
BDC-FR: Faster R-CNN with Balanced Domain
Classifier for Cross-Domain Object Detection

Shouhong Wan, Rui Wang, Peiquan Jin, Xuebin Yang
School of Computer Science and Technology

University of Science and Technology of China
Hefei, China

wansh@ustc.edu.cn, wr666@mail.ustc.edu.cn, jpq@ustc.edu.cn, yangxb@mail.ustc.edu.cn

Abstract—Object detectors trained with massive labeled data
often suffer performance degradation in some particular scenar-
ios with data distribution gap. Domain classifier is a commonly
used method in the existing domain adaptation algorithms to
alleviate the domain discrepancy. However, it has problems of
instability in training, difficulty in obtaining optimal solutions
and converging to an equilibrium point. To tackle this issue,
we propose a novel balanced domain classifier (BDC), which
not only eliminates domain discrepancy but also makes the
domain classifier and the feature extractor maintain equilibrium
during the adversarial learning. Furthermore, we propose an
appropriate learning rate adjustment strategy, which makes the
detection model converge to an equilibrium point more stably
and more rapidly. Based on the domain-invariant region proposal
network, we propose a cross-domain object detection model called
Faster R-CNN with Balanced Domain Classifier (BDC-FR). The
experimental results show that BDC-FR can effectively improve
the performance of the cross-domain object detection model.

Index Terms—object detection, domain adaptation

I. INTRODUCTION

Applying the object detection models such as Faster R-CNN
[1] trained on one image dataset directly to another image
dataset will lead to significant performance drop, because the
style, resolution, illumination, etc. of images are different.
Conventionally, there are two fundamental data sets in cross-
domain object detection problem, source domain dataset (with
annotation information) and target domain dataset (without
annotation information). There is always a distribution change
between two domains, and it is crucial to develop approaches
that enable better generalization of object detectors.

Recently, various domain adaptation approaches [2]–[6]
have been proposed to solve this problem. To address this
issue, these approaches attempt to build invariant feature
representation by employing domain classifiers in adversarial
learning. However, adversarial learning has been known to be
unstable to train due to training instability and sensitivity to
hyper-parameters. The relationship between the feature extrac-
tor and the domain classifier can easily become unbalanced
during this process. When the feature extractor can easily
deceive the domain classifier after a few iterations of training,
the prediction result of the domain classifier is similar to a
random value and cannot provide an effective optimization
gradient for the feature extractor. On the other hand, if the
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domain classifier has a strong learning ability, it can accurately
predict the domain label of the image every time, which will
cause the phenomenon of gradient disappearance.

To overcome such unbalanced relationship between the
domain classifier and the feature extractor, we design a novel
balanced domain classifier network, which can effectively
make the feature extractor and the domain classifier maintain a
balanced state during training. Furthermore, considering that
learning rate also has an impact on the convergence of the
model, we propose a simple yet effective learning rate ad-
justment strategy to make the update of network weight more
reasonable. Finally, we build a cross-domain detection model
called Faster R-CNN with Balanced Domain Classifier (BDC-
FR). We conduct several experiments to evaluate BDC-FR in
multiple datasets, and the results demonstrate the effectiveness
of our model.

The contribution of this work can be summarized as follows:
(i) we design balanced domain classifiers to solve the unstable
training problem in cross-domain object detection with domain
classifier; (ii) we propose a learning rate adjustment strategy
to make the detection model converge to an equilibrium point
more stably and more rapidly; (iii) we propose a novel cross-
domain detection model called BDC-FR and conduct extensive
experiments to validate the effectiveness of proposed BDC-FR.

