressions within the node; CALL represents the relationship 
between a node and its function call points; CALLEE represents 
the relationship between a function call point and the called 
function. 

C. Path Search Optimization 

The complexity of the original ExplodedGraph structure 
greatly affects the efficiency of path search on the global 
exploded graph. Because CSA caches and reuses some of the 
same ExplodedNodes in order to improve analysis performance 
and avoid repeated calculations during the process of generating 
the ExplodedGraph of the functional unit. However, this caching 
and reuse mechanism may lead to a reverse path from the current 
node to the previous node, forming a loop, which indirectly leads 
to an infinite loop of the path search algorithm. In addition, the 
number of paths of ExplodedGraph corresponding to complex 
functions is usually exponential, which greatly affects the search 
efficiency. Therefore, in order to improve the search efficiency 
of the critical path on the global exploded graph, we propose the 
CAPS framework. CAPS first optimizes the intra-function path 
search method based on the naive DFS (Depth First Search) 
algorithm. The optimizations include loop removal and graph 
segmentation. After the search for intra-function paths is 
completed, CAPS combines multiple intra-function paths to 
generate a complete cross-function path based on the global 
exploded graph, achieving whole-program tracing of the 
parameters. 

The task of searching intra-function paths can be described 
as IntraPathSet = searchIntraPath (Func, SelectParamSet). Its 
inputs are a function (Func) and a set of parameter symbol 
values (SelectParamSet), and its output is a set of parameter-
related intra-function paths. An intra-function path refers to a 
path that satisfies the following conditions: 

• The path is an ordered list of nodes in the 
ExplodedGraph of a function (Func). 

• The starting node of the path is the unique entry node of 
the ExplodedGraph. 

• The ending node of a path is the target node in the 
ExplodedGraph, i.e., the node that contains one of the 
parameters in SelectParamSet. 

1) Graph Optimization 
Before searching intra-function paths on ExplodedGraph, 

CAPS sequentially performs the following optimization 
processes: loop deletion and graph segmentation. 

a) Loop Deletion: The loop deletion transforms the 

ExplodedGraph into a Directed Acyclic Graph (DAG) by 

deleting some edges from the original ExplodedGraph. 

Specifically, the CAPS first performs a DFS traversal on the 

original ExplodedGraph starting from the entry node, to define 

the priority of all nodes. The later a node is traversed by the 

DFS, the higher its priority is. Then CAPS deletes all edges that 



satisfy the following condition (i.e., loop edges): 

Priority(st) ≤ Priority(en), where st and en are respectively 

the starting and ending nodes of the edge.  

b) Graph Segmentation: Graph segmentation is another 

method to solve the problem of exponential intra-function path 

number. It makes use of redundant information among intra-

function paths and changes the path’s data representation. The 

purpose of graph segmentation is to divide the nodes of a DAG 

graph into two sets S1 and S2, which are close in size (Fig. 2). 

Graph segmentation satisfies the following principles: 

• Any intra-function path ending at S1 node (a node in set 
S1) contains no S2 node. 

• Any intra-function path ending at S2 node contains a 
special S1 node called barrierNode (Barrier Node), 
which can divide this path into two parts: the former part 
is a path contains no S2 node (An intra-function path 
ending at barrierNode), the latter part is a path contains 
no S1 node. 

In this way, all intra-function paths that have the same 
barrierNode can be jointly represented as <FormerPathSet> ⨂ 
<LatterPathSet>. FormerPathSet is a set of several intra-
function paths ending at barrierNode. LatterPathSet is a set of 
several paths contain no S1 node. The symbol ⨂ represents the 
Cartesian product of two sets. This path representation can save 
storage space, and limits the DFS path search range to set S1 or 
S2 (instead of the entire ExplodedGraph). As shown in Fig. 2. 

 

Figure 2.  (a) The node set S1，S2 and barrier node in graph segmentation. 

(b) All the paths represented by symbol ⨂ from node 1 to node 8. 

