
Using Z3 for Formal Modeling and Verification of
FNN Global Robustness

Yihao Zhang∗, Zeming Wei∗, Xiyue Zhang∗†, Meng Sun∗‡
∗School of Mathematical Sciences, Peking University, Beijing, China

{zhangyihao, weizeming}@stu.pku.edu.cn, {zhangxiyue,sunm}@pku.edu.cn

Abstract—While Feedforward Neural Networks (FNNs) have
achieved remarkable success in various tasks, they are vulnerable
to adversarial examples. Several techniques have been developed
to verify the adversarial robustness of FNNs, but most of them
focus on robustness verification against the local perturbation
neighborhood of a single data point. There is still a large
research gap in global robustness analysis. The global-robustness
verifiable framework DeepGlobal has been proposed to identify
all possible Adversarial Dangerous Regions (ADRs) of FNNs, not
limited to data samples in a test set. In this paper, we propose
a complete specification and implementation of DeepGlobal
utilizing the SMT solver Z3 for more explicit definition, and
propose several improvements to DeepGlobal for more efficient
verification. To evaluate the effectiveness of our implementation
and improvements, we conduct extensive experiments on a set
of benchmark datasets. Visualization of our experiment results
shows the validity and effectiveness of the approach.

Index Terms—Feedforward Neural Networks, Global Robust-
ness Verification, Social Aspects of Artificial Intelligence

I. INTRODUCTION

Feedforward Neural Networks (FNNs) have achieved remark-
able success in various fields. Despite their success, the exis-
tence of adversarial examples [3] highlights the vulnerability
of FNNs and raises concerns about their safety in critical
domains. Adversaries can easily deceive FNNs by introducing
small and imperceptible perturbations to natural inputs, result-
ing in erroneous predictions. Although adversarial training [5]
is considered the most effective approach for training models
that are resistant to adversarial attacks, it still has a serious
weakness, i.e., the lack of formal guarantees of the robustness.

To solve this problem, an avenue of research involves
formally modeling and verifying the robustness of given
models [4]. These methods can provide provable verification
of local robustness, which pertains to specific input samples.
However, simply evaluating a model’s local robustness against
a test set cannot provide global robustness. To explore global
robustness verification, [7] proposed to approximate the glob-
ally robust radius utilizing the Hamming distance. Despite this,
the approach in [7] still depends on a test set, which is not
entirely satisfactory for global robustness verification.

Another inherent challenge in neural network verification
is the computational complexity. The number of activation

† Current Address: Department of Computer Science, University of Oxford,
Oxford, UK.
‡ Corresponding author.

patterns, that is the potential activation status of non-linear
neurons, can be of an exponential order of magnitude. There-
fore, it is not practical to cover all possible patterns as the
model size increases rapidly nowadays. To address this issue,
existing approaches used linear relaxation [10] and abstract
interpretation [2] techniques for adversarial training and veri-
fication. However, these methods all focus on local robustness.
To achieve global robustness analysis, DeepGlobal [8] was
proposed to facilitate global robustness verification of FNNs.
It introduces a novel neural network architecture, Sliding Door
Network (SDN), where all adversarial regions can be more
efficiently generated. As rigorous formalization is crucial for
safety verification, further steps must be taken to formally
prove the global robustness of the new neural network SDN.

In this paper, we build upon the DeepGlobal framework
and use the SMT solver Z3 [6] to provide a complete spec-
ification and implementation of the framework. Specifically,
we provide formal definitions of DeepGlobal and algorithms
with several improvements for more efficient generation of
adversarial dangerous regions. To demonstrate how the Z3
solver can be applied to verify the global robustness of FNNs,
we conduct extensive experiments on the MNIST and Fashion-
MNIST datasets. The code is available at https://github.com/
weizeming/Z3_for_Verification_of_FNN_Global_Robustness.

The paper is organized as follows. In Section II, we pro-
vide preliminaries on Feedforward Neural Networks (FNNs),
Adversarial Dangerous Regions (ADRs) and Sliding Door
Activation (SDA). We introduce the Z3 specification for FNNs
and SDNs in Section III. In Section IV, we further show
the Z3 specifications of SDNs and ADRs, which provides an
explicit definition of the DeepGlobal framework. Furthermore,
we present algorithmic implementation details in Section V.
Section!VI concludes the paper.

II. PRELIMINARIES

We consider a K-classification neural network F : X → Y ,
which maps an input space X ⊂ Rd to an output space Y =
{1, 2, · · · ,K}. Let F̃ (x) denote the ground-truth classification
result for x ∈ X as determined by a human expert.

We define a FNN f as a tuple (m,N,W,A), where m
is the number of layers in f , N = (n1, n2, · · · , nm) is
a vector specifying the number of neurons in each layer,
W = (w1, b1, · · · , wm, bm) is a set of parameters for f , where
wi ∈ Rni×ni−1 and bi ∈ Rni , and A = (a1, a2, · · · , am) is a

DOI reference number: 10.18293/SEKE23-110

https://github.com/weizeming/Z3_for_Verification_of_FNN_Global_Robustness
https://github.com/weizeming/Z3_for_Verification_of_FNN_Global_Robustness


set of activation functions for each layer, where ai : Rni →
Rni . Thus we have f(x) = am(wm · · · (w1 · x+ b1)) + bm).

Note that the input dimension of the FNN f satisfying
that n0 = d, and the output dimension nm = K. Given
f(x) = (f(x)1, f(x)2, · · · , f(x)K), the FNN returns its
prediction F (x) = argmax

i
f(x)i.

