
Detect Stack Overflow Bugs in Rust via Improved
Fuzzing Technique

Zhiyong Ren Hui Xu
School of Computer Science School of Computer Science

Fudan University, Shanghai, China Fudan University, Shanghai, China
20210240038@fudan.edu.cn xuh@fudan.edu.cn

Abstract—Stack overflow has been a common memory
vulnerability for a long time due to limited stack memory.
Deep or infinite recursion serves as the main cause to exhaust
the stack memory and crash the program. As a relatively
new system programming language, Rust suffers from stack
overflow problem inevitably. However, there is no relevant
tool to detect those stack overflow bugs in Rust programming
language. In this paper, we propose a novel approach using
fuzz technique to trigger stack overflow bugs in Rust projects.
We first build a call graph on Rust MIR (Middle Intermediate
Representation). In the call graph, recursions appear as
cycles lying in the SCCs (strong connect components). To
find the entry APIs of those SCCs, we leverage Tarjan’s
algorithm to locate the SCCs and then reversely BFS (Breadth
First Search) to search for the APIs. After that, we modify
the underlying logic of AFL (American Fuzzing Loop) to
trigger stack overflow bugs through fuzzing those dangerous
APIs. Specifically, we add a function call time counter to
accelerate the fuzzing process. We conduct our experiments
on several existing Rust CVEs (Common Vulnerabilities and
Exposures) related to stack overflow. Experiments show that
our approach can trigger stack overflow bugs in a short time.

Index Terms—fuzz, Rust, recursion, stack overflow

I. INTRODUCTION

STack overflow is a well-known memory vulnerability
for a long time. In software, stack overflow occurs

when stack memory is exhausted. Essentially, stack is a
linear data structure that follows the principle of LIFO (last
in first out). It occupies a limited amount of virtual address
space when program runs, e.g., default 8MB on Linux and
1MB on Windows. The size of the stack is determined at
the start of the program and depends on many factors,
including machine architecture, programming language
and the amount of available memory. It grows from top
memory address to lower memory address in memory
space, which is totally opposite of heap memory alloca-
tion. When a program attempts to use more space than
is available on the stack, the stack is said to overflow,
typically leading to a program crash.

The program embraces a risk of stack overflow when
it contains recursion. Unconditional recursive functions,

DOI reference number: 10.18293/SEKE23-122

like Figure 1, overflow the stack due to its infinite invo-
cation. Besides, those conditional recursive functions like
fibonacci recursive function, whose invocation depends on
their context, can also trigger stack overflow errors. Hack-
ers may construct a nested input maliciously according to
the control flow of the program and make the functions
recurring deeply to crash this program.

Recursion serves as a common programming skill and
exists in many projects. Forbid programmers from using
recursion seems unfeasible in real-world programming.
We program concisely using recursion. Correspondingly,
we have to scarify the performance of the program due
to the cost of calling a function and tolerate the hidden
risk of stack overflow. As an emerging programming
language that promotes memory-safety features, Rust has
attracted many developers in recent years. With no runtime
and garbage collector, it empowers performance critical
services, runs on embedded devices and easily integrates
with other languages. Its rich type system and ownership
model guarantee memory-safety and thread-safety features,
which enables developers to eliminate many classes of
bugs during compile-time. Nowadays, many developers
use Rust to build their project due to its memory-safety
benefits.

However, just like other programming languages,
Rust suffers from stack overflow vulnerability inevitably.
Dozens of Rust projects use recursion to implement their
logic, e.g., yaml-rust[14], serde[15], ammonia[16]. Eight
stack overflow related CVEs are found in Rustsec (The
Rust Security Advisory Database). Due to its memory-
safety promise, Rust has low tolerance for memory-safety
problems. Unfortunately, there is no relevant tool to detect
those stack overflow bugs in Rust projects.

In this paper, we detect those stack overflow bugs in
Rust crates via an improved fuzz approach. We conduct
our experiments on several Rust CVEs and successfully
trigger stack overflow bugs in those CVEs within a short
time.

We summarize the contributions of this paper as fol-
lows:



• We leverage Rust type information on MIR to build
our call graph and deal with some dynamic features.

• We design an algorithm to find all the entry APIs of
SCCs in the call graph for constructing fuzz targets.

• We modify the underlying logic of AFL to accelerate
fuzz process of triggering stack overflow bugs in Rust
CVEs.

