
A Software Defect Prediction Method based on
Multi-type Features and Feature Selection

Jiaxin Liua, Hao Xua, Lu Lua,c,∗, Quanyi Zoub,c, Zhanyu Yanga
a School of Computer Science and Engineering, South China University of Technology, Guangzhou, China

b School of Journalism and Communication, South China University of Technology, Guangzhou, China
c Pazhou Laboratory, Guangzhou, China

∗ Corresponding author email: lul@scut.edu.cn

Abstract—Numerous software defect prediction methods utilize
semantic information and software metrics as code features,
neglecting the structural knowledge inherent in the source code.
Other studies improve feature completeness by simply combining
different types of defect indicators, which causes information
redundancy. To address these challenges, this paper proposes a
novel software defect prediction method that incorporates multi-
type features and performs feature selection. Firstly, semantic and
structural features are extracted by Text Convolutional Neural
Network (TextCNN) and Graph Isomorphism Network (GIN)
from Abstract Syntax Tree (AST) and Program Dependency
Graph (PDG), respectively, which are combined with software
metrics to build a multi-type feature set. Then, Recursive Feature
Elimination with Cross-Validation (RFECV) integrating a novel
feature importance measure is utilized to remove redundant
features and generate a feature subset. Finally, a prediction model
for classification is established based on the feature subset. The
experiments validated the effectiveness of multi-type features and
the improved RFECV. Overall our proposed method outperforms
state-of-the-art techniques on nine Java open-source projects.

Keywords—software defect prediction; feature extraction; fea-
ture selection; recursive feature elimination

I. INTRODUCTION

To enhance software quality and reduce testing costs, soft-
ware defect prediction (SDP) technology has emerged as a
research hotspot in software engineering and software reliabil-
ity assurance in recent years. The software defect prediction
model is undertaken to identify software classes or modules
that are more likely to fail and enable the minimization of
maintenance costs before product deployment. Furthermore,
this technique can provide a reference for testers to help them
quickly grasp the overall quality of the software, and allocate
test resources more reasonably.

Current SDP methods [1–3], extracting features from source
code, tend to emphasize software metrics and semantic fea-
tures, resulting in the lack of comprehensive information, espe-
cially structural information. Some studies [4] have attempted
to improve software defect prediction by expanding the feature
set and extracting features from various code abstract struc-
tures. However, the increase in the number of features does not
necessarily lead to better prediction performance. Expanding
the feature set may result in the inclusion of redundant infor-
mation, which negatively impacts the prediction performance.

DOI reference number: 10.18293/SEKE23-118

To solve these problems, this paper proposes a novel
software defect prediction model named TGR (TextCNN-
GIN-RFECV). TGR utilizes TextCNN [5] and GIN [6] to
extract semantic and structural features from source code,
respectively. The comprehensive feature set is composed of
the extracted features and software metrics. Then, we propose
the improved RFECV [7] to eliminate redundant features and
generate a feature subset. Finally, the selected feature subset
is fed into a classifier for training and prediction. In summary,
this paper makes the following contributions:

• In order to enrich the feature information, we introduce
a novel multi-type feature representation that combines
semantic, structural, and software metric features.

• We modify the feature importance measure in RFECV
by considering the real category, correlations with other
features, and the classifier coefficient. And we utilize
the improved RFECV to generate an appropriate feature
subset and reduce redundant information.

• We reveal the impact of multi-type features and the
improved RFECV on the overall performance of TGR
by conducting experiments on nine java open-source
projects.

II. RELATED WORK

Software metrics are essential tools for assessing the quality
and performance of software products and development pro-
cesses. These metrics can significantly influence the accuracy
of SDP models, including the widely used lines of code (LOC)
and C&K metrics [8]. In the early stage of research, some
studies use software metrics and traditional machine learning
algorithms to predict and estimate whether software module
contains defects, such as Logistic regression (LR) and support
vector machine (SVM) [9].

Abstract Syntax Tree (AST) is widely used in software
defect prediction research. Deep learning methods are often
used to extract semantic features from ASTs, such as Con-
volutional Neural Networks (CNNs) [1], Long Short-Term
Memory (LSTM) [2] networks, and Deep Belief Networks
(DBNs) [3]. In addition, Code Property Graph (CPG) [10],
Class Dependency Network (CDN) [4], and other code repre-
sentations are also employed for structural feature extraction.
Uddin et al. [11] use the Bidirectional Encoder Representations

from Transformers (BERT) pre-training model to obtain the
vector representation of each word in the source code, which
is utilized to train bidirectional LSTM for SDP.

