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Abstract—For online ride-hailing platforms, choosing the right
time to match idle vehicles with passengers is one of the most
important factors affecting the platform’s profit. On one hand,
vehicles and passengers arrive dynamically, and an appropriate
delayed matching may generate a highly efficient matching result
with more values. On the other hand, different regions may have
different states of supply (vehicles) and demand (passengers),
and the matching time should be different. At this moment,
we need an efficient matching time strategy that takes into
account matching time and regional differences to maximize the
platform’s long-term profit. In this paper, we propose a dynamic
matching time algorithm based on multi-agent reinforcement
learning, which is called Multi-Region Differentiated Matching
Decision. Firstly, we describe the order matching process and
then model it as a decentralized partially observable Markov
decision process (Dec-POMDP). Secondly, considering that there
are regional differences in supply and demand, we divide the
overall area based on historical data and propose an algorithm
based on multi-agent reinforcement learning to realize multi-
region differentiated dynamic matching. Finally, we conduct
extensive experiments to evaluate our matching algorithm against
benchmark algorithms in a real-world dataset. The experimental
results show that our algorithm can outperform benchmark
algorithms.

Index Terms—Ride-hailing, Delayed matching, Long-term
profit, Multi-Agent Reinforcement learning

I. INTRODUCTION

Online ride-hailing has become one of the most important
transportation ways in the modern cites. In the ride-hailing sys-
tem, the platform needs to match idle vehicles with passengers
efficiently, since this will significantly affect the platform’s
profit and passengers’ riding experience. Currently, the ride-
hailing platform usually matches the passengers with vehicles
immediately when the riding orders are raised, such as [1],
[2]. In fact, the immediate matching may cause inefficient
matching results. For example, as shown in Figure 1(a), if the
platform performs matching at time t1, the cost of the platform
and the waiting time of the passengers will increase due to the
insufficient number of vehicles and passengers. In contrast,
instead of immediate matching, the platform can collect more
information about orders and idle vehicles to make more
efficient matching decisions in the delayed matching, which is
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(a) T = t1, Immediate Matching.

(b) T = t2, Delayed Matching.

Fig. 1. Different matching strategies.

shown in Figure 1(b). However, the passengers may have a tol-
erance time for waiting for the service. Therefore, the platform
needs to find an effective matching time. Furthermore, the
riding requests and idle vehicles may change dynamically over
the time, thus the platform needs to dynamically determine the
matching time based on the arriving orders and idle vehicles.

Furthermore, in a city-wide area, different small subareas
(called regions) may have different supplies (idle vehicles)
and riding demands. In this case, it is inappropriate for the
platform to set a uniform matching time for all regions.
The platform needs to determine the matching time for each
region respectively according to the supply and demand in that
region. Moreover, the platform needs to maximize the long-



term profit, and thus needs to consider the impact of current
decisions on the future matching.

Specifically, with the dynamic arrival of passengers and
vehicles, the platform needs to choose the right matching time
for regions with different supply and demand to maximize
long-term profits. Note that it is difficult for the platform to
set the matching time at any time since this will result in heavy
computing load of keeping monitoring whether the matching
information is enough. In this paper, we divide the whole time
into several time slots. Therefore, instead of determining the
matching at any time, in this paper we determine at what time
slot to do the matching, i.e., to determine whether matching at
the current time slot or not, to achieve dynamic matching. In
summary, the main contributions of this work are as follows.
Firstly, the current matching time decision affects future
order matching, and each region can only make decisions
based on its observed supply and demand information, so
this is a sequential decision problem, which we model as
a decentralized partially observable Markov decision process
(Dec-POMDP). Secondly, we divide the whole area into sev-
eral non-overlapping regions according to the historical order
data to realize multi-region differentiated dynamic matching.
Thirdly, we design a multi-agent reinforcement learning based
algorithm (MRDMD) to determine whether matching at the
current time slot or not in order to maximize the long-
term profit of the platform. Finally, we conduct extensive
experiments to evaluate the proposed algorithm based on a
real-world dataset. We demonstrate that using differentiated
matching time in different regions can significantly increase
the platform’s long-term profit.

The rest of this paper is organized as follows. In Section II
we introduce the related work. In Section III we describe the
basic settings and define the problem. We introduce the multi-
region differentiated matching decision algorithm in Section
IV. Finally, we give experimental analysis in Section V and
conclude the paper in Section VI.