The rest of our paper is organized as follows. Section
2 presents our motivation and related work. After that,
We introduce our approach in section 3. Section 4 demon-
strates our evaluation experiments and Section 5 introduces
limitations and future work. We conclude our paper in
section 6.

II. MOTIVATION AND RELATED WORK
A. Motivation

As a static strongly typed language [5], Rust employs
a stack to store some of its data. Especially, the Rust
compiler puts those data types with fixed size, such as
i32, u32, on the stack memory during compile-time, while
allocates heap memory for those dynamic data types at
run-time. When a function gets called in Rust, some stack
memory gets allocated for its local variables, which is
called a stack frame. stack overflow occurs when large
amount of frames accumulates through recursive function
calls.

Finding a recursive function in Rust crates seems
troublesome due to the large amount of functions and
complicated function call relations. Unfortunately, we lack
a useful tool to automatically detect those unrevealed
recursions in Rust crates. To our best knowledge, rustc (the
Rust compiler) only provides warnings for those simple
unconditional self-recursive functions. Nowadays, it still
relies on human effort to locate those problematic recursive
functions in Rust crates, which is labor-intensive. More-
over, developers may omit those possible cross-function
recursions due to their complicated call relations like
Figure 1. To tackle this problem, we propose a novel
approach to trigger stack overflow bugs of those recursions
which lie in SCCs of the call graph.

Fig. 1. Recursive functions written in Rust and their recursive units.

B. Related Work

Rust has developed lots of useful artifacts recent years.
Rudra [2] is a static analyzer to detect common undefined
behaviors in Rust programs. SafeDrop [3] serves as a tool
to detect memory deallocation bugs. RULF [4] helps to
fuzz Rust libraries. Miri [22] provides an interpreter for
Rust’s mid-level intermediate representation. However, we
still lack a tool to deal with stack overflow vulnerability
in Rust crates.

So far, Rust developers have done some work on search-
ing those self-recursive functions in Rust crates. The Rust
compiler gives warnings on those simple unconditional
self-recursive function. Wu[23] develops a clippy lint on
HIR to detect those conditional self-recursive function.
This lint simply compares the equality of caller def id and
callee def id. Cargo-call-stack [21] develops a call graph
on LLVM IR to analysis stack usage of each function, but
it evades recursive functions.

To our knowledge, there is no formal work to test those
recursions in Rust crates. Two open issues in the official
rust-lang repository (issue 57965[18], 70727[17]) discuss
those recursion problems but do not tackle it.

III. APPROACH

In graph theory, a strong connected component denotes
a set of vertices and edges in which vertices can reach
each other. Bascially, one strong connected component
consists of serveral simple cycles. It can be decomposed
into a certain number of independent cycles. Those cycles
serve as recursions in real-world programs and have stack
overflow risk. In the call graph, all recursions lie in the
SCCs. So we choose to fuzz those SCCs in order to trigger
stack overflow bugs. Our approach consists of three parts,
including call graph construction, entry APIs searching
and fuzzing. This section demonstrates these three parts
in detail.

A. Rust Call Graph Construction

Call graph acts as a presentation of relations between
functions in program and behaves as a high-level ap-
proximation of its run-time. As a normal static analysis
approach, call graph presents an overview of the whole
program and facilitates inter-procedure analysis.

Rust compiler (rustc) leverages a query system to enable
demand-driven compilation. Incremental compilation im-
plemented by rustc accelerates compiling process. During
compilation, Rust source code goes through AST (Abstract
Syntax Tree), HIR (High-level Intermediate Representa-
tion), MIR, LLVM IR [7] forms and finally turns into
binary code. Rustc executes different operations on each
compiling phase. For example, it does name resolution on
AST while performs borrow check on MIR. We can choose



Fig. 2. Call graph construction.

to build our call graph on these four phases (AST, HIR,
MIR and LLVM IR).

Due to the absence of Rust-unique type information,
call graph built on AST, HIR or LLVM IR cannot resolve
monomorphized features correctly, resulting in imprecise
call edge. Therefore, we choose to build our call graph
on Rust MIR and leverage type information to make call
graph more accurate.

To deal with dynamic features such as dynamic dispatch
in Rust, we collect all the types which implement the
specific trait. For example, struct A, B, C implement trait
BoundTrait. We cannot decide which function to call
in compile time due to the absence of type information.
So we take take all the types (A, B, C) into account to
make our call graph sound.

