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Abstract—Although the number of exploitable vulnerabilities
in software continues to increase, the speed of bug fixes and
software updates have not increased accordingly. It is therefore
crucial to analyze the source code and identify vulnerabilities in
the early phase of software development. However, vulnerability
location in most of the current machine learning-based methods
tends to concentrate at the function level. It undoubtedly imposes
a burden on further manual code audits when faced with large-
scale source code projects. In this paper, a fine-grained source
code vulnerability detection model based on Graph Neural Net-
works (GNNs) is proposed with the aim of locating vulnerabilities
at the function level and line level. Our empirical evaluation on
different C/C++ datasets demonstrated that our proposed model
outperforms the state-of-the-art methods and achieves significant
improvements even when faced with more complex, real-project
source code.

Index Terms—deep learning, program analysis, vulnerability
detection

I. INTRODUCTION

According to the report released by the National Institute of
Standards and Technology (NIST) [1], the number of vulnera-
bilities found in 2022 is contributing to a sharp rise. The record
number of vulnerabilities found over five consecutive years,
along with the fact that bug fixes and software updates have
not kept pace mean that we are now facing higher security
risks than ever before. Consequently, in order to improve
system security and code audit efficiency, as well as to further
standardize programmers’ coding behavior, it is crucial to
identify potential vulnerabilities in the programs and fix these
in a timely fashion through source code analysis in the early
stage of software development.
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The accuracy of conventional machine learning (ML) algo-
rithms (i.e. Support Vector Machine, Decision Tree, Random
Forest, etc.) for static source code analysis heavily depends on
domain experts to perform feature engineering. However, this
process becomes onerous and impractical as software source
code scales up and functions become more complicated [2],
[3]. Deep learning (DL) technology can overcome the draw-
backs of conventional ML and automatically extract features
from objects, provided that heuristic guidance strategies have
been established. Nevertheless, source code is a structured
language and deep neural networks often treat it as natural
language in the feature extraction stage [4]–[7]. This results
in the loss of program logic and structure information, limiting
the DL model’s potential for vulnerability feature learning. In
recent years, GNNs [8] have offered new insights into the static
vulnerability analysis of source code by using intermediate
representations such as abstract syntax trees (AST), control
flow graphs (CFG), and data flow graphs (DFG) [9]–[12].

The accuracy of conventional machine learning (ML) algo-
rithms (i.e. Support Vector Machine, Decision Tree, Random
Forest, etc.) for static source code analysis is highly dependent
on domain experts to perform feature engineering. However,
this process becomes increasingly impractical as software
source code scales up and becomes more complex [2],
[3]. Deep learning (DL) technology can automatically extract
features from objects, but treating source code as natural
language in the feature extraction stage [4]–[7] can result in
the loss of program logic and structure information, thereby
limiting the potential for vulnerability feature learning. GNNs
using intermediate representations, such as AST, CFG, and
DFG, have provided new insights into the static vulnerability
analysis of source code in recent years

On the other hand, many ML-based vulnerability detection



models are trained on datasets that contain synthetic samples
to some extent. Nonetheless, due to dataset labeling and model
granularity limitations, vulnerability location is commonly
concentrated at the function level. In contrast, some studies
have focused on more precise locations at the slice [13], [14]
or line level [15]. However, these refined locations require
strict data labeling requirements, as well as a laborious data
preprocessing process.

In order to address the aforementioned issue, we propose
a new vulnerability detection model based on GNNs that can
accurately locate vulnerabilities at both the function and line
level. The contributions of our work can be summarized as
follows:
• We propose a novel GNN-based approach, which learns

source code information through the intermediate rep-
resentation of multidimensional program features. It is
developed to improve the performance of both function-
level and line-level vulnerability location and achieve
efficient code auditing without the need for heavy manual
engineering.

• We propose a vulnerability dataset with function-level
and line-level labels, which were collected from popular
open-source C/C++ projects, to further evaluate the ef-
fectiveness of our method. Compared with the existing
public vulnerability datasets, our dataset is relatively
more complete and valuable for further research.

