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Abstract—Software Defect Prediction (SDP) aims to identify
defect-prone modules in advance to ensure software quality. In
SDP research based on deep learning, the mainstream approach
is to extract deep semantic features from an Abstract Syntax
Tree (AST). Theoretically, the AST as a bi-dimensional structure
encloses information at the node level, fragment level, and entire
tree level. However, most existing research serializes the whole
AST without considering the expression at different granularities.
To address this limitation, we introduce a positional hierarchical
attention network (PHAN) that acquires semantic features by
simultaneously considering contexts between nodes and paths.
Specifically, our model incorporates attention mechanisms to cap-
ture information of varying importance at separate hierarchies,
and relative position representations to distinguish the contribu-
tions of different paths. Experimental results demonstrate that
PHAN significantly outperforms existing baseline methods.
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hierarchical attention; deep semantic feature

I. INTRODUCTION

As the scale and complexity of software continue to boost,
software defects pose greater challenges to software quality.
SDP is the technique that leverages historical data to iden-
tify defect-prone software modules in advance, enabling the
enhancement of software quality and testing efficiency.

Early research in SDP using traditional hand-crafted fea-
tures is limited to capturing semantic information. With the
emergence of deep learning, some studies applied natural
language processing methods to encode codes as general texts
[1]. However, symbols like arithmetic operators may involve
useless ambiguous information. AST as a representation of the
code’s syntax structure, inherently encapsulating the syntax
structure and semantic information, has shown its promising
performance in numerous code-related tasks [2]. In SDP tasks,
AST is commonly presented through traversal [3], tree-based
networks [4], and graph-based networks [5].

However, previous research methods on semantic encoding
in SDP still have limitations. Firstly, whether AST is flattened
as a text sequence or maintains its original structure, they
encode the AST as a whole, ignoring the information at a
moderate granularity level. Secondly, although some studies
in SDP have taken a hierarchical structure into account, such
as decomposing code into tokens and lines levels [1], and
splitting AST into nodes and subtrees levels [6], there is a
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lack of encoding at the path granularity in SDP. Furthermore,
existing AST presentation by mining paths [7] does not
consider the positional information between paths, while the
positional difference may indicate the existence of defects.

In this paper, we propose a positional hierarchical attention
network for SDP. The main contributions are as follows:

1) Design a method for learning AST representation based
on hierarchical path mining and tree reconstruction.

2) Introduce relative position encoding at the path level to
alleviate the lack of long-distance path dependencies in SDP.

II. RELATED WORKS

A. Code Representations in Defect Prediction

Majd et al. represented code in the forms of tokens, lines,
and statements, which focus on the code’s high level [8]. Wang
et al. transformed the source code into AST and extracted
vectors through pre-order traversal of the AST [9]. Phan et al.
argued that the Control Flow Graph can better represent code
information in SDP [10]. Tian et al. extracted code slices and
converted them into System Dependency Graphs for control
flow and data flow analysis [11]. Chen et al. transformed each
character into a pixel, visualizing the programs as images [12].

B. Deep Learning Approaches for Defect Prediction

Wang et al. suggested using Deep Belief Networks (DBNs)
and source code changes to capture semantic feature repre-
sentations [9]. Then, Li et al. combined semantic features
extracted by Convolutional Neural Networks (CNN) with
hand-crafted features, which improved prediction performance
by exploiting their superior ability to mine local features
[13]. Dam et al. leveraged a tree-structured Long Short-term
Memory (LSTM) network to automatically mine long context
dependency in code [4]. Uddin et al. employed Bi-LSTM to
learn contextual information from the token vectors embedded
through the pre-trained model BERT [14].

III. METHOD

In this section, the framework of the proposed model is
illustrated in Fig. 1. During the preprocessing stage, JAVA files
are transformed into ASTs, simultaneously tracking the paths
of trees. In the encoding stage, semantic features are extracted
hierarchically at both the node and path levels. Lastly, the
resulting AST encoding is subsequently fed into a classifier.
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Fig. 1. The framework of PHAN.
A. Source Code File Preprocessing

Prior to encoding, toolkit javalang1 parses the Java code
into an AST. Then, all root-to-leaf paths are extracted by
a traversal, and nodes are initialized as vectors through an
embedding layer:

nvit = Embedding(nit), t ∈ [1, T ], i ∈ [1, L], (1)

where nvit denotes an initial vector of the t-th node in the
i-th path, T is the number of nodes in the longest path, L is
the number of paths in the biggest AST.

