
EasyPip: Detect and Fix Dependency Problems in Python Dependency Declaration
Files

Shuo Li

Institute of Software Chinese
Academy of Sciences, University of

Chinese Academy of Sciences
Beijing, China

lishuo19@otcaix.iscas.ac.cn

Jie Liu∗
State Key Lab of Computer

Sciences at ISCAS, University of
Chinese Academy of Sciences

University of Chinese Academy
of Sciences,Nanjing

China
ljie@otcaix.iscas.ac.cn

HaoXiang Tian
Institute of Software Chinese

Academy of Sciences, University of
Chinese Academy of Sciences

Beijing, China
tianhaoxiang20@otcaix.iscas.ac.cn

Shuai Wang∗
Institute of Software Chinese

Academy of Sciences, University of
Chinese Academy of Sciences

Beijing, China
wangshuai@otcaix.iscas.ac.cn

Wei Chen
State Key Lab of Computer

Sciences at ISCAS, University of
Chinese Academy of Sciences

University of Chinese Academy
of Sciences,Nanjing

wchen@otcaix.iscas.ac.cn

Liangyi Kang, Dan Ye
Institute of Software Chinese

Academy of Sciences
Beijing, China

{kangliangyi15,yedan}@otcaix.iscas.ac.cn

Abstract

Environment configuration is the basis for software
reuse, enabling developers to reuse specific functions.
However, the lack of uniform practice in dependency dec-
laration specifications of Python projects can cause prob-
lems for developers trying to install third-party libraries.
Existing package management tools are often inadequate
to help fix these problems. Fixing these errors requires
expensive hours and domain knowledge for developers.

To help address related problems, some studies focus
on well-maintained and popular Python projects about
dependency conflict problems caused by PIP’s installation
rules. However, many projects in the wild are outside
of this scope. We carefully investigate 110 issues in 110
projects in the wild. Based on the comprehensive study, we
design and implement EasyPip to automatically detect and
fix problems in Python dependency declaration files. Dif-

DOI reference number: 10.18293/SEKE2023-120
ISCAS are short for Institute of Software Chinese Academy of

Sciences
* Both Jie Liu and Shuai Wang are the corresponding authors of this

paper.

ferent from existing tools, EasyPip can locate conflicting
dependencies without trying to install dependencies, and
generate fixing solutions with the least modification to the
original files. We evaluate EasyPip on the collected dataset
which shows that EasyPip outperforms two state-of-the-art
tools and can effectively detect problems in 91.04% Python
dependency declaration files and generate feasible fixing
solutions for 65.67% of them.

Index Terms—Software reuse, dependency declaration file,
dependency error fix, Python

I. Introduction

Python is one of the most popular programming lan-
guages, but its dependency declaration lacks uniform spec-
ifications, which may lead to unknown problems. We call
the third-party library installation problems caused by the
dependency declaration files instead of package manage-
ment tools dependency declaration issues. The issues can
be seen in real projects, such as Im2Vec [1] whose require-
ments.txt file specifies conflicting dependencies, leading to
dependency declaration issues.

The dependency declaration file should contain all third-
party libraries used in the project to ensure successful
installation. PIP and Conda can export the dependency
declarations of the installed third-party libraries in the
environment of the project to help reuse Python projects.
However, the compatibility between direct dependencies
and transitive dependencies is ignored. Recent techniques
like PyEgo [2] infer compatible environment dependen-
cies’ versions for Python code snippets, but couldn’t
identify potential conflicts that weren’t in their knowledge
database. And they ignore that the original dependency
declaration file provided by the project developer is closer
to the environment configuration that the developer ex-
pects. And developers will likely perform smaller updates
to mitigate the impact of breaking changes. So, the fewer
modification to the original dependency declaration file,
the better to successfully build the project and achieve the
expected results. Therefore, detecting and fixing depen-
dency declaration issues with less modification is helpful
for developers to reuse Python projects.

Wang et.al. [3], [4] investigate dependency conflict
issues with the legacy and new dependency-resolving
strategies adopted in PIP. However, the studies focus on
well-maintained projects. There are many projects left in
the wild not well-maintained or unpopular. Developers will
face more challenges when reusing these projects.