II. RELATED WORKS

As the earliest DL-based vulnerability detection systems,
Vuldeepecker [14] and Sysevr [13] utilize Bi-directional Long
Short-Term Memory (BiLSTM ) to apply fine-grained program
representation in order to locate vulnerabilities at the slice
level. Follow up studies included µVuldeepecker [16] and
VulDeeLocator [17]. In addition, many studies extract code
semantics based on AST and adopt vulnerability detection
models in combination with BiLSTM [5], [18]–[20], which
attempt to achieve high classification precision at the func-
tion level. Furthemore, the CPG was first proposed by [21],
providing a new insight into source code vulnerability feature
extraction. Some studies have realized function-level source
code vulnerability identification based on GNNs [9], [10], [12].
These studies prove that these methods can effectively capture
the program structure and node information carried by the
CPG and its variants [11], [12], [22]. This compensates for
the loss of important code logic and structural information in
other deep learning models due to their use of a serialized
feature learning process.

III. METHOD

Objective The goal of our vulnerability detection model is
to predict the label yi ∈ Y = {0, 1}m of the CPG Gi ∈
G corresponding to a given source code function Ci ∈ C
with a mapping function f : G → Y . Here, C represents the
set of source code function, while m is the total number of
function instances; moreover, a vulnerable function is labeled
with 1, and otherwise 0. To this end, our model is designed to

learn an entire CPG representation hg through a set of node
representations {Hv|v ∈ V } obtained by a feature encoder
that is used to decide a label f(G) = ŷ; here v refers to
the node feature vector, and ŷ is the prediction result. The
mapping function f is then learned with a cross-entropy loss
by minimizing the negative loglikelihood below:

min
∑
i=1

−yi log ŷi. (1)

The architecture of our model, illustrated in Figure 1,
comprises the following three modules: 1) Embedding module.
The Code Property Graphs (CPGs) are adopted as the inter-
mediate representation of the source code. A multidimensional
program feature encoding scheme is then designed to convert
the CPGs into vectors, which forms the input of the model.
2) Location module. A novel location module is designed to
capture important nodes of CPGs according to their IS value
and return the corresponding potential vulnerable lines of code.
3) Classification module. BiLSTM is introduced as a readout
function to generate the global representation of CPGs for
identifying vulnerable functions.

A. Embedding Module

1) Code Property Graph Generation: Compared with using
a single property, CPGs have been shown to be able to model
more common vulnerability types [24], enabling it to achieve
efficient vulnerability mining. As for the implementation, Jo-
ern [21] is adopted to generate a joint data structure composed
of code properties for source code.

2) Graph Embedding of Multidimensional Program Fea-
tures: The node information of CPG consists of two parts:
attributes and code. To encode the source code from various
perspectives, such as function calls, logical operations, vari-
able types, semantics, and syntax, a node compound feature
embedding method has been devised in this stage. Figure 2
delineates the process of node feature embedding.

a) Node Attribute Embedding: The node attribute feature
consists of vectors of five fields. According to the tag, all the
nodes are divided into different categories, representing the
different roles played by nodes in the CPG. For example, the
Vop field contains the encoding for predefined program oper-
ations, such as assignment, judgment, comparison, and so on.
Similarly, the Vfunc field reflects the call relationship between
the program and specific functions. Moreover, Vlite describes
the variables involved in the operation of the program, such as
characters and numbers, while Vtype corresponds to 16 fixed
parameter types in the C/C++ language. All the vectors of
Vattribute are encoded via one-hot before being concatenated.

b) Node Code Embedding: The semantic information of
each node in the CPG is encoded through vectorization of the
corresponding code statements. As for implementation, after
cleaning the comments and removing non-ASCII characters,
the code is normalized to alleviate the burden of feature
encoding caused by the presence of numerous user-defined
functions and variables independent of vulnerabilities. Finally,
the tokenized code sequences are mapped to feature vectors
based on the pre-trained Word2Vec model to obtain the fixed-
size Vcode and concatenate it with Vattribute.



Fig. 1. The architecture of our model.

Fig. 2. The node feature embedding process.

B. Location Module

1) GCN Layers: To aggregate the neighborhood infor-
mation, we use graph convolutional network (GCN), first
proposed by [25].