B. Node Level Encoder

At the node level, the additive attention [15] is adopted.
Node addictive attention. Given the set of preliminary vec-

tor representation N = [nvi1, nvi2, ..., nviT ], the annotations
of nodes are firstly obtained through a bidirectional GRU (Bi-
GRU) [16] layer. We get the node annotation hi,t incorporating
node contextual information by concatenating the output of
forward direction

−→
hi,t and the backward direction

←−
hi,t:

−→
hi,t =

−−−→
GRU(nvi,t), t ∈ [1, T ], (2)

←−
hi,t =

←−−−
GRU(nvi,t), t ∈ [T, 1], (3)

hi,t = [
−→
hi,t,
←−
hi,t]. (4)

Bi-GRU has the potential to learn positional information,
making additional position information unnecessary. Subse-
quently, the node annotation hi,t is directly fed into a single-
layer perceptron to obtain its nonlinear representation ui,t:

ui,t = tanh (Wnhi,t + bn) . (5)

Then the similarity of a node-level contextual vector un with
each hidden representation ui,t is computed as importance
metrics and normalized through a softmax function to obtain
an importance weight αN

i,t:

αN
i,t = softmax

(
ui,t

Tun

)
, (6)

where un is initialed as a trainable parameter.

1https://github.com/c2nes/javalang

Path encoding. All the critical node information is ag-
gregated by taking a weighted sum of the hidden states and
attention weights, resulting in the entire path encoding pvi:

pvi =

T∑
t

αN
i,thi,t. (7)

C. Path Level Encoder

Hierarchical Attention Network (HAN) [17] leverages a
shared RNN encoder and attention mechanism for word-level
and sentence-level. However, in SDP, the number of paths L
is significantly larger than the number of nodes T , resulting in
a long sequence where Bi-GRU is limited to capturing long-
range dependencies due to the gradual decay. Thus we propose
a positional self-attention mechanism at the path level.

Path positional self-attention. Given the set of path vector
P = [pv1, ..., pvL], self-attention[4] can be defined as:

SelfAtt(Q,K, V ) = V softmax

(
KTQ√

d

)
K = WKP,Q = WQP, V = WV P,

(8)

where d denotes the dimension of each path vector pv, WK ,
WQ and WV are parameter matrices.

Self-attention does not consider the positions which often
carry semantic meaning, so we introduce relative position
embedding [18]. The self-attention score between the i-th and
j-th path is measured by the scaled dot product of qi ∈ Q
and kj ∈ K. In absolute positional encoding, the positional
embedding pos is added straightforwardly to the input vector,
then the self-attention weight αP

i,j is calculated as:

αP
i,j = softmax

(
kj

Tqi√
d

)

= softmax

(
(WKpvj+WKposj)

T
(WQpvi+WQposi)√
d

)
.

(9)
In relative positional encoding, the position of each path

is not explicitly represented, instead, the relative distance
between the current position and the position being attended to
is taken into account. We eliminate the WQposi and replace



TABLE I. STATISTICAL OVERVIEW OF DATASETS

Project Versions Files Defective(%)
Ant 1.5, 1.6 293, 351 10.9, 26.2
Jedit 4.0, 4.1 306, 312 24.5, 25.3
Log4j 1.0, 1.1 135, 109 25.2, 33.9

Lucene 2.2, 2.4 247, 340 58.3, 59.7
Poi 2.5.1, 3.0 385, 442 64.4, 63.6

Synapse 1.1, 1.2 222, 256 27.0, 33.6
Velocity 1.5, 1.6.1 214, 229 66.4, 34.1
Xalan 2.5, 2.6 803, 885 48.3, 46.4
Xerces 1.3, 1.4.4 453, 588 15.2, 74.3

the WKposj with a binary positional vector RK
i,j , then the

attention weights after transformation is as follows:

αP
i,j = softmax

(
(WKpvj +RK

i,j)
T
WQpvi√

d

)
. (10)

Analogously, the vj ∈ V is generated by adding positional
encoding to the input vectors. We also substitute the WV posj
with a binary position vector RV

i,j and weighted by multipli-
cation with the attention score αP

i,j to obtain the output oi:

oi =
∑
j

αP
i,jvj =

∑
j

αP
i,j(WV pvj +WV posj)

=
∑
j

αP
i,j(WV pvj +RV

i,j).
(11)

AST encoding. All paths are aggregated by taking a
weighted sum of the outputs O = [o1, ..., oL], resulting in
the AST encoding astv:

astv = OWast =

L∑
i

βioi , Wast = [β1, ...βL]
T, (12)

where Wast ∈ RL×1 denotes a trainable parameter matrix.

D. Software Defect Prediction via PHAN

This AST vector astv is utilized as the semantic feature and
fed into a Logistic Regression (LR) for defect prediction.

IV. EXPERIMENTAL SETTING

A. Experimental Datasets

The dataset employed is the classic SDP repository
PROMISE [19], detailed information is presented in Table
I. This paper chooses the old version source code used for
training and the new one for testing.

B. Evaluation Metrics

Higher F-measure values indicate more robustness. MCC
provides a better evaluation when dealing with imbalanced
distributions. AUC represented as an area under the curve can
avoid experimental errors. Specifically,

Precision =
tp

tp+ fp
, Recall =

tp

tp+ fn
, (13)

F −measure =
2 ∗ Precision ∗Recall

Precision+Recall
, (14)

MCC =
tp ∗ tn− fp ∗ fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
, (15)

where tp, fp, tn, and fn refer to True Positive, False Positive,
True Negative, and False Negative, respectively.