II. RELATED WORK

Unsupervised domain adaptation (UDA) aims to transfer the
information learned from a large number of labeled samples
in the source domain to the target domain to solve the same
problem, while the available samples in the target domain
are unlabeled. Chen et al. [2] initially build a method based
on Faster R-CNN, which minimizes the domain discrepancy
by utilizing domain classifier at image- & instance-level.
MeGA-CDA [5] employs category-wise domain classifiers to
ensure category-aware feature alignment for learning domain-
invariant discriminative features. Zhao et al. [6] strengthen
both the classification and localization capabilities of the cross-
domain detector by developing fine-grained feature alignment
in separate task spaces. Domain classifiers have limited classi-
fication ability due to the unstable adversarial training process.
In this paper, we propose a balanced domain classifier network
to solve the imbalance between the feature extractor and the
domain classifier.
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Fig. 1. Overview of the proposed Faster R-CNN with Balanced Domain Classifier (BDC-FR). By applying the proposed balanced domain classifier in
image-level and region-level adaptation, the domain classifier and feature extractor can maintain balance in the training process.

III. THE PROPOSED MODEL

A. BDC-FR Model

In this subsection, we overview the architecture of Faster
R-CNN with Balanced Domain Classifier (BDC-FR). Fig. 1
illustrates the framework of our proposed model. Our model
contains three major components, including the basic feature
alignment network, the domain-invariant region proposal net-
work and the balanced domain classifier.

B. Domain-Invariant Region Proposal Network

Region proposal plays an important role in object detectors.
To get better region proposals, we use an RPN domain classi-
fier to minimize domain shift between domains. Specifically,
we extend RPN by embedding an RPN domain classifier,
and train the classifier in an adversarial learning manner by
using a Gradient Reversal Layer (GRL) [7]. The optimization
objective of the RPN domain classifier is defined by (1):

Lrpn = −
∑
i,u,v

[Di logR
(u,v)
i + (1−Di) log(1− logR

(u,v)
i )],

(1)
where Di denotes the domain label of the ith image, and
R

(u,v)
i is the output of the region-level domain classifier at

(u, v) of the RPN feature map.
The basic feature alignment network consists of image-

level adaptation and instance-level adaptation. The image-level
adaptation and the instance-level adaptation aim to reduce the
domain discrepancy in image-level and instance-level, they are
defined by (2) and (3):

Limg = −
∑
i,u,v

[Di logF
(u,v)
i +(1−Di) log(1−F

(u,v)
i )], (2)

Lins = −
∑
i,j

[Di logNi,j + (1−Di) log(1− logNi,j)], (3)

where F
(u,v)
i denotes the output of the image-level domain

classifier at (u, v) of the base feature extractor, Ni,j represents
the output of the instance-level domain classifier at the jth

instance of the ith image,
In order to ensure that all the domain classifiers are

consistent, we design the Double-Consistency Regularization
(DCR), which includes two kinds of regulation, namely image-
& instance-level consistency regularization and region- &
instance-level consistency regularization. The loss of DCR is
defined as follows:

Ldou cs =
∑
i,j

∥
1

|I|
∑
u,v

F
(u,v)
i −Ni,j∥2+

∑
i,j

∥
1

|I|
∑
u,v

R
(u,v)
i −Ni,j∥2,

(4)
where |I| denotes the total number of pixels in the ith image
and ∥ · ∥2 denotes the Euclidean norm.

C. Balanced Domain Classifier Network

Similar to GANs [8], the domain classifier attempts to
accurately distinguish the domain labels of images, while the
feature extractor deceives the domain classifier by aligning the
features of images. The most important problem is to ensure
that the extractor and the classifier are on par to each other.
Generally, GANs uses alternating iterative training method to
keep the generator and the discriminantor balanced. Different
from GANs, the detection model with domain classifier is end-
to-end and can’t use alternating iterative training method to
keep balanced.

In addition to training rounds, network parameters are also
a way to control network capability. The parameters of domain
classifier network, including the number of convolutional
layers, the number and size of convolution kernels and the step
size, jointly control the receptive field and feature extraction
ability of domain classifier. So the learning ability of the
domain classifier can be balanced by controlling these param-
eters. To obtain the optimal parameters effectively, we propose
an iterative control variable method (As shown in Algorithm



Algorithm 1: Iterative control variable method
Input:
(1) Number of convolutional layer parameters n;
(2) Convolutional layer parameters pi (i from 1 to n);
(3) Threshold t.
Output: Convolutional layer parameters pi.