To accelerate the construction process, we cast away
functions which is calling into Rust std crate, e.g., println!.

We present the call graph construction process in Fig-
ure 2.

B. Entry APIs Searching Algorithm

Cycles lie in strong connected components in call graph.
To verify the risk of stack overflow bugs of the cycles, we
need to find the entry points of all SCCs. We first leverage
Tarjan’s algorithm to find all the SCCs in the call graph.
Then we reverse the direction of edges in the call graph.

Fig. 3. Entry APIs of SCCs

After that, we remove the edges in SCCs to avoid fruitless
search and use BFS (breadth first search) to search for the
entry APIs of each SCC. In Figure3, {a, b, c, d, e, f, g, h,
i, j} forms an SCC and {x, s, z} denotes the entry APIs
of this SCC.We demonstrate this algorithm in Algorithm1.



Algorithm 1 Search entry APIs of all SCCs
Input: Adj: adjacency list for a call graph
Output: entryAPIs: the entry API of each SCC

1: SCCs := Tarjan (Adj) /* find SCCs */
2: reverse the edges of the call graph
3: for each scc in SCCs do
4: remove the edges in the scc
5: BFS to find entry APIs
6: end for
7: output those APIs

C. Fuzzing

To trigger stack overflow bug, we fuzz those APIs found
by our searching algorithm. We choose AFL to do our fuzz
job. To facilitate fuzzing process, we modified the under-
lying logic of AFL, including instrumentation and seed
selection strategy. Specifically, we list the modifications
as follow:

• Instrumentation: we extra instrument at the entry
of each function and assign a unified ID 0 to these
instrumentation. For other instrumentation lying in
the branch, we generate a random ID from 1 to
MAP SIZE through a built-in function R(x). R(x)
means generating a random number from 0 to x. So
we set x with MAP SIZE-1 to generate a random
number from 0 to MAP SIZE-1. Then we plus 1 to
generate a number from 1 to MAP SIZE. The whole
expression is R(MAP_SIZE-1)+1. MAP SIZE de-
notes the size of the trace bits. So in trace bits,
trace bits[0] denotes the times of function calls and
trace bits[1..MAP SIZE] denotes the trigger times of
each branch.

• Seed Selection: traditional seed selection strategy
uses has new bits() function to determine whether
the seed covers a new branch after one fuzzing loop.
In addition to this, we take the function call times
into consideration. That is, if a seed increases the
maximum function call times after one fuzz loop, it
will be added into the test queue for next mutation. Or
it will be selected only if it increases the branch cov-
erage. We use trace bits[0] to record current function
call times and a global variable to record maximum
function call times.

Subsequently, AFL will carry out a large number of
mutation on the selected seed and check whether it causes
crash or finds new path. The main types of mutation in-
cludes bitflip, arithmetic, interest, dictionary, havoc, splice
and so on. AFL will repeat the fuzzing loop until devel-
opers manually stop or timeout.

Fig. 4. trace bits

IV. EXPERIMENTAL EVALUATION

This section presents our experiments on Rust crates.
We evaluates our approach for three research questions.

• RQ1: How many dangerous APIs are there in our
experiemntal crates?

• RQ2: Can our approach trigger stack overflow bugs
successfully?

• RQ3: How much does our approach speed up the
fuzzing process?

A. Experiment Setting

We collect eight Rust stack overflow related CVEs from
RUSTSEC and download all related crates from GitHub.
Recursion causes all of these CVEs. Users can crash the
crates by constructing a nested input maliciously. Devel-
opers have located some of those problematic recursive
functions in these CVEs and fixed them by limiting the
recursion depth or changing the recursion into iterative
form. Still, it remains questionable for some CVEs since it
is not easy to locate the problematic recursions in dozens
of functions with complicated call relations.

Before we test our approach on these crates, we make a
new file named rust-toolchain.toml into the root
directory of each crate to change the Rust toolchain into
right version.

To trigger stack overflow bugs, we choose to fuzz those
problematic CVEs. During the fuzzing process, we record
the crash times every minutes. In order to speed up the
fuzzing process, we use ulimit - s xxKB command to
reduce the stack space into 512KB, 1024KB, 2048KB
respectively. Moreover, we set the initial input with ’{’
. At the same time, we compare the unchanged AFL with
improved AFL and observe the difference between these
two experiments.