There are many studies trying to ensure the quality of
feature sets through feature selection. Zhu et al. [12] com-
bine the whale algorithm and the complementary simulated
annealing algorithm to select features. Saifan et al. [13] assess
the effectiveness of feature selection techniques, including
Principal Component Analysis, Pearson’s correlation, Greedy
Stepwise Forward selection, and Information Gain.

III. METHOD

In this section, the proposed method TGR is described in
detail. The entire framework of TGR is given in Fig. 1, which
is divided into two stages: the feature extraction stage and the
feature selection stage.

A. Feature extraction

1) Parsing source code: ASTs are facilitated by javalang1

from source code files. The nodes and granularity specified by
Wang et al. [3] is adopted to form ASTs. Each AST is traversed
in pre-order to obtain a node sequence. The node sequence
preserves the original semantic order of the code by pre-order
traversal and is maintained at an appropriate length, avoiding
the redundancy of the source code. These sequences incor-
porate the semantic information of the corresponding source
code file in a more retrenched representation. Furthermore, a
dictionary is established based on the node set to vectorize the
node sequence, enabling TextCNN to process and analyze.

AST is adept at capturing semantic information but falls
short in capturing structural information. Compared with se-
mantic information, structural information has more complex
representations and greater depths of features. In order to
explore the abundant structural information contained in the
source code, PDG is introduced into the prediction method. As
an extension of Control Flow Graphs (CFGs), PDGs capture
not only control dependencies but also data dependencies
among the program statements. Their nodes represent a pro-
gram statement, while their edges reflect the data transfer and
program execution flow between nodes, which can more com-
prehensively exhibit the structural information of the program.
This stage utilizes SourceDG [14] to generate PDGs from
source code, as the source of structural features.

2) Extracting features: After obtaining the AST node
vector and PDG to represent the semantic and structural
information of the code, it is crucial to choose appropriate
feature extraction models. Given the distinct feature depth and
representation forms of semantic and structural information,
they should be processed by different models. Thus, TextCNN
and GIN are chosen to individually process node vectors and
PDGs, and extract the semantic and structural features.

The network structure of TextCNN comprises a word em-
bedding layer, a convolutional layer, and a pooling layer. The
convolution layer employs three different sizes of convolution

1https://github.com/c2nes/javalang

kernels to help the node comprehend its context in the code at
different scales. Every kernel transforms the input vector to a
feature map as the input of the pooling layer, and the outputs of
the pooling layer are then connected. Subsequently, two fully
connected layers with different output sizes are employed. The
first fully connected layer generates predictions for calculating
loss and performing backpropagation. When the training is
completed, the output of the second fully connected layer is
taken as the semantic feature of TGR.

Noted that, unlike LSTM and other neural network models,
the output length of the TextCNN used in TGR is solely
determined by the model parameters, and is independent of
the length of the node vector. Each element of the output
semantic feature is derived from the same network structure
and represents the entire input sequence, which facilitates the
feature selection stage of TGR.

GIN, a variant of Graph Neural Network (GNN), enhances
performance on graph classification and graph embedding
tasks. GIN utilizes two main operations, namely graph con-
volution and graph readout, to update node features and gen-
erate graph-level representations, respectively. During graph
convolution, messages are passed on the edges of a PDG and
update the node features to hidden representations. The hidden
representations are generated through multiple message passes
and subsequently passed to the graph readout part. During the
graph readout, we choose summation to aggregate and summa-
rize node features to generate a graph-level representation. The
resultant graph-level representations are then passed into fully
connected layers, and the outputs are summed as the structural
features of TGR. Besides, the structural feature is used as input
to another fully connected layer to generate predictions for
calculating losses and performing backpropagate.

Since software metrics are crucial features in defect predic-
tion models. The third type of feature in TGR, metric features,
are concatenated with semantic and structural features to create
a possibly abundant and comprehensive feature set after the
three types of features are z-score standardized separately.
The utilization of multi-type features enables the classifier to
predict with the more comprehensive feature set.