For a CPG Gi with n nodes and dv dimensional features,
the definition of GCN is as follows:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)). (2)

Here, H(l) is the node representation of the l-th layer and
is initialized by the node features matrix X ∈ Rn×dv , Ã ∈
Rn×n is the adjacency matrix with self-connections, Ã = A+
IN , D̃ ∈ Rn×n is the degree matrix of Ã, W ∈ Rdin×dout

is the weight matrix with input feature dimension din and
output feature dimension dout, and σ(·) refers to the ReLU
function [26], which is used as the activation function.

2) Line-level Location: To ensure that more attention is
paid to the important nodes with high influence on vulnerabil-
ities, the node score Z ∈ Rn×1 is obtained by two-layer GCN
learning, as follows:

Z(H,A) = tanh(D̃− 1
2 ÃD̃− 1

2H(l)W (l)). (3)

In the real world, differences between vulnerable and benign
code may be subtle, but it is related to many nodes reflected
in CPG, as shown in Figure 3. To make the node features after
message-passing more distinguishable and attempt to capture
more detailed vulnerability feature patterns, a learnable param-
eter matrix θl ∈ Rn×1 is introduced. Finally, the Influence
Score : IS ∈ Rn×1 of CPG nodes can be expressed, as
follows:

IS(H,A) = LN(Z + θl), (4)

where LN is a layer normalization [29].
On this basis, the dkne CPG nodes with the highest IS

would be retained; here, k is the keep ratio. Subsequently,

according to the graph mapping files (generated by Joern), the
node indexes are mapped to the relevant lines of code in the
source code file to locate the vulnerability on the line level.
The locating process can be described as follows:

idx = top rank(IS, dkne), (5)

Ĥ = Hidx, (6)

Loc = map(idx), map : idx→ line num (7)

where top rank returns the indices of the retained nodes,
Ĥ ∈ Rkn×1 is the new feature matrix used as the input of the
next layer, and Loc represents the set of line numbers of code
mapped by idx.

C. Classification Module

It is worth noting that there is often a strong correlation
between multiple lines of code that contribute to a specific
vulnerability, which in turn correspond to the key nodes in
the CPG. However, some commonly used approaches to graph
pooling [31], [32] ignore the interaction between nodes, or
cause the loss of node information [33], [34]. For this purpose,
when CPG is summarized as dkne important nodes, BiLSTM
is introduced as a readout function that further considers the
dependencies and inter-node relationships among these nodes
to learn a dv-dimensional meaningful graph representation
ri ∈ Rdv , as follows:

ri = BiLSTM(Ĥ). (8)

Finally, the function-level prediction ŷi is achieved through
the two fully connected layers with softmax outputs, as
follows:

ŷi = Softmax(W (2)
F (W

(1)
F ri + b(1)) + b(2)), (9)

where W (·)
F and b(·) are parameters of the layer.



Fig. 3. (a): Example of a vulnerable function with an Out-of-bounds Read Error (CWE-125) from Ffmpeg (unpatched); (b): The fixed vulnerable function
(patched); (c): The simplified CPG of the vulnerable function in (a). The red nodes in (c) corresponding to the red line of code labeled as vul Loc in (a).

TABLE I
COMPARISON OF FUNCTION-LEVEL CLASSIFICATION OF KNOWN CWE TYPES ON HD AND RD DATASETS. P: PRECISION(%); F1: F1-SCORE(%)

Method
HD RD

CWE-119 CWE-399 CWE-119 CWE-399 CWE-668 CWE-264
P F1 P F1 P F1 P F1 P F1 P F1

ML-based
XGBoost 88.7 86.6 86.9 86.8 29.1 29.5 30.6 28.1 31.2 31.0 35.1 33.0

Models
CNN 89.3 85.1 90.8 93.1 57.0 62.7 45.7 56.2 52.3 50.3 57.9 63.8

Vuldeepecker [14] 91.7 86.6 94.6 95.0 54.1 61.4 46.6 63.6 49.6 66.3 49.8 66.5
Devign [12] 88.6 87.9 91.3 89.9 80.0 72.7 75.0 66.7 50.0 60.0 55.6 66.7

Commercial
Cppcheck [35] 52.8 52.6 70.9 19.2 49.7 28.1 50.0 17.8 50.2 22.8 50.1 14.6