We conduct all our experiments on Dell-OptiPlex-7070
with 32GB memory and Intel Core i7-9700T 2.00GHz
CPU.



Fig. 5. experiment result on eight Rust CVEs

TABLE I
THE NUMBER OF DANGEROURS APIS IN CVE CRATES

CVE ID Crate Name number of APIs
dangerous total

CVE-2019-25001 serde cbor 27 451
CVE-2019-15442 markup5ever3 1 147
CVE-2020-35858 prost build 1 124
CVE-2018-20994 trust-dns-proto 3 1390
CVE-2018-20993 yaml-rust 2 241
CVE-2020-35857 trust-dns-server 3 1390

RUSTSEC-2018-0005 serde yaml 21 680
RUSTSEC-2022-0004 rustc-serialize 3 1504

B. RQ1: How many dangerous APIs are there in our
experimental crates?

In real-world Rust program, Rust developers always
define those recursions using private keyword. They
often offer an entry API to users at the top layer. This API
is always set with public. We need to find these APIs
to construct fuzz target.

We run our self-created algorithm to find the dangerous
APIs of crate related to Rust stack overflow problem.
Those dangerous API is defined as the entry APIs for all
SCCs in the function call graph.

Experiment results in Table 1 show that each eight

TABLE II
THE NUMBER OF RECURSIONS IN CVE CRATES

CVE ID Crate Name number of recursions
self cross-func

CVE-2019-25001 serde cbor 5 0
CVE-2019-15442 markup5ever3 2 0
CVE-2020-35858 prost build 2 0
CVE-2018-20994 trust-dns-proto 1 0
CVE-2018-20993 yaml-rust 1 13
CVE-2020-35857 trust-dns-server 0 1

RUSTSEC-2018-0005 serde yaml 8 0
RUSTSEC-2022-0004 rustc-serialize 1 2

CVE related crate contains at least one dangerous API.
In particular, serde cbor shows the highest number of
dangerous APIs, which is up to 27.

Those dangerous APIs lead to the recursions lying
in SCCs. The recursions in Rust crate contain not only
simple self-recursion but also complicated cross-function
recursion. Table 2 demostrates the number of recursions
in those CVE related Rust crate. All these recursions have
the risk of stack overflow problem.



C. RQ2:Can our approach trigger stack overflow bugs
successfully?

We have tested our approach on eight Rust stack over-
flow related CVEs. These crates contain library crates and
binary crates. Figure 5 demonstrates our experiments on
each CVE.

Results show that our approach has triggered stack
overflow bugs. The blue line represents the experimental
results at the stack space of 512KB, while the green line
represents 1024KB and the blue line represents 2048KB.
At the initial stage, the number of crashes is zero. After
roughly eight minutes, the program crashes begin to occur,
and the growth rate becomes faster and faster. The reason
of the speed may be that the input generated by the
mutation can cause the stack overflow bugs already, so
each subsequent mutation can also cause stack overflow
bugs. Moreover, the larger the stack space is, the longer
time it takes to generate a crash.

We have carefully verified the correctness of each input
generated by our approach. Specifically, we pass the input
into the dangerous API, and it successfully triggers stack
overflow bugs in the running process of the program.

D. RQ3: How much does our approach speed up the
fuzzing process?

In Figure 5, the red, black and pink lines are the
baselines which represent the unimproved AFL in the
corresponding stack space. Compared with unmodified
AFL, the modified AFL has a significant improvement in
fuzzing speed. Take CVE-2018-20993 as an example, at
the stack size of 512KB, the first crash occurs at minute
10 under the modified AFL while it occurs at minute 25
under the unmodified AFL. After five minutes, crash times
grow into 16 while it only grows into 9 in baseline. At the
time of 30 minute, the crash time reaches 312, which is
far more than 9 in the baseline.

In other CVEs, it shows the same trend as it is in
CVE-2018-20993. We see a clear gap of the experiment
result between the improved AFL and baseline under both
512KB, 1024KB and 2048KB.