II. RELATED WORK

The order matching problem in ride-hailing is widely stud-
ied. There exist a lot of works that consider how to maximize
the platform’s profit. Li et al. [3] propose a non-centralized
order matching approach, where vehicles are viewed as agents,
and multiple agents work together to maximize the overall
profit. Shi et al. [4] propose two order matching mechanisms
based on truthful auction, where drivers bid for orders pub-
lished by the platform and make profits in order to maximize
the social welfare of drivers and platform.

There also exist a number of works about maximizing
the number of completed orders in order matching problem.
Garaix et al. [5] propose direct and iterative algorithms to
solve the order matching problem and maximize the number of
completed orders. Furthermore, Holler et al. [1] propose a deep
reinforcement learning approach by combining deep learning.
They treat vehicles as independent agents and perform order
matching from the perspective of centralized platform dis-
patching, thus maximizing the number of completed orders.

Moreover, how to minimize vehicle travel distance is also
investigated in the related works. Liao et al. [6] propose
a nearest matching algorithm to match the order with the
vehicle closest to it. Duan et al. [7] propose an algorithm that
can gradually expand the visible range of orders, which can
effectively reduce the allocation time of orders and maintain
a low travel distance.

The above works usually consider immediate matching be-
tween vehicles with passengers. Some works, [3], [8], consider
the delayed matching by using the cumulative information. Qin
et al. [9] find that dynamic matching can effectively reduce
passenger’s waiting time compared to immediate matching.
However, they do not take into account that in different
regions, the platform has different supply and demand infor-
mation, therefore the matching time can be set differently.

To the best of our knowledge, existing works did not
consider that different regions have different supply and de-
mand with dynamic changes over time, and thus they cannot
dynamically determine the matching time for each region for
each time to maximize the profit of the platform. In this paper,
we consider the above factors and design a dynamic matching
decision algorithm MRDMD for multiple regions to maximize
the long-term profit of the platform.

III. BASIC SETTINGS

In this section, we first describe how the ride-hailing system
works, and then we give the basic settings of the order, vehicle
and platform’s profit. Furthermore, we describe the problem
we intend to solve in this paper.

Figure 2 shows how the ride-hailing system works. When
a passenger rises a trip order, first this order will be collected
by the platform into the buffer pool. Second, when the size
of the buffer pool is suitable, the platform will match those
orders with idle vehicles. Then the vehicle that receives the
allocated order will transport the passenger to the designated
location and charge the appropriate fee.

Fig. 2. Online ride-hailing platform.

We divide the whole time into several time slots T =
{1, 2, ..., T} and consider a 2-D area L = {1, 2, ..., L}. The
relevant settings are given below.

Definition 1 (Order): An order oi ∈ O is a travel re-
quest made by a passenger through a smart device, which
can appear at any time slot but can only be served by a
maximum of one vehicle. An order oi is expressed as a tuple
oi = (toi , orgoi , desoi , poi , coi , woi , soi), the specific meaning
of these elements is as follows:



• toi is the time when the order oi is submitted.
• orgoi is the passenger’s pick-up location, consisting of

latitude and longitude.
• desoi is the destination of the order, consisting of latitude

and longitude.
• poi is the price of the order.
• coi is the cost of the order, which is determined by the

distance traveled and the unit cost of the vehicle.
• woi is the maximum tolerance time for the passenger.
• soi is a status identifier to indicate the status of the order,

including pending, completed, and invalid.
Definition 2 (Vehicle): The vehicle vj ∈ V is represented

as a tuple vj = (locvj , svj ), the specific meaning of these two
elements is as follows:

• locvj represents the current location of the vehicle, con-
sisting of latitude and longitude.

• svj indicates the current state of the vehicle, to show
whether the vehicle is idle or busy.

We assume that the vehicles are owned by the platform
and the vehicles will follow the platform’s dispatch to serve
passengers, which simplifies the management of the platform
and also improves efficiency [8].

Definition 3 (Platform’s Profit): The platform’s profit is
equal to the value of all completed orders minus the cost of
vehicles.

EP =

L∑
l=1

T∑
t=1

|Ol
t|∑

i=1

(poi − coi) (1)

Ol
t is the completed order set in the region l at time slot t,

poi and coi are the value and cost, respectively, of the ith
completed order in region l at time slot t.