1 Initialize pi, i = 0 and current accuracy accnow = 1;
2 do
3 Fix parameter values other than pi and optimize pi;
4 accpre = accnow;
5 Calculate the current accuracy of the cross-domain

detection model accnow;
6 i = (i+ 1) mod n;
7 while |accpre − accnow| > t;

1) to search the optimal parameters of the domain classifier
network. During each search, only one parameter value is
controlled as a variable, and the rest are fixed values. Search
the optimal value of the variable parameters, and repeat the
above steps iteratively until the model reaches a better solution.
By using Algorithm 1, we can find the optimal parameters of
domain classifier, then build the balanced domain classifier.

D. Learning Rate Adjustment Strategy

The learning rate is mainly used to control the strength
of adjusting parameters of the detection model. When the
prediction error is large, the model has a large learning space.
Its parameters then can be adjusted with a large learning rate to
speed up the convergence. When the error is small, the model
has converged closely to the equilibrium point. At this time,
it only needs a small learning rate to fine tune the parameters.
Therefore, we design a learning rate adjustment strategy that
is suitable for training based on adversarial learning methods.
The specific adjustment is is defined by (5):

α =


αup ;if loss ≥ tup

αlow +
loss− tlow
tup − tlow

(αup − αlow) ;if tup > loss > tlow

αlow ;if tlow ≥ loss

, (5)

where α is the learning rate of the current training round of the
model, and loss is the prediction error of the current iteration.
αup and αlow are the maximum and minimum learning rates,
respectively. tup and tlow are the upper and lower thresholds
of prediction loss.

E. Overall Loss

The overall loss function for training our BDC-FR network
can be summarized as follows:

Lall = Ldet + λdomain(Limg +Lins +Lrpn +Ldou cs), (6)

where Ldet is the detection loss generated by the Faster R-
CNN. λdomain is the trade-off to balance the loss of object
detection and adaptive module. In our experiments, we set the
value of λdomain to 0.1.

IV. EXPERIMENTS

A. Datasets and Settings

To validate the effectiveness of our proposed BDC-FR, we
perform our model on popular image data sets: Cityscapes [9],
Foggy Cityscapes [10], SIM 10k [11], and KITTI [12]. We
design three different scenario experiments: Adverse Weather
Adaptation, Synthetic Data Adaptation, and Cross Camera
Adaptation. We implement BDC-FR with Pytorch and use the
VGG16 network as the backbone of our model. Besides, in
our learning rate adjustment strategy, we set the parameters
αup = 2e-3 and αlow = 2e-5, the parameters tup and tlow are
set to 12 and 1, respectively. We report mAP with an IoU
threshold of 0.5 for evaluation.

B. Experiment Results

TABLE I
RESULTS OF THE ADVERSE WEATHER ADAPTATION EXPERIMENT.

Method person rider car truck bus train cycle bcycle mAP
Base FR [1] 24.5 32.7 35.4 12.7 26.7 9.2 9.9 30.0 22.6

DAF [2] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
SWDA [3] 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
MDA [13] 33.2 44.2 44.8 28.2 41.8 28.7 30.5 36.5 36.0
DIR-FR [4] 36.9 45.8 49.4 28.2 44.6 34.9 35.1 38.9 39.2
HTCN [14] 47.4 37.1 47.9 32.3 33.2 47.5 40.9 31.6 39.8
UMT [15] 56.5 37.3 48.6 30.4 33.0 46.7 46.8 34.1 41.7

MeGA-CDA [5] 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8
TIA [6] 52.1 38.1 49.7 37.7 34.8 46.3 48.6 31.1 42.3
BDC-FR 38.2 48.4 52.9 29.8 51.0 43.3 37.1 41.9 42.9

Weather is a common factor causing domain shift. It is
important for the detection model to perform faithfully in
different weather conditions. In adverse weather adaptation
experiment, we use Cityscapes as the source domain while
Foggy Cityscapes as the target domain. The Foggy Cityscapes
dataset is rendered from the original clear-weather images
by simulating fog on real scenes. Table I shows that BDC-
FR outperforms all other work and improves up to 42.9%.
Specifically, the detection performance of our BDC-FR ex-
ceeds DAF [2], SWDA [3], DIR-FR [4] HTCN [14], HTCN
[14], UMT [15], MeGA-CDA [5], TIA [6] by 15.3%, 8.6%,
6.9%, 3.7%, 3.1%, 1.2%, 1.1%, 0.6%.