Tools
Flawfinder [36] 25.0 27.7 34.1 37.4 49.9 61.5 50.4 57.6 50.3 59.5 50.3 56.9

RATS [37] 19.4 20.2 35.0 35.6 50.4 51.2 49.9 44.7 5.2 46.8 50.1 39.4
Flint++ [38] 58.8 60.7 65.4 67.1 50.5 65.2 50.3 65.6 50.2 64.8 50.1 61.2

Ours 98.1 97.4 98.8 99.0 81.3 85.0 87.5 87.4 88.7 88.6 78.9 80.6

TABLE II
COMPARISON OF FUNCTION-LEVEL CLASSIFICATION OF REAL-WORLD PROJECTS WITH UNKNOWN CWE TYPES ON RD DATASETS. P: PRECISION(%);

F1: F1-SCORE(%)

Method
RD

FFmpeg Linux Kernel Openssl Qemu Wireshark Xen
P F1 P F1 P F1 P F1 P F1 P F1

ML-based
XGBoost 27.8 30.3 33.2 33.1 32.1 32.9 40.4 35.4 26.0 25.8 42.0 39.8

Models
CNN 50.7 65.1 50.8 32.5 52.9 61.7 57.1 32.0 50.0 57.1 72.7 8.1

Vuldeepecker [14] 50.7 66.4 44.8 41.2 57.0 66.2 56.7 36.6 46.3 57.1 55.6 9.8
Devign [12] 75.0 54.5 50.0 60.0 50.0 61.5 50.0 55.6 53.8 63.6 50.0 66.7

Commercial
Cppcheck [35] 50.0 18.0 50.0 13.9 49.8 4.8 47.0 22.8 49.9 19.9 50.1 17.8

Tools
Flawfinder [36] 49.8 60.3 50.3 59.2 50.0 59.8 51.7 64.9 50.3 53.1 49.9 55.6

RATS [37] 50.0 34.1 50.0 32.8 49.6 62.4 49.0 50.8 49.5 36.8 50.0 31.4
Flint++ [38] 49.8 61.4 50.3 64.7 50.0 66.3 53.9 67.8 50.0 66.8 49.9 65.1

Ours 82.1 85.2 86.7 85.5 67.3 67.1 74.2 72.3 70.7 77.4 87.6 83.0

IV. EXPERIMENTS

In this section, we conduct extensive experiments on two
datasets to evaluate the effectiveness of the proposed model
in performing fine-grained vulnerability location and compare
it with that of state-of-the-art vulnerability detection methods.

A. Datasets

The experiments are carried out on two datasets: the Hybrid
Dataset (HD) and the Real-project Dataset (RD).

1) Hybrid Dataset (HD): In order to verify the impact of
different levels of dataset complexity on the performance of
vulnerability detection methods, along with the gap between
these methods and practice, the dataset proposed by VuleDeep-
ecker [14] is utilized in the experiments, which includes two
known vulnerabilities: Memory Buffer Errors (CWE-119) and
Resource Management Errors(CWE-399).

2) Real-project Dataset (RD): The statistics presented
in [10] indicate that samples from real projects constitute a mi-
nor proportion of the dataset HD. To ensure that our proposed

model effectively detects vulnerabilities in real software ap-
plications and makes meaningful contributions to production-
level code security audits, we collected a completely real
project dataset, RD.

RD contains 17752 programs with function-level and partial
line-level data labeling for 13 popular C/C++ libraries and is
available at https://github.com/fgVDgnn/fgVDgnn. Functions
and lines of code corresponding to the security commits from
NVD are labeled according to the version changes before
and after the patch. As shown in Figure 3, compared with
patched function (3(b)), we label patch-related statements in
vulnerability functions (3(a)) as a vulnerable line of code
(vul Loc).

B. Baselines
We select two categories of methods in the field of static

source code vulnerability analysis for performance compari-
son, as follows. 1) ML-based vulnerability detection models:
XGBoost, CNN, Vuldeepecker [14] and Devign [12]. We
conduct experiments on the reproducible version of these
methods to evaluate the performance of our model compared

https://github.com/fgVDgnn/fgVDgnn


Fig. 4. Line-level location results on four projects. (a): The model’s coverage of vulnerability lines under different k value; (b): The model’s hit rate of
vulnerability lines under different k value.

with typical ML-based methods. 2) Commercial code anal-
ysis tools: Cppcheck [35], Flawfinder [36], RATS [37] and
Flint++ [38]. They are popular commercial tools for scanning
code and reporting potential security vulnerabilities, which can
be used as a simple guide to static source code analysis.