Based on the above settings, in this paper, we consider
a ride-hailing system where vehicles and orders arrive dy-
namically and passengers have a maximum tolerance time.
We want to dynamically determine the matching time in
multiple regions to maximize the long-term profit EP . To
achieve this goal, we design a Multi-Region Differentiated
Matching Decision (MRDMD) algorithm, which dynamically
determines the matching time for each region. Note that as
we discussed in Section I, it is difficult for the platform to
set the matching time at any time. Therefore, in this paper we
determine at what time slot the platform will do the matching,
i.e., to determine whether matching at the current time slot or
not, to achieve dynamic matching.

IV. THE ALGORITHM

In this section, we consider the decentralized partially
observable Markov decision process (Dec-POMDP), which
describes the multi-region differentiated order matching pro-
cess, and then propose a multi-region differentiated matching
decision (MRDMD) algorithm to maximize the profit of the
platform.

The Dec-POMDP in our multi-regional cooperation sce-
nario can be represented as a tuple: G =< S, A,P, r, Z,
O, n, γ >. Where s ∈ S represents the area’s supply and

demand information. At each time slot, each region l obtains
its observation zl ∈ Z from the environment using the
observation function O. Based on the observation, each region
chooses an action al ∈ A and all the actions are combined
to form a joint action a ∈ AL. After this joint action is
performed, the environment state is transferred to the new
one according to the state transition function P(st+1|st, at) :
S×AL×S → [0, 1]. r represents the reward function, which is
shared by all the regions, n represents the number of regions,
and γ ∈ [0, 1) is a discount factor that decreases the impact
of the past reward. We describe the details of the observation
space, action space, and reward function below.

Observation Space: zt = ((v1t , o
1
t ),(v

2
t , o

2
t ), ..., (v

L
t , o

L
t )) ∈

ZL, where vlt, o
l
t represent the number of vehicles and orders

respectively in region l at time slot t.
Action Space: at = (a1t , a

2
t , ..., a

L
t ) ∈ AL, where alt = 0

and alt = 1 represent delayed matching and matching in region
l at time slot t, respectively. Note that the unmatched orders
and vehicles will transfer to next time slot.

Reward Function: At each time slot t, each region l takes
the action alt ∈ {0, 1}, and then get a reward rlt =

∑|Ol
t|

i=1 (poi−
coi) from environment. The global reward rt =

∑L
l=1 r

l
t is

accounted for all regions in order to obtain the maximum
overall profit.

There are multiple regions in our scenario, each requiring
individual decisions and ensuring that the long-term profit of
the platform is maximized. Therefore, we use QMIX [10] to
design MRDMD, which is based on decentralized training
and distributed execution and is widely used in various multi-
agent environments. In our algorithm, there exist three types
of networks, the regional network Ql, the mixed network
Qtot, and the hypernetwork. The regional network performs
an action based on individual observation zlt and previous
action alt−1 and outputs regional action values Ql(τ

l, alt),
where τ is the observation-action history, maintained by each
region to perceive the dynamic changes of region information.
The mixed network has weight parameters produced by the
hypernetwork consisting of multiple linear layers and receives
as input the state s ∈ S. This network receives the action
values Ql(τ

l, alt) of all regions and outputs the overall action
values Qtot(τ, a). In summary, MRDMD needs to ensure that
equation 2 is satisfied, which means that each region can
greedily choose matching action based on the regional network
solely. The MRDMD algorithm is shown in Algorithm 1.

argmaxaQtot(τ, a) =


argmaxa1

Q1(τ1, a1)

...

argmaxaL
QL(τL, aL)

(2)

Algorithm 1 takes the number of vehicles and regions as
input. The training will take K rounds (line 4), each lasting
for T time slots (line 7). At the beginning of the training,
each agent acquires an initial observation state (line 6). During
training, each agent first gets the action value by using the
evaluation network Q(θ) (line 8). After that, these actions will
be collected to get the joint action a (line 9). For each region, if



Algorithm 1 Multi-Region Differentiated Matching Decision
(MRDMD) Algorithm
Input:

The number of vehicles V and the number of regions L.
Output:

Platform’s matching strategy π.
1: Initialize the memory pool M;
2: Initialize the evaluation network Q(θ) and the mixing

network Qtot(ϕ)
3: Initialize the target network Q̂(θ̂), Q̂tot(ϕ̂), and set the

weight θ̂ ← θ, ϕ̂← ϕ;
4: for k = 1 to K do
5: s← env.reset();
6: Each agent gets the initial observation state zl1 from s;
7: for t = 1 to T do
8: Each agent inputs its observation zlt to the network