To investigate the characteristics of dependency declara-
tion issues of projects in the wild, we conduct an empirical
study on dependency declaration files in Python projects
from Github. We collect 1000 issues related to dependency
declaration, and among them, 110 dependency declaration
issues of 110 Python projects are identified. We thoroughly
analyze these issues and conclude manifestation patterns
from them. Note that different from the empirical study
of Watchman [3], our study mainly focuses on the de-
pendency conflicts caused by dependency declaration files
instead of those caused by the installation strategy of PIP.

Based on our study, to address dependency declaration
issues and help developers successfully install third-party
libraries when reusing Python projects, we design and
implement a tool, EasyPip, which can automatically detect
and fix dependency declaration issues. Differently from
the existing tools (e.g., PIP, SMARTPIP [4]), EasyPip can
detect and locate dependency declaration issues without
trying to install, and generate feasible fixing solutions with
the least modification to the original files. Specifically,
EasyPip formulates the detection and fixing of dependency
declaration issues as a graph-search problem. To improve
the efficiency of detection and location, we introduce
the equivalent node to reduce search space. To generate
the feasible fixing solutions with the least modification,
EasyPip utilizes greedy search to find the compatible
versions closest to the original dependency declaration file.

We evaluate EasyPip on the dataset of dependency
declaration files with dependency declaration issues from
open-source projects. The results show that, EasyPip can
effectively detect 91% dependency declaration issues and
report the root causes, and generate feasible fixing solu-
tions for 72% of the detected issues. Comparing to the
state-of-art techniques for detecting and fixing dependency
declaration issues, on the same dataset, EasyPip detects
12% more dependency declaration issues and generates
34% more feasible fixing solutions. For the fixing solu-
tions generated by EasyPip and the selected baselines, we
calculated their changes in dependencies and versions to
the corresponding original files. The results show that the
fixing solutions generated by EasyPip are closer to the
original dependency declaration files.

In summary, the main contributions of our work are as
follows:

• We conduct the empirical study of dependency decla-
ration issues in Python projects in the wild. Our find-
ings can help further understand the characteristics of
dependency installation problems.

• Based on our findings, we design and implement a
tool, EasyPip, to help automatically detect and locate
dependency declaration issues without installing, and
generate feasible fixing solutions with the least mod-
ifications to the original dependency declaration file.

• We release the dataset used in our empirical study and
evaluation, which can facilitate future research related
to Python dependency declaration issues.

II. EMPIRICAL STUDY

A. Data Collection

To collect dependency declaration issues, we follow the
data collection practice of empirical studies [5]–[8] on
Python developer communities, and collect our data by the
following steps: First, we go through issues that are related
to dependency declarations of Python projects on GitHub.
Next, we manually read the issue reports and comments,
to identify whether it is a dependency declaration issue.

(1) Collecting Python projects: We search Python
projects on GitHub with issues filtered by the keywords:
”requirement” ”dependency” or ”install”, and obtain 1000
issues. Then we filter out the projects without dependency
declaration files (requirement.txt and setup.py). The dupli-
cate issues are dropped with the first one left for these
keywords can appear at the same time in one issue.

(2) Identifying dependency declaration issues: We then
go through each issue report and its comments, and further
identify dependency declaration issues by several criteria:
a. the issue is caused by a dependency declaration file

instead of the user’s incorrect operation and PIP’s installa-
tion, b. the corresponding release of the project is available
so that the issue can be reproduced. Three of the authors
independently check each issue, and then discuss it to reach
an agreement. After filtering by the criteria above, there are
110 issues in 110 projects left.

B. Manifestation Patterns

We categorize dependency declaration issues into four
categories (Pattern A to D) according to their occurrence
stages and root causes.

Manifestation of Pattern A: The dependency declara-
tion issues of Pattern A manifest as different dependencies
required by the project cannot be satisfied at the same
time(57/110). As conflicts come from different sources,
Pattern A is divided into three sub-categories. Pattern
A.1: conflicts between direct and transitive dependencies
(47/57). Pattern A.2: conflicts between transitive depen-
dencies (10/57).

Manifestation of Pattern B: The issues of Pattern
B are caused by Python interpreters(10/110). Different
dependencies in the dependency declaration file require
different Python interpreters.