V. CONCLUSION

In this paper, we propose a novel approach to detect
those stack overflow bugs in Rust crates. We first build a
call graph on Rust MIR and use our algorithm to locate
all entry APIs of SCCs in the call graph. Then we modify
the instrumentation and seed selection strategy of AFL to
accelerate the fuzz process of triggering stack overflow
bugs. We conduct our experiments on Rust stack overflow
related CVEs. Experiment results show that our approach
successfully triggers stack overflow bugs under the stack
size of 512KB, 1024KB, 2048KB. Our approach is the

first attempt to tackle stack overflow problem in Rust
programming language and has positive effect on further
research.

REFERENCES

[1] Evans, Ana Nora and Campbell, Bradford and Soffa, Mary Lou,Is
Rust used safely by software developers?, IEEE/ACM 42nd Interna-
tional Conference on Software Engineering (ICSE), 246-257,2020.

[2] Bae, Yechan and Kim, Youngsuk and Askar, Ammar and Lim,
Jungwon and Kim, Taesoo, Rudra: Finding Memory Safety Bugs in
Rust at the Ecosystem Scale, Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles. 84–99, 2021.

[3] Mohan Cui, Chengjun Chen, Hui Xu, and Yangfan Zhou. 2021.
SafeDrop: De- tecting memory deallocation bugs of rust programs
via static data-flow analysis.arXiv preprint arXiv:2103.15420, 2021.

[4] Jiang, Jianfeng and Xu, Hui and Zhou, Yangfan, RULF: Rust library
fuzzing via API dependency graph traversal, 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
581–592, 2021.

[5] Madsen, Ole Lehrmann and Magnusson, Boris and Molier-Pedersen,
Birger ACM SIGPLAN Notices, 140-150. 1990.

[6] Taneja, Jubi and Liu, Zhengyang and Regehr, John, Testing static
analyses for precision and soundness, Proceedings of the 18th
ACM/IEEE International Symposium on Code Generation and Op-
timization, 81-93, 2020.

[7] Lattner, Chris and Adve, Vikram, LLVM: A compilation framework
for lifelong program analysis & transformation, International Sym-
posium on Code Generation and Optimization, 2004.

[8] Wadler, Philip, The essence of functional programming, Proceedings
of the 19th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 1-14, 1992.

[9] Krivine, Jean-Louis, About classical logic and imperative pro-
gramming, Annals of mathematics and Artificial Intelligence.405-
414,1996.

[10] Musser, David R and Stepanov, Alexander A, Generic program-
ming 3rd ed, International Symposium on Symbolic and Algebraic
Computation, 13-15, 1988.

[11] klabnik, Steve and Nichols, Carol.The Rust Programming Lan-
guage.No Starch Press.2019.

[12] Jung, Ralf. Understanding and evolving the Rust programming
language.Saarländische Universitäts-und Landesbibliothek.2020.

[13] Hoarem, Graydon.The rust programming language.http://www.rust-
lang.org.2013.

[14] Chen YuHeng. 2021. yaml-rust: A pure rust YAML implementation.
Github. https://github.com/chyh1990/yaml-rust

[15] David Tolnay. 2022. serde: Serialization framework for Rust.
Github. https: //github.com/serde-rs/serde

[16] Laurent,iu Nicola. 2021. A whitelist-based HTML sanitiza-
tion library: Repair and secure untrusted HTML. Github.
https://github.com/rust-ammonia/ammonia

[17] Wojciech Danio.2020.Infinite recursion is not catched by the com-
piler.Github. https://github.com/rust-lang/rust/issues/70727

[18] Jonas Schievink. 2019. Make the unconditional recursion
lint work across function calls. Github. https://github.com/rust-
lang/rust/issues/57965

[19] Tarjan, Robert, Depth-first search and linear graph algorithms,
SIAM journal on computing, 146-160, SIAM.

[20] Johnson, Donald B, Finding all the elementary circuits of a directed
graph, 3rd ed. SIAM Journal on Computing.77-84

[21] Lindgren, Per and Fitinghoff, Nils and Aparicio, Jorge Daly, Cargo-
call-stack Static Call-stack Analysis for Rust, 2019 IEEE 17th
International Conference on Industrial Informatics (INDIN),1169-
1176, 2019.

[22] Cui, Mohan and Chen, Chengjun and Xu, Hui and Zhou, Yangfan,
MIRI: An interpreter for Rust’s mid-level intermediate representa-
tion, GitHub, 2022.

[23] AoXiang, Wu, clippy lint for dectecting conditional self-recursion,
2019 Github, 2021.