B. Feature selection

Since a large number of features are extracted in the
feature extraction stage, potentially redundant and irrelevant
information is introduced into the prediction model. To address
the redundancy, a feature selection stage is incorporated to
acquire a more beneficial feature subset.

RFECV selects features considering the classifier perfor-
mance. The Recursive Feature Elimination (RFE) algorithm
iteratively trains a classifier and eliminates several features
with low classifier coefficients until reaching the preset mini-
mum number of features. RFECV uses RFE to get the feature
ranking, then selects feature subsets of different sizes based
on the ranking to perform cross-validate (CV). The CV can
automatically determine the size of the feature subset, and
avoid the adverse effects of the unreasonable setting of the
feature subset size as a hyperparameter. Finally, the subset

source

classifier
AST

PDG

Conv 4*W

Conv 5*W

…

…

…

300 kernels

pre-order traversal

TextCNN

GIN

sem
an

tic featu
res

stru
ctu

ral featu
res

multi -type feature set

readout

…

…
Conv 5*W

Conv 6*W

Conv 6*W

…

Conv 4*W

MethodDeclaration

LocalVariable-

Declaration

ClassDeclaration

VariableDeclaration

i LiteralExpression

ReturnStatement

i

Class Demo

Entry func

Assign j=1

Return return j

Formal -out
classifier

attribute

matrix

co
ef +

feature importance

ranking

RFECV

software metrics

feature extraction

feature

selection

feature

subset

5-fold CV

m
etric featu

res

Figure 1. The entire framework of TGR method

with the highest average score is chosen as the optimal feature
subset.

The feature eliminated in each recursion of RFE is deter-
mined by the coefficients of the classifier, in other words,
the feature importance of RFE is measured by the classifier
coefficients. These coefficients indicate the feature’s impact
on the classification results output by the classifier. However,
the output of the classifier is not entirely correct, resulting in
wrongly assigning importance to features that are not related
to the real category. Moreover, feature importance is not
only reflected in the coefficients, but also in factors such
as correlations with other features, and correlations with real
categories. Therefore, the feature importance measure in RFE
is replaced by our defined comprehensive feature importance
measure, which enables RFECV to select a feature subset more
comprehensive, informative, and effective for classification.

In this stage, two coefficients are proposed to calculate the
comprehensive feature importance with the classifier coeffi-
cients: category correlation coefficients and feature correlation
coefficients. The category correlation coefficient complements
the influence of the real category on feature importance. The
Normalized Mutual Information (NMI) is used to measure
the correlation between a feature and the real category vector
after discretizing the feature. Suppose the number of features
is N, xi represents the i-th feature in the feature set, and y
represents the real category vector. The formula for calculating
the category correlation coefficient is given as:

cci =
2 · (H (xi)−H (xi | y))

H (xi) +H(y)
, (1)

where H(xi) is the entropy of xi, H(xi | y) is the joint
entropy of xi and y, and cci is the category correlation
coefficient of xi.

Feature selection often results in the removal of numerous
features, causing the loss of valuable information contained in
these features. With a limited number of remaining features, it
is expected to select features that contain more comprehensive
information. In this stage, features are categorized into three
classes according to their type, namely, semantic features,

structural features, and metric features. The feature correlation
coefficient is calculated by the average of the correlations of a
feature with all other features in the same class, which quan-
tifies the amount of comprehensive information contained in
the feature within its class. The correlation between features is
measured by Pearson’s coefficient. The formula for calculating
the feature correlation coefficient is as follows:

fci =
∑Ri

j=Li,j ̸=i r(xi,xj)

Ri−Li
,

r(xi, xj) =

∣∣∣∣ ∑N−1
k=0 (xi,k−x̄i)(xj,k−x̄j)√∑N−1

k=0 (xi,k−x̄i)
2
√∑N−1

k=0 (xj,k−x̄j)
2

∣∣∣∣ , (2)

where Li and Ri are the index of the start and end of the
feature class to which xi belongs in the feature set, r(xi, xj)
is the absolute value of Pearson’s coefficient of xi and xj , and
fci is the feature correlation coefficient of xi.