Manifestation of Pattern C: The issues of Pattern
B are caused by incompatibility with Operating System
(13/100). The dependency in the dependency declaration
file is incompatible with the OS of the developer who
wants to reuse the project.

Manifestation of Pattern D: The dependencies of the
project and that of its upstream/downstream project, cannot
be satisfied at the same time (19/110).

The other issues (11/110) are caused by unavailable de-
pendency (e.g., library not found or not released publicly)
declared in the file.

From our study, it can be seen that most dependency
declaration issues are caused by conflicts among declared
dependencies, transitive dependencies, and Python inter-
preters.

III. EasyPip

To help automatically solve the dependency declaration
issues without trying to install dependencies, we design
and implement a tool, EasyPip, which can efficiently detect
and locate the issues of the two most common patterns
(Pattern A and B). EasyPip can also find feasible fixing
solutions with minimal modifications to the original de-
pendency declaration file as developers will likely perform
smaller updates to mitigate the impact of breaking changes.
The workflow of EasyPip is shown as Figure 1.

Given a Python dependency declaration file, EasyPip
first resolves its dependencies and obtains all transitive

dependencies. Then EasyPip constructs the dependency
graph by the relations of Python interpreters and these
dependencies. EasyPip formulates the detection and fixing
of dependency declaration issues as a graph search prob-
lem. If there is no fully-connected path that satisfies all
declared version constraints in the dependency declaration
file, EasyPip will report a dependency declaration issue
and conflicting dependencies. For the conflicting depen-
dencies, EasyPip utilizes greedy search to find the closest
version that can constitute a fully-connected path of the
dependency graph.

Dependency Graph Construction The input of
EasyPip is a dependency declaration file. Firstly, EasyPip
parses it to get the third-party libraries and their ver-
sion constraints. Then EasyPip queries their transitive
dependencies from the dependency knowledge database.
Based on these dependencies and their relations, EasyPip
constructs the dependency graph of these dependencies
with Python interpreters.

In the dependency graph, each node represents a Python
interpreter or a third-party library with a specific version.
The edges contain two types: seq edge (the undirected
edge) and dep edge (the directed edge). The nodes of
different versions in the same third-party library or inter-
preter are connected by seq edges. The nodes of different
libraries or interpreters with dependency relations are con-
nected by dep edges. As the latest versions are preferred in
Python project development, the nodes of the same library
or interpreter are ordered in descending of versions.

For example, there are two dependency declarations in
the file: B == 5, C. The dependency relations of B and
C are shown as Table I, and the constructed dependency
graph is shown as Figure 2. (Note that to intuitively display
the example, the Python interpreters are not shown in the
figure). In the dependency graph, for each library, EasyPip
denotes the nodes with maximal version and minimal
version of corresponding declared version constraints (If
there is no declared version constraint on the dependency,
the nodes from the oldest version to the newest version of
the dependency will all be denoted).

TABLE I. Dependency relation
Package Version Dependent package Dependent version

B V1-V2 A V4
B V3-V4 A V6
B V5 A >V7
C V1 A V5
C V2-V3 A V6

To reduce the time-consuming of dependency graph
construction, the queried metadata of third-party libraries
via PyPi is stored locally as a dependency knowledge
database. Each item in the database is represented by a 2-
tuple < p, v >. p is the name of a third-party library. v is a

Dependency Declaration

Issue Detection and Fixing

Dependency

Declaration Resolution

Optimized DFS for
full-connected pathlibrary knowledge

database

Dependency graph
constructiondependency

declaration file

Recommend
result

Package version

dependency
declaration

issue

Fig. 1. The workflow of EasyPip.

B5 B4 B3

A7 A5A6

C3 C2 C1

A3A4 A1A2

B1B2

Fig. 2. An example of the dependency graph.

2-tuple represented as < vid, td >, where vid is a version
of p, and td is a set of third-party libraries with specific
versions that p.vid depends on. Before querying PyPi,
EasyPip queries the database. If the database contains the
information of the third-party library, EasyPip will not
query PyPi. Considering that in the actual development,
for a developer, there may be many common third-party
libraries used in projects. Therefore, with EasyPip used by
the developer more times, the local knowledge database
can reduce time costs. EasyPip will update the information
in the local knowledge database periodically.