2) Search of Intra-function and Cross-function Path 
The task of intra-function path search can be described as 

IntraPathSet = searchIntraPath (Func, SelectParamSet). 
Because of the existence of graph segmentation algorithm, the 
elements of IntraPathSet have the form innerpath = 
<formerpathset> ⨂ <Latterpathset>. If the ending node of an 
intra-function path has function call, then the path can be 
extended to other functions. In the process of cross-function path 
search, the procedure of searchIntraPath(Func, SelectParamSet) 
is called continuously, and several intra-function paths are 
combined into a complete cross-function path. 

D. Limitation 

However, we found that the critical path search method, 
which searches based on the symbol value of function 
parameters, is limited by the analysis ability of the CSA itself, 
and sometimes the complete path cannot be tracked. The specific 
reason is that CSA is currently unable to accurately infer the 
symbol values of some expressions (e.g., floating-point 

variables, complex type variables, function return values, etc.), 
which causes the interruption of the propagation of parameter 
symbol values. 

III. EXPERIMENT AND EVALUATION 

In this section, we conduct experiments on 3 large-scale 
open-source GNU software and evaluate our CAPS. 

A. Reasearch Questions 

RQ1: Can CAPS effectively reduce the scale of the 
ExplodedGraph? 

RQ2: Can CAPS effectively improve the efficiency of 
critical path search for large-scale software? 

B. Experiment Design 

1) Subject Programs 
We selected three real large-scale GNU software to evaluate 

CAPS, as shown in TABLE III. Tar [7] is a widely used 
archiving and packaging software on UNIX and UNIX-like 
systems, which can combine multiple files into a single file. In 
addition, Tar also has other file operation functions, such as 
extraction, storage, etc. Mailutils [8] is a protocol-independent 
framework for email processing. It provides a set of libraries for 
doing almost any mail-related task on any existing mailbox 
format, using a consistent format-independent API. M4 [9] is a 
macro processor in the sense that it copies its input to the output 
expanding macros as it goes. Besides just doing macro 
expansion, M4 has built-in functions for including named files, 
running UNIX commands, doing integer arithmetic, 
manipulating text in various ways, recursion etc. 

TABLE III.  PROJECTS USED IN OUR EXPERIMENT 

Subject Version Loc 

Tar 1.33 102k 

Mailutils 3.13 209k 

M4 1.4.19 142k 

2) Experiment Setup 
We performed our experiments on a desktop with Intel(R) 

Core(TM) i7-10700 CPU @ 2.90GHz and 32GB of memory. 
The operating system is Ubuntu 20.04 LTS. The version number 
of Clang used to generate the ExplodedGraph for the functional 
unit is 15.0.0. The version number of the graph database Neo4j 
used to build the global exploded graph for the software is 4.3.12. 

3) Experiment Procedure 
For each open-source software, we first use CAPS to 

generate a reduced global exploded graph, and then compare it 
with the unreduced global exploded graph in terms of node and 
relationship counts to verify the effectiveness of CAPS in 
achieving ExplodedGraph scale reduction. Next, we use the 
naive depth-first search algorithm as a baseline to verify the 
performance advantages of the path search optimization method 
in CAPS on the reduced global exploded graph. 

We define metrics Path Search Rate (PSR) and Weighted 
Rate Ratio (WRR) to evaluate the search efficiency of search 
algorithms in critical path search. PSR is the ratio of the number 
of critical paths found to the search time when searching for the 
critical path of a parameter of a function in the global exploded 



graph. Because it is impossible to calculate the PSR of all 
function parameters within a limited amount of time in a large 
software with numerous functions and parameters. Therefore, in 
order to effectively evaluate the performance of search 
algorithms in the global exploded graph, we first randomly select 
200 functions parameters from the software for critical path 
search, and choose the parameters with path counts in the top   
25% as the experimental validation set for calculating their PSR 
metrics. We chose parameters that involve more critical path 
numbers as our validation set because functions with fewer 
critical paths have very small differences in PSR between CAPS 
and DFS, which can be almost negligible. Then, we compare the 
performance of CAPS and naive DFS algorithms according to 
(1), where PSRCAPS(i) and PSRDFS(i) respectively represent the 
search rate of these two methods when performing critical path 
search on the i th function parameters.  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑅𝑎𝑡𝑒 𝑅𝑎𝑡𝑖𝑜(𝑊𝑅𝑅) =

∑
𝑃𝑆𝑅𝐶𝐴𝑃𝑆(𝑖)
𝑃𝑆𝑅𝐷𝐹𝑆(𝑖)

𝑛
𝑖=1

𝑛
(1)

 

C. Result and Analysis 

In this section, we present our experimental results and 
analyze the research questions proposed in III(A). 