C. Comparison Methods

PHAN is compared with the following methods:
• LR: A traditional classification method utilized to predict

defect-proneness based on hand-craft defect features.
• DBN-WP [9]: A standard DBN model extracting seman-

tic features from AST for within-project defect prediction.
• DP-CNN [13]: An enhanced CNN method based on hand-

craft features and deep semantic features for SDP.
• DP-LSTM [3]: A Bi-LSTM Model extracting semantic

representations for SDP.
• HAN [17]: Original hierarchical attention network at

node and path level for SDP.

V. EXPERIMENTAL RESULTS

This section aims to show comparisons of the proposed
method with baselines and analyze the experimental results.

In this study, we investigate the effectiveness of the PHAN
compared to a traditional model LR based on hand-crafted
features and baseline models based on deep learning covering
DBN, CNN, and LSTM. Table II presents that the proposed
method outperforms other baseline models in 6 out of 9 F-
measure values, 8 out of 9 AUC values, and 7 out of 9
MCC values. Experimental results indicate that PHAN has
achieved superior performance compared with a traditional
method and several advanced AST-based methods in multiple
perspectives. Furthermore, we compare the performance of the
proposed PHAN and HAN on SDP tasks. Table II shows that
PHAN exceeds HAN across 7 projects. While HAN achieves
comparable performance to PHAN on most projects, PHAN
performs particularly well on the Xerces project, compensating
for the poor performance of HAN on this project.

The line chart in Fig. 2 presents a visual comparison of
the proposed method and the baseline models, illustrating that
PHAN outperforms other models in most cases, particularly
in the Ant and Xerces projects. As revealed by the average
defect rate of each project shown in Table I, the Ant and
Xerces projects of the old version have severe data imbalance
problems, posing challenges for learning valuable information
from the training set. Notably, all deep learning models exhibit
significantly worse performance on the two projects, while
only the traditional machine learning model LR achieves
similar performance to PHAN. These results highlight that
representing ASTs at a finer-grained level and distinguishing
the contribution of different paths’ positions can learn more
effectively from imbalanced data distributions.

VI. CONCLUSION

This study presents PHAN, a positional hierarchical at-
tention network model designed to extract code semantic
features from ASTs. The PHAN encodes at a finer-grained
path level, taking into account the contributions of different
nodes and paths to SDP tasks. This approach is empirically
compared with traditional methods, state-of-the-art deep learn-
ing methods, and original HAN across nine Java projects. Our
findings demonstrate that the proposed model achieves the best
performance across F-measure, AUC, and MCC values.



TABLE II. F-MEASURE, AUC, MCC COMPARISON OF DIFFERENT MODELS

Method Metric Project AverageAnt Jedit Log4j Lucene Poi Synapse Velocity Xalan Xerces

LR
F-measure 0.553 0.511 0.667 0.619 0.729 0.512 0.544 0.524 0.519 0.575

AUC 0.702 0.693 0.746 0.584 0.681 0.612 0.636 0.565 0.628 0.650
MCC 0.361 0.329 0.474 0.163 0.348 0.212 0.260 0.130 0.272 0.283

DBN-WP
F-measure 0.416 0.537 0.570 0.413 0.570 0.465 0.541 0.482 0.538 0.504

AUC 0.625 0.663 0.682 0.570 0.615 0.582 0.610 0.560 0.577 0.609
MCC 0.225 0.163 0.224 0.222 0.182 0.186 0.172 0.185 0.163 0.191

DP-CNN
F-measure 0.404 0.546 0.538 0.541 0.438 0.520 0.560 0.543 0.547 0.515

AUC 0.600 0.632 0.697 0.605 0.609 0.602 0.645 0.607 0.498 0.611
MCC 0.207 0.169 0.147 0.173 0.152 0.158 0.240 0.119 0.168 0.170

DP-LSTM
F-measure 0.443 0.518 0.566 0.619 0.719 0.246 0.505 0.610 0.550 0.531

AUC 0.527 0.681 0.644 0.602 0.516 0.603 0.619 0.639 0.571 0.600
MCC 0.227 0.371 0.328 0.268 0.235 0.213 0.352 0.259 0.234 0.276

HAN
F-measure 0.527 0.553 0.632 0.652 0.713 0.547 0.596 0.595 0.474 0.588

AUC 0.679 0.724 0.716 0.628 0.684 0.648 0.680 0.641 0.604 0.667
MCC 0.325 0.395 0.416 0.250 0.354 0.285 0.342 0.286 0.228 0.320

PHAN
F-measure 0.568 0.561 0.645 0.632 0.703 0.545 0.603 0.589 0.674 0.613

AUC 0.715 0.736 0.727 0.627 0.698 0.639 0.690 0.644 0.667 0.682
MCC 0.385 0.405 0.436 0.249 0.381 0.264 0.363 0.295 0.322 0.344
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Fig. 2. The results of diverse metrics among baseline models and PHAN.
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