Dependency Declaration Issue Detection Based on
the constructed dependency graph, EasyPip detects depen-
dency declaration issues by searching a fully-connected
path that satisfies all denoted version constraints in the
graph. Note that the interpreter and each library can only
have one node on the fully-connected path. The fully-
connected path represents the feasible solution satisfying
all declared constraints of the dependency declaration file.
Therefore, if there is no fully-connected path that can
satisfy all denoted version constraints in the dependency
graph, EasyPip will report a dependency declaration issue
and the conflicting dependencies that cannot find compat-
ible versions within declared version constraints.

To determine the search order that can improve search
efficiency and align with the PIP installation policy,

EasyPip applies topological sorting to the dependency
graph. To do this, the nodes of the same library are
regarded as a whole in the topological sorting. For two
libraries i and j, if there exists any node of i that connects
to the node of j by a dep edge, the in-degree of library
j is added 1. For example, in the Figure 2, the in-
degree of library A is 2. EasyPip calculates the degree
of each library. The higher the degree of the library, the
more constraints from other libraries (we call them pre-
constraints) on the library. For the library, EasyPip should
search for compatible versions after its pre-constraints
are satisfied, which can reduce the number of backward
searches. Therefore, EasyPip applies topological sorting
to the dependency graph in ascending order of libraries’
in-degree. In this example, the topological order is B, C,
and A.

Based on the sorted graph, EasyPip searches for the
fully-connected path that satisfies all denoted version con-
straints. It travels from the starting library or interpreter
to the tail library. For the nodes of the same library or
interpreter, EasyPip searches from the node with a newer
version to an older version within the denoted node range.

To reduce the search space, we introduce the Equivalent
nodes, which refers to different nodes of the same library
or interpreter that have the same dependency relations with
the nodes of other third-party libraries. Taking an example
in Figure 2, for library B, B4 and B3 are equivalent nodes.
For one node, if there is no fully-connected path containing
the node, there is also no fully-connected path containing
its equivalent nodes. Therefore, for each library, instead of
traversing all nodes, after finishing the search of one node,
EasyPip will skip its equivalent nodes.

Dependency Declaration Issue Fixing When a depen-
dency declaration issue and conflicting dependencies are
reported, EasyPip will fix it by a greedy search of nodes
in conflicting libraries. Considering the developers tend
to make smaller updates to minimize the impact of any
breaking changes, the metric function is the distance from

the original declared version range. To fix the issue with
the least modification, for the conflicting libraries, EasyPip
will find the compatible nodes closest to the denoted
version range. Specifically, EasyPip traverses the nodes of
the conflicting library from the upper boundary of denoted
node range to the node with the latest version. If EasyPip
fails to find the fully-connected path, it will traverse the
nodes from the lower boundary of denoted node range to
the node with the oldest version. The first fully-connected
path found by EasyPip is the closest solution to the
declared constraints in the original dependency declaration
file, and EasyPip will recommend it as the fixing solution.

Taking Figure 2 as an example, as the dependency dec-
laration requires B == 5, C, there is no fully-connected
path that satisfies the declared version constraints of B.
EasyPip fixes the issue by greedy search from B4 to B1
to find a fully-connected path (B3 will be skipped as it is
an equivalent node of B4). B4 is the first node of library
B that can constitute a fully-connected with A and C,
and its version is closest to the declared version range
in the original dependency declaration file. EasyPip will
recommend B4, C3, A6 as the fixing solution.

IV. EVALUATION

To demonstrate the effectiveness and efficiency of
EasyPip, we evaluate it on the dataset of dependency
declaration files with dependency declaration issues. The
dataset contains 67 dependency declaration files, which are
from the issues of Pattern A and Pattern B in our empirical
study. We answer the following questions:

RQ1: How effective is EasyPip in detecting and fixing
dependency declaration issues?

RQ2: How effective and efficient is EasyPip to detect
and fix dependency declaration issues compared to other
state-of-art techniques? Whether EasyPip can generate
feasible fixing solutions with less modification to original
dependency declaration files?

A. Experiment Design

For RQ1, we run EasyPip to detect and fix dependency
declaration issues in our dataset.