1) Answering RQ1 
TABLE IV. presents the comparison results of the number 

of nodes and edges in the global exploded graph of 3 GNU 
software before and after reduction. The “original” and “reduced” 
respectively represent the global exploded graph before and after 
reduction. The “reduction rate” shows the percentage decrease 
in the number of nodes or edges in the reduced graph compared 
to the original one. According to TABLE IV. , we can see that 
CAPS has the best performance in reducing the global exploded 
graph of M4, and its reduction rate of node and edge counts is 
85.14% and 83.47%. Especially the reduction rate of the number 
of edges is 6.45% and 8.61% higher than that of Tar and 
Mailutils, respectively. Regarding the reduction of nodes, CAPS 
shows comparable performance with Tar and Mailutils, 
achieving reduction of 80.58% and 80.17%. Overall, the average 
reduction rate of nodes and edges is 81.96% and 78.45% 
respectively, which indicates the effectiveness of CAPS in 
ExplodedGraph scale reduction.  

TABLE IV.  COMPARISON OF THE NUMBER OF NODES AND EDGES BEFORE 

AND AFTER GLOBAL EXPLODED GRAPH REDUCTION 

Project Node Edge 

Tar 

original 20,026,774 138,976,378 

reduced 3,889,400 31,938,078 

reduction rate 80.58% 77.02% 

Mailutils 

original 25,972,727 186,716,558 

reduced 5,149,298 46,940,666 

reduction rate 80.17% 74.86% 

M4 

original 12,027,333 86,891,874 

reduced 1,787,609 14,360,459 

reduction rate 85.14% 83.47% 

Furthermore, from the reduction rate of the number of nodes, 
we can further analyze that most of the nodes in the original 
ExplodedGraph are irrelevant to function parameters. Therefore, 
by optimizing and removing these nodes, we can greatly 
improve the efficiency of subsequent critical path search. 

2) Answering RQ2 
TABLE V.  shows the weighted rate ratio (WRR) of the 3 

GNU software after critical path search using CAPS and naive 
DFS algorithms at five different search time of 30s, 60s, 90s, 
120s and 150s. Larger WRR indicates that CAPS is more 
efficient than naive DFS in critical path search. According to 
TABLE V. , we can see that for Mailutils, the average WRR is 
the highest, reaching 41.56. On the other hand, for Tar, the 
average WRR is lowest, only 7.39. Furthermore, for the same 
project, the WRR does not increase linearly with the increase in 
search time. These indicate that the performance advantage of 
CAPS over the naive DFS algorithm may be affected by the 
intrinsic structure of the software.  

When we observe the WRR under different software and 
different search time, we can find that their values are all larger 
than 1, and the minimum value is 1.82, which shows that CAPS 
outperforms the naive DFS algorithms in critical path search 
efficiency, regardless of the software and the search time. From 
the above experimental results, we conclude that the CAPS is 
capable of effectively improving the search efficiency of the 
critical path for large-scale software. 

TABLE V.  COMPARISON OF WRR AT DIFFERENT SEARCH TIME 

Project 
Weighted Rate Ratio 

Avg 
30s 60s 90s 120s 150s 

Tar 4.16 1.91 1.82 25.46 3.6 7.39 

Mailutils 40.18 7.3 34.34 37.64 88.35 41.56 

M4 21.86 18.99 12.14 19.49 56.53 25.80 

IV. RELATED WORK 

In this section, we review related works on taint analysis and 
global exploded graph generation. 