Q(θ) to obtain the action value;
9: Forming the joint action a;

10: for al in a do
11: if al = 1 then
12: Matching vehicles and orders using Kuhn-

Munkres algorithm to get the reward r = p−c;
13: end if
14: if al = 0 then
15: No matching is performed, and the reward

r = 0. Vehicles and orders in this region will be
transferred to the next round;

16: end if
17: end for
18: Get the next state s′ and terminated flag done;
19: Store the state transition tuple (st, s

′, z, r, a, done)
into memory pool M;

20: if len(M) > threshold then
21: Randomly select b samples from M for training;
22: Update network based on loss function L(θ) :

L(θ) =
∑b

i=1[(r + γmaxa′ Qtot(τ
′, a′, s′; ϕ̂)−

Qtot(τ, a, s;ϕ))
2]

23: end if
24: s← s′, use the observation function O to generate

the observation state z of each region;
25: end for
26: Every round c, θ̂ ← θ, ϕ̂← ϕ;
27: end for

a matching action is selected, it will use Kuhn-Munkres [11]
algorithm to find the most profitable matching combination
of the current vehicles and passengers (line 12). When no
matching is made, the current vehicle and order information
is transferred into the next round (line 15). After the matching
is completed, we can calculate the real-time reward r of the
matching action and get the next state s′ (line 18), and then
this information will be stored in the memory pool (line 19).
When the memory size is greater than a threshold, we will
randomly sample some records from the memory pool for

learning (lines 20-23). After continuous repeated learning and
training, a convergent matching strategy that can maximize the
platform’s long-term profit is obtained.

V. EXPERIMENTAL ANALYSIS

In this section, we run extensive experiments to evaluate
our algorithm. The dataset used in this paper is provided by
DiDi, from which we select the data from 13:00 to 15:00 on
weekends, which contains the initiation time, the end time,
the start location and destination of the order, and also the
price obtained by completing the order. Similar to [12]–[14],
we divide the area into four regions with different supply and
demand based on the number of orders, which is shown in
Figure 3.

Fig. 3. Area division. The experimental area is about 215.71 square kilome-
ters. Furthermore, we analyze the experimental data and find that the average
travel distance to complete an order is 6.98 km. Therefore we divide the area
into 4 regions with an area of 53.93 square kilometers. Such a region with
the length of 7.34 km can cover the average travel distance of an order. The
number in the region represents the number of orders during the experimental
period.

Vehicles and passengers arrive dynamically, and their activ-
ity range is bounded according to the maximum range of all
orders in the dataset. The initial state of each vehicle is idle.
The number of vehicles gradually increases from 500 to 2000,
with each increase of 500 vehicles. The period is 13:00-15:00,
and we use ∆t = 10s as the length of time slot. There will be
720 time slots during the entire period. We set the vehicle’s
unit driving cost to 1 CNY/km. Each order has a maximum
tolerance time w, and we assume it is independently and
identically drawn from a uniform distribution within [1, 30].
When a passenger waits longer than the tolerance time, the
order will be cancelled. In this experiment, we assume that the
vehicle only serves orders within the same region at the current
time slot, but after the service is completed, the vehicle can
move to other regions. The specific experimental parameters
are shown in Table I.

TABLE I
EXPERIMENTAL PARAMETERS

parameter value

Time period T 13:00-15:00
Length of time slot ∆t 10

Number of vehicles [500, 1000, 1500, 2000]
Maximum tolerance time w U(1, 30)

Number of regions L 4
Unit driving cost 1



A. Benchmark Approaches and Metrics

We will use the following benchmark approaches and met-
rics to evaluate our proposed algorithm.

Multi-Region Restricted Q-Learning (MRRQL). The RQL
algorithm [15] sets a maximum matching time interval [a, b],
and then uses reinforcement learning to continuously adjust
the size of this interval to control the matching time. We
modify the RQL algorithm to fit our problem, where each
region performs the RQL algorithm independently, which is
called the MRRQL.

Multi-Region GREEDY (MRGREEDY). Tong et al. [2]
find that GREEDY algorithm can still achieve very competi-
tive results in most cases. We modify the GREEDY algorithm
to fit our problem, where each region performs matching
independently at each time slot using the GREEDY algorithm,
and priority is given to match the highest value orders with
idle vehicles, which is called the MRGREEDY.