For RQ2, we evaluate EasyPip in comparison to two
recently state-of-art techniques for detecting and fixing
dependency declaration problems, SMARTPIP [4] and
PyEgo [2]. We select the baselines following the criteria:
(1)the tools are available, (2) they should be align with
the goals of our research. SMARTPIP [4] is an open-
source technique to search for the dependencies’ compat-
ible versions within declared version constraints, which
translates concerned libraries’ version constraints collected
in a pre-built knowledge base into SMT expressions for

dependency resolution, resulting in superior performance
compared to PIP no matter pre or post V20.3. If SMART-
PIP fails to find compatible versions of dependencies
within all declared version constraints, it will report a
conflicting issue. We run EasyPip and SMARTPIP to
detect dependency declaration issues in the same dataset,
and compare their effectiveness and efficiency from the
following aspects:

1) How many dependency declaration issues are de-
tected?

2) How long does it take to detect the issue?

While SmartPip cannot provide fixing solutions for
dependency declaration issues, to compare the perfor-
mance of fixing dependency declaration issues, we select
PyEgo, a tool to generate feasible solutions for versions of
dependencies used in projects according to code snippets.
We run EasyPip and PyEgo to fix the same dependency
declaration issues, and compare them from the following
aspects:

1) How many dependency declaration issues can be
fixed successfully?

2) How many modifications are made to the original
dependency declaration files?

B. Answer to RQ1

In the 67 dependency declaration files with dependency
declaration issues, EasyPip successfully detects 61 of them
and reports the root causes. It takes EasyPip 7.5 seconds
on average to detect the issue in one dependency declara-
tion file. For the detected dependency declaration issues,
EasyPip generates 44 feasible fixing solutions.

We reviewed the 6 dependency declaration files that
EasyPip failed to detect issues and found that they were
due to some dependencies whose requires dist on PyPI
are missing. To verify our analysis, we manually obtain
the corresponding information of them and add it to the
library knowledge database. Then EasyPip can successfully
detect and report the correct root cause of the 6 dependency
declaration issues.

As for the fixing solutions generated by EasyPip, we
need to verify their correctness. To do this, for each fixing
solution, we installed and built them in the corresponding
projects, to check whether it can be successfully installed
and built without errors. The 44 fixing files generated
by EasyPip are successfully installed and built. For the
17 dependency declaration issues that EasyPip failed to
generate fixing solutions, we reviewed the running log of
EasyPip and found that they were due to ”timed out”.
We manually reproduce the fixing of these issues. In
the process of searching, some libraries have too many
versions which results in a too long time of searching.

TABLE II. Comparison result with PyEgo
min avg max

The number of dependency changes

PyEgo 0 +1.10 +7
EasyPip 0 0 0
PyEgo -3 -19.2 -55

EasyPip 0 0 0
The number of

dependency version changes
PyEgo 0 2.90 12

EasyPip 1 1.43 3

The version distance PyEgo 0 6.54 2
EasyPip 0.04 1.06 11

C. Answer to RQ2

Compare to SMARTPIP: In 67 dependency declara-
tion issues, SMARTPIP detects 53 of them but does not re-
port the root cause. It takes 25 seconds on average to detect
the dependency declaration issue in one file. We reviewed
and analyzed the 14 issues that SMARTPIP failed to detect
and found that they were due to incompatible versions of
Python interpreters. From the comparison results, it can be
seen that EasyPip detects dependency declaration issues
more efficiently than SMARTPIP. Furthermore, compared
with it, EasyPip has the ability to locate the root causes of
dependency declaration issues and detect the issues caused
by incompatible versions of Python interpreters.

Compare to PyEgo: PyEgo fixes 21 out of 67 depen-
dency declaration issues, and the 21 fixing dependency
declaration files are successfully installed and built in
corresponding projects. Compared with PyEgo, EasyPip
generates more feasible fixing solutions for the same
dataset of dependency declaration issues. EasyPip also
fixes all 21 issues. To fairly compare EasyPip and PyEgo,
we evaluate both tools on the 21 common issues.