As shown in (3), the formula for the overall feature im-
portance measure is a weighted sum of the classifier coeffi-
cient, category correlation coefficient, and feature correlation
coefficient. The weights are denoted as w1, w2, and w3. The
classifier coefficient of xi is coef i.

scorei = w1 · |coef i|+ w2 · cci + w3 · fci (3)

scorei in (3) represents the comprehensive feature impor-
tance of xi, which is calculated based on the three factors.
The higher the scorei, the more important xi is. The abso-
lute value of classifier coefficient |coef i| in (3) reflects the
importance of xi to the classifier output, while the category
correlation coefficient cci represents the correlation between xi

and the real categories, and the feature correlation coefficient
fci evaluates the comprehensiveness of xi in terms of the
information it carries. By incorporating these factors, our
proposed comprehensive feature importance measure provides
more comprehensive and instrumental information for RFECV,
which can ultimately enhance the classification performance
of the classifier.

Finally, the feature subset is fed into the same type of
classifier as used in RFECV to train and predict source files
are defective or not. The classifier used in TGR is LR.

IV. EXPERIMENT SETUP

A. Datasets

The experiments in this paper are constructed on nine Java
open-source projects from the PROMISE repository [15], as
presented in Table I. The older version of projects is utilized
as the training set, and the newer version is the test set.

TABLE I. DATASET CHARACTERISTICS

Project Releases Avg. Files Avg. Defect rate(%)

ant 1.5 1.6 322 24.3
camel 1.4 1.6 919 18.1
jedit 4.0 4.1 309 25.0
log4j 1.0 1.1 244 62.0

lucene 2.0 2.2 221 53.2
poi 2.5.1 3.0 827 64.0

synapse 1.0 1.2 202 23.0
velocity 1.5 1.6.1 443 49.7

xalan 2.5 2.6 844 47.3

B. Evaluation

In order to comprehensively evaluate the experimental re-
sults, Area Under Curve (AUC) and Matthews correlation
coefficient (MCC) are adopted in this paper. AUC is defined
as the area enclosed by the receiver operating characteristic
(ROC) curve and the coordinate axis. The horizontal axis of
the ROC curve is the False Positive Rate (FPR), and the
vertical axis is the True Positive Rate (TPR). The FPR and
TPR can be calculated by (4). MCC is an evaluation indicator
comprehensively considering the four basic evaluation indi-
cators in the confusion matrix: TP, TN, FP, and FN, and is
calculated by (5). {

FPR = FP
FP+TN

TPR = TP
TP+FN

(4)

MCC=
TP ∗ TN − FP ∗ FN√

(TP+FP) (TP+FN) (TN+FP) (TN+FN)
(5)

C. Parameters Settings

The PROMISE repository not only provides the number of
defects of source files but also provides 20 software metrics
used in TGR, including Weighted Methods per Class (WMC),
LOC, etc. The dimensionalities of semantic features and
structural features are set to 50 and 30. The kernel sizes of
TextCNN are 4, 5, and 6, and the number of every type of
kernel is 100. The three weights of (3), w1, w2, and w3, are
set to 0.6, 0.2, and 0.2, respectively. The RFECV utilizes 5-
fold cross-validation, removes 1 feature at each iteration, uses
F-measure as the scorer of CV, and selects 20 features at least.
The batch size and epoch of the experiment are respectively
set to 32 and 100, and the experiments are repeated 10 times.

D. Experimental Design

In order to analyze and evaluate the proposed TGR method,
three Research Questions (RQ) are posed:
RQ1: Dose the proposed TGR method perform better than the
baseline methods?

RQ2: How do the multi-type features, comprehensive feature
importance measure, and the improved RFECV perform in
TGR?
RQ3: Can the proposed method be effective for the prediction
performance improvement of other SDP methods?

To answer RQ1, four baseline methods are set to compare
with TGR.

1) LR: A traditional method using software metrics as
features of LR classifier.

2) SVM: A traditional method using software metrics as
features of SVM classifier.

3) DP-CNN: A deep learning method using a standard CNN
to extract abstract semantic features from the pre-order
sequences of ASTs, and using LR as a classifier with the
extracted features and software metrics as features [1].

4) BiLSTM: A deep learning method using a Bi-directional
LSTM automatically learns the semantic and contextual
information from the program’s AST, choosing LR as the
final classifier [2].