TABLE II
RESULTS OF SYNTHETIC DATA ADAPTATION EXPERIMENT.

Method car AP
Base FR [1] 34.2

DAF [2] 39.0
SWDA [3] 42.3

MDA FR [13] 42.0
DIR-FR [4] 45.5
HTCN [14] 42.5
UMT [15] 43.1

MeGA-CDA [5] 44.8
BDC-FR 45.3

A large amount of labeled synthetic data is easy to obtain
by computer graphics technique. In synthetic data adaptation
experiment, our source domain dataset is SIM 10k, which is



rendered by the game Grand Theft Auto (GTA-V). The target
domain dataset is Cityscapes, which is an urban scene dataset
from the real world. The results are summarized in Table II.
Note that our method reduces the training time. During the
model training, our BDC-FR model only trained 9 iterative
rounds, which is one less than DIR-FR, which shows that the
balanced domain classifier network makes the model converge
more rapidly. We argue that the performance degradation of
BDC-FR in comparison to DIR-FR is mainly caused by the
decrease in the difficulty of the detection task.

TABLE III
RESULTS OF CROSS CAMERA ADAPTATION EXPERIMENT.

Method person rider car truck train mAP
Base FR [1] 43.3 28.6 73.9 13.6 14.0 34.7

DAF [2] 40.9 16.1 70.3 23.6 21.2 34.4
MDA FR [13] 53.0 24.5 72.2 28.7 25.3 40.7

C2F [16] 50.4 29.7 73.6 29.7 21.6 41.0
DIR-FR [4] 58.5 37.2 75.4 30.6 18.5 44.0

BDC-FR 54.4 37.5 73.1 39.0 15.0 44.1

Cameras with different parameters can also cause domain
discrepancy even in the same scene. In cross camera adaptation
experiment, we evaluate our model on Cityscapes and KITTI.
We take Cityscapes as the source domain and KITTI as the
target domain. As table III shows, our proposed BDC-FR
achieves the best score in most categories. It again takes 9
epochs for BDC-FR to converge, which is faster than DIR-FR
(10 epochs).

C. Ablation Experiment

TABLE IV
RESULTS OF ABLATION EXPERIMENT IN ADVERSE WEATHER

ADAPTATION.

Method Limg&Lins Lrpn BDC LR mAP
Ours (w/o all) ✓ 36.0

✓ ✓ 39.2
Ours ✓ ✓ ✓ 42.6

✓ ✓ ✓ ✓ 42.9

We conduct a ablation study of our proposed method on
Adverse Weather Adaptation. Table IV shows the results of
ablation study. BDC denotes the balance domain classifier, and
LR refers to the learning rate adjustment strategy. The mAP
of BDC-FR has improved by 3.4 (from 39.2% to 42.6%) with
the balance domain classifier. And the learning rate adjustment
strategy allows for a shorter training time, as well as improves
the detection accuracy to 42.9%.

V. CONCLUSION

In this paper, we propose a cross-domain object detector
called Faster R-CNN with Balanced Domain Classifier (BDC-
FR). Our key contribution is the balanced domain classifier,
which can help the cross-domain object detection model
converge steadily by making feature extractor and domain

classifier achieve better equilibrium state in training. Fur-
thermore, we propose a learning rate adjustment strategy to
improve the convergence of the cross-domain object detection
model. In order to verify the validity of the BDC-FR model,
we conduct extensive experiments on multiple cross-domain
scenarios. Extensive experimental results, as well as ablation
studies, demonstrate the effectiveness of the proposed model.
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