To compare the modification to the original dependency
declaration file, we define three indicators:

(1) The number of dependency changes: measures the
change in the number of dependencies from the original to
the fixing file. For example, if there are two dependencies
in the original file, and the number of dependencies in
the corresponding fixing solution is three. The number of
dependency changes is 1. (2) The number of dependency
version changes: counts the number of dependencies with
version constraints that differ between the original and
fixing files. For example, if there is a dependency d that the
version constraint of d in the fixing file is different from
its version constraint in the original file, the number of
dependency version changes is added 1. (3) The version
distance: quantifies the degree of version changes from
the original to the fixing file. For example, the original
dependency declaration file is ”A==1, 1 <=C <=3” and
the fixing file is ”A==2, C==4”, the version distance
between the original file and fixing file is 2 (the version
distance of A is 1, and the version distance of C is 1).

By comparing the three indicators above of EasyPip

and PyEgo on the same dependency declaration files,
from Table II, we can conclude that the feasible fixing
solutions generated by EasyPip make less modification to
the original dependency declaration files.

V. Threats to Validity

Similar to other bug-related studies [3], [9], the col-
lected data and researchers involved, and keyword search
can include irrelevant issues. And manual analysis can
introduce bias. To reduce these threats, the researchers
carefully reviewed the relevant information and discussed
the issues until reaching an agreement. Another threat
comes from the collected knowledge. The collected depen-
dencies relationship between third-party libraries and the
system libraries may introduce false positives. To alleviate
this, we acquire the knowledge following the practice of
[2], [10]. And our dataset and analysis results are publicly
available. It can help other researchers for further analysis
and validate our study results.

VI. RELATED WORK

Dependency Inference. Techniques like DockerizeMe
[11], V2 [12] PyCRE [13], and PyEgo [2] can build an
environment specification for the code snippet as a Docker-
file. PyEgo conduct static analysis and infer dependencies
by solving constraints with Z3. The dependencies they
infer must be in their knowledge database, so there is
potential conflict among the dependency the developer
want but are not listed in the Dockerfile. Different from
them, EasyPip only takes the dependency declaration file
into consideration for the original dependency declaration
file is most close to the environment configuration that the
developer expects.

Dependency conflict Dependency conflict(DC) issues
hinder the reusability of open-source projects. Researchers
have developed various approaches to detect and an-
alyze DC issues [14]–[17]. Watchman [3] characterize
DC issues caused by PIP’s installation rule in popular
Python projects. Besides them, SMARTPIP is the closest
to our work. However, it aims to improve the dependency
constraints-solving strategy of PIP. It cannot provide useful
information to help locate the root cause of DC issues. And
they don’t take the Python interpreter into consideration
during dependency resolution. PyDFix [18] concentrated
on detecting and fixing unreproducibility in Python builds
caused by third-party library errors. They take the old and
current build logs as input and try to fix the errors by
iteratively trying the other version of the same library. They
indicate that it’s efficient to fix dependency declaration
issues by adjusting the dependency constraints. To the best

of our knowledge, there is no previous work focusing both
on detecting and fixing issues at the same time in the
dependency declaration files in the Python world.

VII. Conclusion

In this paper, we design and implement a technique,
EasyPip, to automatically detect and fix dependency dec-
laration issues. We evaluate EasyPip with existing state-
of-art techniques on both the dependency resolution task
and dependency declaration issues fixing on the bench-
mark and collected dependency declaration issues in real-
world Python projects. The results show that EasyPip
can efficiently conduct dependency resolution, and detect
and fix more dependency declaration issues with fewer
modifications to the original dependency declaration files
released by developers. In the future, we plan to further
improve the detection and fixing capability of EasyPip on
more patterns of dependency declaration issues.

VIII. ACKNOWLEDGMENT

We thank Keqin Xu, Zhiyang Zhou and Zhaolin Shi
for their contributions. This work was partially sup-
ported by National Key R&D Program of China Grant
(2017YFA0700603), National Natural Science Foundation
of China (61972386).