Multi-Region UNIFORM (MRUNIFORM). The UNIF-
ORM algorithm [16] is a commonly used comparison algo-
rithm, which will do the matching for every n time slots.
We modify the UNIFORM algorithm to increase its dynamic
matching property, with a half probability of matching at the
current time slot and a half probability of not making a match,
which is called the MRUNIFORM.

In order to evaluate the performance of MRDMD, we
consider the following metrics.

• Total platform’s profit. The total platform’s profit refers
to the sum of the profit of all vehicles.

• Order response rate. Order response rate is the ratio of
completed orders to total orders.

• Pick-up distance. Pick-up distance is the distance from
the vehicle’s current location to the order initiation loca-
tion after the vehicle matches the order.

• Average extra distance per order. The average extra
distance per order is the average distance an empty car
needs to travel to complete an order.

B. Experimental Results

In the experiment, we increase the number of vehicles from
500 to 2000 with step size 500, and the experimental results
are shown below.

To prove that our algorithm is effective when combined
with the region division, we conduct experiments on the whole
area and multiple regions respectively to compare the profit
of all algorithms. We use MR to represent an algorithm that
combined with region division, e.g., MRDMD and DMD are
the same algorithm running on multiple regions and the whole
area, respectively. From Figure 4(a) and Figure 4(b) , we can
see that MRDMD can make higher profits than DMD, and
similarly MRRQL can make higher profits than RQL, which
means that after the area is divided, the reinforcement learning
based algorithm can sense the differentiated information of
each region and make independent and effective matching
decisions. In contrast, from Figure 4(c) and Figure 4(d),
we can find that MRGREEDY and MRUNIFORM do not
perform well as that GREEDY and UNIFORM do.
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(b) MRRQL and RQL.
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(c) MRGREEDY and GREEDY.
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Fig. 4. Platform’s profit between multiple regions and overall area.

Next, we will evaluate the proposed algorithm with multiple
regions against the benchmark approaches.

Total Platform’s Profit: The total platform’s profit of the
four algorithms is shown in Figure 5. As the number of
vehicles increases, we find that the profit of all four algorithms
increase. We also find that MRDMD performs better than the
other three algorithms. MRRQL performs better than the other
two algorithms. In more detail, we find that the algorithm with
dynamic delayed matching time (MRDMD, MRRQL) brings
more profit to the platform compared to the algorithms with
immediate matching (MRGREEDY) and dynamic random
matching (MRUNIFORM).
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Fig. 5. Total platform’s profit.

Order Response Rate: As we can see in Figure 6, when
the idle vehicles are insufficient, the order response rate of the
four algorithms are very similar, where MRGREEDY has a
slight advantage. This is because the MRGREEDY matches
orders with vehicles at each time slot, and therefore has a
better order response rate. When the number of vehicles is
greater than 1500, MRDMD still performs the best, followed
by MRRQL, MRGREEDY and MRUNIFORM.

Pick-up Distance: From Figure 7 we can see that the
pick-up distance of the four algorithms increases when the
number of vehicles is increased to 1500. When the number of
vehicles is greater than 1500, the pick-up distance decreases
for MRDMD and MRRQL, while the distance still increases
for MRGREEDY and MRUNIFORM. This may be because
MRDMD and MRRQL can sense the dynamic changes of
the regional state about vehicles and orders, and when there
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Fig. 6. Order response rate.

exist a large number of vehicles, these two algorithms can
accumulate enough information about orders and vehicles to
make efficient matching decisions, which may decrease pick-
up distance. Finally, we still find that MRDMD performs the
best.
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Average Extra Distance Per Order: From Figure 8, we
can see that the average extra distance per order for the
four algorithms decreases as the number of vehicles increases
and MRDMD has better performance. This is because more
vehicles bring more matching information, and for an order,
a closer vehicle can be selected for matching. Therefore the
average distance to complete an order decreases.
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Fig. 8. Average extra distance per order.

VI. CONCLUSION

In this paper, we propose a multi-region differentiated
matching decision algorithm (MRDMD) based on multi-agent
reinforcement learning by considering the real-time supply
and demand status of different regions in order to maximize
the ride-hailing platform’s profit. In order to evaluate the
effectiveness of MRDMD, we run experimental analysis based
on the real DiDi dataset against three typical benchmark
algorithms. The experimental results show that the proposed

algorithm can outperform other algorithms. We find that our
algorithm with dynamic matching time according to the supply
and demand status of each region can bring higher long-
term profit and serve more orders. Our analysis can also
provide useful insights for designing the realistic matching
time strategy for ride-hailing platforms.
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