C. Results

1) Results on function-level classification: For the function-
level classification task, we conduct experiments on HD and
RD respectively to explore the effect of the vulnerability de-
tection methods when facing source code with known types of
vulnerability, along with the impact of different levels of data
complexity on their performances. Furthermore, experiments
are carried out on different projects of unknown vulnerability
types on our proposed RD dataset to evaluate the effectiveness
of different detection methods in practical applications.The
experimental results are reported in Tables I and II.

In summary, our proposed model achieves state-of-the-art
performance and significant improvements on both datasets.
In particular, when faced with the sophisticated real-project
samples from RD, the efficiency of almost all methods can be
seen to significantly decrease; however, the relative precision
(P) and F1 score gains achieved by our model is an average of
17.0% and 12.0%. It is further demonstrated that our proposed
model can still maintain good vulnerability detection perfor-
mance compared with other methods in practical applications.

2) Line-level Location Results: The line-level localization
performance of the model is evaluated on four projects con-
tained in our proposed RD; more detailed statistics are shown
in Table III.

TABLE III
DETAILED LINE-LEVEL STATISTICS OF RD.

ALP1 AFL2 PVFP3 PVP4

Asterisk 8546 160 0.16% 0.12%
Wireshark 5680 265 0.70% 0.02%

Libtiff 2871 96 1.18% 0.43%
Openssl 1592 184 0.68% 0.07%

1 Average number of code lines per program.
2 Average number of code lines per function.
3 Percentage of vulnerable functions in the projects.
4 Percentage of vulnerable code lines in the projects.

As is evident, vulnerability lines account for only a very
small part of a program, and our goal is to more efficiently
implement source code security audits during the software
development phase. Therefore, we introduce two indicators of
HitRate and vulnerability line Coverage of the model from
the perspective of graph, which are expressed as follows:

HitRate =
m∑
i=0

nhits/
m∑
i=0

dkne, (10)

Coverage =

m∑
i=0

nhits/

m∑
i=0

nvul, (11)

where nhits represents the number of nodes correctly pre-
dicted by our model, and nvul is the number of nodes related to
the vulnerability code in each CPG. We graph the experimental
results in Figure 4.

In addition to function-level vulnerability location, we fur-
ther divide three location ranges according to AFL to verify
the effectiveness of the method under different granularities. It
can be observed that, in most cases, the model’s coverage of
vulnerability lines can be maintained at a high level. Further-
more, a vulnerability location within 50 lines can reduce the
amount of code required for function-level code auditing by
at least 47.9% while still maintaining a ralatively promising
hit rate.

V. CONCLUSION

In this paper, we propose a novel GNN-based source
code vulnerability detection model designed to achieve fine-
grained potential vulnerable code identification at a function
level and line level through the intermediate representation
of multidimensional program features. Extensive experiments
reveal the superior performance of our model compared with
other state-of-the-art methods. It is further demonstrated that
our approach can be applied to support the source code
vulnerability detection of real projects, which greatly reduces
the workload associated with manual code audits.
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sparse hierarchical graph classifiers,” arXiv preprint arXiv:1811.01287,
2018.

[31] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
Advances in neural information processing systems, vol. 29, 2016.

[32] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 3693–
3702.

[33] H. Gao and S. Ji, “Graph u-nets,” in international conference on machine
learning. PMLR, 2019, pp. 2083–2092.

[34] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

[35] Cppcheck: A tool for static C/C++ code analysis. [Online]. Available:
http://cppcheck.net

[36] FlawFinder. [Online]. Available: https://dwheeler.com/flawfinder
[37] Rough Audit Tool for Security. [Online]. Available: https://github.com/

andrew-d/rough-auditing-tool-for-security
[38] FlintPlusPlus. [Online]. Available: https://github.com/JossWhittle/

FlintPlusPlus
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