References

[1] issue#22 of Im2Vec. (2022). [Online]. Available: https://github.
com/preddy5/Im2Vec/issues/22

[2] H. Ye, W. Chen, W. Dou, G. Wu, and J. Wei, “Knowledge-
based environment dependency inference for python programs,”
pp. 1245–1256, 2022. [Online]. Available: https://doi.org/10.1145/
3510003.3510127

[3] Y. Wang, M. Wen, Y. Liu, Y. Wang, Z. Li, C. Wang, H. Yu, S.-C.
Cheung, C. Xu, and Z. Zhu, “Watchman: Monitoring dependency
conflicts for python library ecosystem,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineer-
ing, 2020, pp. 125–135.

[4] C. Wang, R. Wu, H. Song, J. Shu, and G. Li, “smartpip: A
smart approach to resolving python dependency conflict issues,” in
37th IEEE/ACM International Conference on Automated Software
Engineering, 2022, pp. 1–12.

[5] S. Lewis, “Qualitative inquiry and research design: Choosing among
five approaches,” Health promotion practice, vol. 16, no. 4, pp. 473–
475, 2015.

[6] J. Hu, L. Wei, Y. Liu, S.-C. Cheung, and H. Huang, “A tale of
two cities: How webview induces bugs to android applications,” in
Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 702–713.

[7] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting
performance bugs for smartphone applications,” in Proceedings of
the 36th international conference on software engineering, 2014,
pp. 1013–1024.

[8] L. Wei, Y. Liu, and S.-C. Cheung, “Taming android fragmentation:
Characterizing and detecting compatibility issues for android apps,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, 2016, pp. 226–237.

[9] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting
performance bugs for smartphone applications.” New York, NY,
USA: Association for Computing Machinery, 2014.

[10] S. Mukherjee, A. Almanza, and C. Rubio-González, “Fixing de-
pendency errors for python build reproducibility.” New York, NY,
USA: Association for Computing Machinery, 2021.

[11] E. Horton and C. Parnin, “Dockerizeme: automatic inference of
environment dependencies for python code snippets,” in Proceed-
ings of the 41st International Conference on Software Engineering,
ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, J. M. Atlee,
T. Bultan, and J. Whittle, Eds. IEEE / ACM, 2019, pp. 328–338.

[12] ——, “V2: Fast detection of configuration drift in python,” in 2019
34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2019, pp. 477–488.

[13] W. Cheng, X. Zhu, and W. Hu, “Conflict-aware inference of python
compatible runtime environments with domain knowledge graph,”
in Proceedings of the 44th International Conference on Software
Engineering, 2022, pp. 451–461.

[14] Y. Wang, M. Wen, Z. Liu, R. Wu, R. Wang, B. Yang, H. Yu,
Z. Zhu, and S.-C. Cheung, “Do the dependency conflicts in
my project matter?” in Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2018. New York, NY, USA: Association for
Computing Machinery, 2018, p. 319–330. [Online]. Available:
https://doi.org/10.1145/3236024.3236056

[15] Y. Wang, M. Wen, R. Wu, Z. Liu, S. H. Tan, Z. Zhu, H. Yu, and S. C.
Cheung, “Could i have a stack trace to examine the dependency
conflict issue?” ICSE, pp. 572–583, 2019.

[16] J. Patra, P. N. Dixit, and M. Pradel, “Conflictjs: finding and
understanding conflicts between javascript libraries,” pp. 741–751,
2018.

[17] Y. Wang, R. Wu, C. Wang, M. Wen, Y. Liu, S. C. Cheung, H. Yu,
C. Xu, and Z. Zhu, “Will dependency conflicts affect my program’s
semantics?” IEEE Transactions on Software Engineering, vol. 48,
pp. 2295–2316, 2022.

[18] S. Mukherjee, A. Almanza, and C. Rubio-González, “Fixing depen-
dency errors for python build reproducibility,” in ISSTA, 2021, pp.
439–451.

https://github.com/preddy5/Im2Vec/issues/22
https://github.com/preddy5/Im2Vec/issues/22
https://doi.org/10.1145/3510003.3510127
https://doi.org/10.1145/3510003.3510127
https://doi.org/10.1145/3236024.3236056

	Introduction
	EMPIRICAL STUDY
	Data Collection
	Manifestation Patterns

	EasyPip
	EVALUATION
	Experiment Design
	Answer to RQ1
	Answer to RQ2

	Threats to Validity
	RELATED WORK
	Conclusion
	ACKNOWLEDGMENT
	References