A. Taint analysis 

Taint analysis techniques [10][11] are commonly used to 
identify information flows in programs, tracking the movement 
of sensitive information from a set of sensitive sources to 
sensitive sinks. Sui et al. [12] have developed a static analysis 
tool called SVF, which integrates the functionalities of pointer 
analysis, value flow analysis, and taint analysis. The tool takes 
LLVM IR (Intermediate Representation) as input and uses 
analysis modules such as Program Assignment Graph (PAG) 
and Control Flow Graph (CFG) provided by LLVM to perform 
whole-program pointer analysis, draw Sparse Value-Flow 
Graph (SVFG) value flow graph, and ultimately obtain the flow 
representation of each data element within the program. Phasar 
[13] is a large-scale C/C++ program static analysis framework 
developed by Philipp et al. It performs data flow and control 
flow analysis based on the LLVM-IR of the input program to 
obtain the Interprocedural Control Flow Graph (ICFG) data flow 
graph. Then, the framework uses the Interprocedural Finite 
Distributive Subset (IFDS) algorithm to achieve complete taint 
analysis. Additionally, Phasar also includes a simple Boomerang 
pointer analysis tool, enabling it to detect some synonym pointer 
propagation during program execution and fill in the missing 
parts of the IFDS algorithm analysis. She et al. [14] proposed a 
novel end-to-end method to track information flow by using 
neural network, called Neutaint. It models target program 
computations that occur between taint sources and sinks, and 



automatically learns information flow by observing a set of 
different execution traces. Experimental results show that 
Neutaint can achieve an average accuracy rate of 68%. Zhang et 
al. [15] developed FastDroid, a tool for detecting sensitive data 
leaks in Android applications. It first constructs a taint value 
graph (TVG) by flow-insensitive taint analysis to describe the 
taint propagation process. Then, potential taint flows are 
extracted from TVG. Finally, it compares the potential taint 
flows with the control flow graph to obtain the real taint flows. 
The results show that FastDroid can improve the analysis 
efficiency while ensuring high precision and recall. However, 
compared with CAPS, most of the above methods are only 
suitable for local program analysis, and cannot perform whole 
program critical path search and taint analysis. 

B. Global exploded Graph generation 

The global exploded graph [16] can describe program paths 
within functions as well as between functions through edges. 
Building the global exploded graph can help analysis tools more 
accurately understand program behavior and achieve global 
static analysis [17]. Gharibi et al. [18] developed a program 
analysis tool called code2graph that can automatically analyze 
source code, construct its static call graph, generate all possible 
execution paths of the system, and calculate their similarities. 
Abdelaziz et al. [19] designed a toolkit for building code 
knowledge graphs called GraphGen4Code. GraphGen4Code 
uses generic techniques to capture code semantics, and key 
nodes in the graph represent classes, functions, and methods. 
Edges represent the call relationship between functions. It can 
serve applications such as program search, code understanding, 
error detection, and code automation. However, the program 
graph constructed by the above methods based on the control 
flow graph and call graph, and its granularity is relatively coarse. 
In contrast, the global exploded graph constructed by CAPS is 
composed of program point and program state, and the 
granularity is smaller, thus providing more accurate analysis. 

V. CONCLUSION 

Many taint analysis techniques have been proposed to track 
the flow of external inputs in the program, so as to identify 
potential security vulnerabilities in the software. However, these 
techniques require the sinks to be defined and identified in 
advance, which is difficult for large-scale software. If static taint 
analysis is performed directly on the original ExplodedGraph 
generated by Clang Static Analyzer, although the sinks does not 
need to be identified, there are many nodes in the original 
ExplodedGraph that are irrelevant to external input, which 
makes the search of the critical path inefficient. Therefore, we 
propose an efficient Whole-Program Critical Paths Search 
(CAPS) framework. The framework first implements 
ExplodedGraph reduction corresponding to each function 
through node merging and deleting. Then, it utilizes the entities 
and relationships existing in the reduced ExplodedGraph of each 
function and the calling relationship between functions, to 
construct a global exploded graph for large-scale software within 
Neo4j graph database. Finally, it optimizes the critical path 
search process by loop removal and graph segmentation. Our 

experimental results on 3 large GNU software demonstrate that 
CAPS can significantly reduce the original ExplodedGraph scale 
and improve the efficiency of critical path search on the global 
exploded graph for large-scale software. 

For future work, we plan to explore more efficient 
algorithms and optimization techniques to improve the 
efficiency of whole-program critical paths search. Furthermore, 
we will attempt to resolve the breakpoint issue currently 
encountered during critical path searching to enhance the 
completeness of the path. 
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