The ablation experiment is to explore the influence of a part
of a model by deleting this part and testing the performance of
the model. Therefore, in order to answer RQ2, the following
methods are set up:

1) TextCNN: A method using TextCNN to extract semantic
features from the pre-order sequence of ASTs, which has
the same TextCNN as the one in the TGR method, and
using LR as a classifier.

2) TG: A method without feature selection, using the same
multi-type features, feature extraction stage, and classifier
as in TGR.

3) TG+: A method using the same feature extraction stage
and classifier as in TGR, and using standard RFECV (a
RFECV using classifier coefficients as feature importance
measure) to select features. The parameters of RFECV
are consistent with those in TGR.

In order to compare the above methods accurately and
fairly, the features used in these methods are limited to the
features obtained from the same experiment. In detail, after
feature extraction in each experiment, the extracted features
are input into different classifiers after different processing,
corresponding to TextCNN, TG, TG+, and TGR methods.

Finally, to verify the effect of the multi-type features and
feature selection proposed in this paper on other classifiers,
SVM classifiers are employed to replace all the LR classifiers
in TGR, named TGR-SVM. This experiment serves to answer
RQ3.

Besides, due to the class imbalance of the dataset, oversam-
pling is used in all methods mentioned in this paper at the data
preprocessing stage.

V. EXPERIMENTAL RESULTS

RQ1: Dose the proposed TGR method perform better than the
baseline methods?

Table II shows the average AUC values and MCC values
of TGR and other baseline methods on each project. TGR’s

TABLE II. AUC AND MCC FOR TGR VERSUS BASELINE METHOD

Project LR SVM DP-CNN BiLSTM TGR

AUC MCC AUC MCC AUC MCC AUC MCC AUC MCC
ant 0.719 0.366 0.715 0.359 0.591 0.160 0.534 0.109 0.727 0.405

camel 0.597 0.157 0.614 0.193 0.568 0.111 0.637 0.301 0.642 0.236
jedit 0.712 0.369 0.726 0.406 0.630 0.220 0.663 0.317 0.727 0.385
log4j 0.760 0.501 0.728 0.474 0.685 0.356 0.632 0.301 0.789 0.558

lucene 0.617 0.232 0.597 0.193 0.602 0.202 0.598 0.193 0.632 0.259
poi 0.706 0.397 0.664 0.319 0.636 0.260 0.604 0.207 0.658 0.303

velocity 0.625 0.238 0.575 0.144 0.627 0.240 0.599 0.194 0.671 0.328
xalan 0.541 0.081 0.644 0.287 0.617 0.234 0.630 0.261 0.664 0.327

synapse 0.638 0.263 0.638 0.278 0.567 0.129 0.554 0.184 0.690 0.377
Average 0.657 0.289 0.655 0.295 0.613 0.212 0.606 0.230 0.689 0.353

TABLE III. AUC AND MCC FOR TEXTCNN, TG, TG+

Project TextCNN TG TG+

AUC MCC AUC MCC AUC MCC
ant 0.713 0.378 0.708 0.370 0.712 0.378

camel 0.635 0.223 0.642 0.236 0.640 0.233
jedit 0.709 0.353 0.717 0.368 0.720 0.372
log4j 0.761 0.504 0.771 0.526 0.776 0.536

lucene 0.618 0.231 0.626 0.247 0.615 0.227
poi 0.644 0.275 0.649 0.287 0.647 0.283

velocity 0.648 0.284 0.663 0.313 0.657 0.302
xalan 0.642 0.284 0.661 0.321 0.656 0.312

synapse 0.672 0.341 0.675 0.349 0.678 0.352
Average 0.671 0.319 0.679 0.335 0.678 0.333

average AUC value and MCC value are 0.689 and 0.353, re-
spectively. It is noteworthy that TGR outperforms the baseline
methods in the majority of projects, and that its average AUC
and MCC values are superior to those of all baseline methods.
Compared with LR and SVM, which use software metrics
as features, the AUC values of the TGR method achieve
improvements of 4.9% and 5.2%, respectively. Compared with
deep learning methods, DP-CNN, and BiLSTM, the AUC
values of the TGR method achieve improvements of 12.4%
and 13.7%, respectively. Especially, the biggest improvement
of TGR’s AUC is 36.1% on the ant project compared with
BiLSTM. The experimental results demonstrate that TGR
overall performs best compared with all baseline models.

RQ2: How do the multi-type features, comprehensive feature
importance measure, and the improved RFECV perform in
TGR?

Table III exhibits the average AUC and MCC values of
TextCNN, TG, and TG+ on each project. To facilitate a more
intuitive analysis of the impact of feature combination and
feature selection stage in TGR, we present box plots depicting
the AUC values of TextCNN, TG, TG+, and TGR on each
project, which are displayed in Fig. 2. According to Table II
and III, compared with TextCNN which utilizes only semantic
features, TG, which uses multi-type features, demonstrates im-
provements in average AUC. Compared with TG, the proposed
TGR with improved RFECV exhibits increases in average
AUC. As Fig. 2 shows, it can be observed that the majority
of the boxes representing TextCNN, TG, and TGR, display a
gradual increase in position. These findings demonstrate that
the multi-type feature and improved RFECV can improve the
prediction performance of TGR.

velocity camel jedit log4j lucene poi synapse ant xalan
Project

0.60

0.65

0.70

0.75

0.80

AU
C
va
lu
e

TextCNN
TG
TG+
TGR

Figure 2. Comparison of TextCNN, TG, TG+, and TGR

On the other hand, the length of the box and whisker in
box plots reflects the volatility of the data to some extent.
According to Fig. 2, compared with TextCNN, the boxes of
TG changes irregularly in length. It is worth noting that the
boxes for TGR are the shortest among most projects. Hence, it
is verified that the AUC values of the TGR’s prediction results
exhibit a more concentrated distribution on most projects.
These findings indicate the improved RFECV contributes to
improvement in the stability of TGR.

To explore the impact of the proposed comprehensive fea-
ture importance measure in improved RFECV, Fig. 3 shows
the average improvement of the MCC value of the TG+ and
TGR methods relative to TG in each Project. It is intuitive that
in five projects, the average improvement of TG+’s MCC is
negative. In contrast, the average improvement of TGR’s MCC
is positive in eight projects. These trends are also reflected in
Fig. 2, where it can be observed that, apart from the log4j and
synapse projects, the boxes of TG+ do not exhibit a significant
elevation compared with those of TG. Moreover, the boxes of
TGR are almost higher compared with TG+. And The average
AUC and MCC in Table III of TG+, are lower than those in
Table II of TGR. These findings demonstrate the superiority
of the comprehensive feature importance in improved RFECV
over the classifier coefficients alone in standard RFECV.

Based on the above analysis, TGR achieves superior and
more stable prediction performance compared with TextCNN,
TG, and TG+. Firstly, the introduction of multi-type features
makes the feature set contain more comprehensive defect
information. Then, the improved RFECV can highlight effec-
tive features, and meanwhile, eliminate invalid or interfering

velocity camel jedit log4j lucene poi synapse ant xalan
Project

−0.02

0.00

0.02

0.04
im

pr
ov

em
en

t

-0.011
-0.005

0.005
0.01

-0.02

-0.004

0.004
0.008

-0.009

0.016

0

0.018

0.033

0.012
0.015

0.029
0.033

0.007

TG+
TGR

Figure 3. The average improvement of MCC relative to TG

velocity camel jedit log4j lucene poi synapse ant xalan
Project

0.55

0.60

0.65

0.70

0.75

0.80

AU
C

va
lu

e

0.575

0.614

0.726 0.728

0.597

0.664

0.638

0.715

0.644
0.664

0.642

0.717

0.771

0.622

0.667 0.669

0.723

0.665

Avg. SVM
Avg. TGR-SVM
SVM
TGR-SVM

Figure 4. Comparison of TGR-SVM and SVM

features. Moreover, the comprehensive feature importance
measure takes into full account the real category, correlations
with other features, and classifier coefficient. Hence, TGR
reduces the adverse effects of classifier misclassification and
obtains the high-quality feature subset.
RQ3: Can the proposed method be effective for the prediction
performance improvement of other SDP methods?

The average AUC values of TGR-SVM and SVM on
each project are shown in Fig. 4, and the two dashed lines
represent the average AUC values on all projects of the two
methods. TGR-SVM exhibits superior performance over SVM,
as evidenced by eight individual projects demonstrating an
average AUC value higher than that of SVM. Notably, the
highest improvement in the AUC value achieved by TGR-
SVM is 0.089 on the velocity project. Moreover, TGR-SVM
demonstrates a significant increase in its average AUC value
across all projects compared with SVM. Seven AUC values of
TGR-SVM exceed the average AUC value across all projects
of SVM. The results demonstrate that the multi-type features
and the improved RFECV in TGR are not confined to the
LR classifier. Applying them to SVM classifiers also achieves
increased prediction performance.

VI. CONCLUSION

This paper proposes TGR that comprises two main stages:
feature extraction and feature selection. In the feature ex-
traction stage, the semantic features and structural features
are extracted from source codes, respectively. These features,
along with software metrics, are concatenated to build a
multi-type feature set. The feature selection stage employs
an improved RFECV to eliminate the redundancy features,
which is implemented by integrating the category correla-
tion coefficients, the feature correlation coefficients, and the
classifier coefficients as the feature importance measure. The
selected feature subset is fed to the classifier to get predictions.
Experimental results demonstrate that TGR outperforms the

four baseline methods in prediction performance. The ablation
experiments are conducted to validate the effectiveness of
multi-type features and the feature selection stage in TGR.
Future work will focus on exploring better methods for ex-
tracting more comprehensive defect features, and will apply
TGR for cross-project software defect prediction.

VII. ACKNOWLEDGEMENT

This work was supported by the second batch of cultivation
projects of Pazhou Laboratory in 2022, No. PZL2022KF0008,
and by the Zhongshan Produce and Research Fund, PR China
under grant no. 210602103890051.

REFERENCES

[1] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction
via convolutional neural network,” in 2017 IEEE International
Conference on Software Quality, Reliability and Security (QRS),
pp. 318–328, IEEE, 2017.

[2] J. Deng, L. Lu, and S. Qiu, “Software defect prediction via
lstm,” IET software, vol. 14, no. 4, pp. 443–450, 2020.

[3] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature
learning for software defect prediction,” IEEE Transactions on
Software Engineering, vol. 46, no. 12, pp. 1267–1293, 2018.

[4] C. Zhou, P. He, C. Zeng, and J. Ma, “Software defect prediction
with semantic and structural information of codes based on
graph neural networks,” Information and Software Technology,
vol. 152, p. 107057, 2022.

[5] Y. Kim, “Convolutional neural networks for sentence classifi-
cation,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 1746–
1751, Association for Computational Linguistics, Oct. 2014.

[6] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful
are graph neural networks?,” in International Conference on
Learning Representations, 2019.

[7] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selec-
tion for cancer classification using support vector machines,”
Machine Learning, vol. 46, pp. 389–422, 2002.

[8] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object
oriented design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, p. 476 – 493, 1994.

[9] Y. Singh, A. Kaur, and R. Malhotra, “Software fault proneness
prediction using support vector machines,” in 2009 World
Congress on Engineering, vol. 1, pp. 1–3, 2009.

[10] J. Xu, J. Ai, J. Liu, and T. Shi, “Acgdp: An augmented
code graph-based system for software defect prediction,” IEEE
Transactions on Reliability, vol. 71, no. 2, pp. 850–864, 2022.

[11] M. N. Uddin, B. Li, Z. Ali, P. Kefalas, I. Khan, and I. Zada,
“Software defect prediction employing bilstm and bert-based
semantic feature,” Soft Computing, vol. 26, no. 16, pp. 7877–
7891, 2022.

[12] K. Zhu, S. Ying, N. Zhang, and D. Zhu, “Software defect
prediction based on enhanced metaheuristic feature selection
optimization and a hybrid deep neural network,” Journal of
Systems and Software, vol. 180, p. 111026, 2021.

[13] A. A. Saifan and L. Abu-wardih, “Software defect prediction
based on feature subset selection and ensemble classification,”
ECTI Transactions on Computer and Information Technology
(ECTI-CIT), vol. 14, no. 2, pp. 213–228, 2020.

[14] V. J. Marin and C. R. Rivero, “Towards a framework for
generating program dependence graphs from source code,” in
Proceedings of the 4th ACM SIGSOFT International Workshop
on Software Analytics, pp. 30–36, 2018.

[15] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning from open-
source projects: An empirical study on defect prediction,” in
2013 ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, pp. 45–54, IEEE, 2013.