Adversarial examples [9] are inputs with a small pertur-
bation δ added to a benign sample x such that the model
misclassifies the perturbed sample F (x + δ) ̸= F (x). The
perturbation δ is constrained by an lp-norm ball, such as
|δ|p ≤ ϵ. The concept of Adversarial Dangerous Regions
(ADRs) is introduced to characterize global robustness. ADRs
characterize the potential regions where the model’s prediction
is near the decision boundary and the samples in it has clear
semantics. We can formally model these conditions as

AdF := {x| ∃y, i ̸= j : ∥x− y∥p ≤ ϵ,

F (y)i =F (y)j ≥ F (y)k(∀k ̸= i, j), F̃ (y) = i}.
(1)

In the DeepGlobal framework, the SDA function is proposed
to reduce the number of activation patterns in the SDNs. SDA
divides the neurons in each layer (ĥi,1, ĥi,2, · · · , ĥi,ni) into
groups of k neurons. Let the divided groups be denoted as
Gh,0, Gh,1, · · · , Gh,l, where l = ni

k . SDA finds the first group
Gh,Act, in which pre-activated neurons are all positive, from
left to right. This group presents the property that each neuron
within it is active and is preferred for activation. Therefore,
SDA names this group the Active Door and multiplies it
by a constant α > 1 to stimulate the active neurons as
activation. Additionally, SDA searches for an Inactive Door
Gh,Ina in which neurons are all negative and multiplies them
by 0 to penalize the inactive neurons. The remaining l − 2
doors are named Trivial Doors, which SDA neither activates
nor deactivates but retains their values after activation. SDN
leverages SDA to achieve comparable accuracy to general
FNNs while significantly reducing the magnitude of activation
patterns, making it an efficient candidate for verification.

III. FORMALIZATION OF SLIDING DOOR NETWORKS

A. Formulation of FNNs
As the concept of SDNs is based on FNNs, we first demon-
strate how to use Z3 [6] to formally model a given FNN. We
assume the FNN configuration (e.g., input dimension d) has
already been declared and represent each variable in the input,
hidden, and output layers as a ‘Real’ object in Z3:

Input = [Real(f"x_{i}") for i in range(d)]
Hidden = [[Real(f"h_{i}_{j}") for j in range(N[i])] for i in

range(m−1)]
Output = [Real(f"y_{i}") for i in range(K)]

In this way, the input and output variables are named ‘x_i’,
‘y_i’ respectively, where i indicates the i-th input (output)
variable (counting from zero). For 0 ≤ i ≤ m − 2, the j-th
hidden variable in the i-th layer is named ‘h_i_j’ (counting
from zero), and note that the m−1-th layer is the output layer.

The constraints between input, hidden, and output layers
highly depend on the activation patterns. Therefore, we can

only model the constraints for each potential activation pattern
respectively, which include four parts:
The constraints on input domain X . Taking the MNIST
dataset as example, since each pixel value is restricted to [0, 1],
let s be the initialized solver to be used later, we have

s = Solver ()
s .add([ Input [ i ] >= 0 for i in range(d) ])
s .add([ Input [ i ] <= 1 for i in range(d) ])

We denote these constraints as CInput.
The relation between adjacent layers under given activa-
tion patterns. The forward-pass from hi−1 (the i−1-th layer)
to hi (the i-th layer) can be formulated as hi = ai(wi ·hi−1+
bi). For the sake of simplicity, we introduce variables ‘_h_i_j’
for the pre-activate neurons ĥi = wi · hi−1 + bi:

_Hidden = [[Real(f"_h_{i}_{j}") for j in range(N[i])]
for i in range(m−1)]

In this way, we can simplify the constraint from layer hi−1 to
hi with the aid of ĥi:

s .add(_Hidden[i ][ j ] == Sum([W[i][j][k] * Hidden[i−1][k] for k
in range(n_{i−1})]) + B[i ][ j ])

s .add(Hidden[i ][ j ] == a[i ](_Hidden[i ][ j ]) ) // pseudo−code

The activation condition of the given activation patterns.
We defer this part in Section IV after introducing the SDA
functions.
The objective property. For example, if we want to iden-
tify samples from class i, which are also near the decision
boundary with class j, the constraints should be formulated as
f(x)i = f(x)j

∧
k ̸=i,j f(x)i ≥ f(x)k. This can be expressed

with Z3 constraints as:

s .add(Output[ i ] == Output[j ])
for k in range(K):

if k == i or k == j :
continue

s .add(Output[ i ] >= Output[k])

The specification details of adversarial dangerous regions
(ADRs) is presented in Section IV.
B. Formulation of SDNs
A SDN is a feedforward neural network f with the tuple
(m,N,W,A, k), where m, N , and W are inherited from the
definition of FNN, and A = (a1, · · · , am) is the SDA function.
The parameter k represents the number of neurons in each
group. Let hi denote the hidden variables in the i-th layer,
with h0 = x being the input and ĥm+1 = f(x) being the
output. We can recursively define the mapping f as follows:

ĥi = wi · hi−1 + bi,Acti = argmin
g
∀(g − 1) · k < j ≤ g · k, ĥi,j > 0,

Inai = argmin
g
∀(g − 1) · k < j ≤ g · k, ĥi,j < 0.

hi,j =


α · ĥi,j , (Acti − 1) · k < j ≤ Acti · k
0, (Inai − 1) · k < j ≤ Inai · k
ĥi,j , else,

(2)



Note that the Acti or Inai in (2) may not exist in some
layers. In this case, SDN simply abandons the active or
inactive door when mapping through these layers.

IV. COMPLETE MODELING

A. Modeling the activation conditions
As discussed in Section III-A, the specification of FNNs
depends on the Activation Patterns (AP), i.e., the different
configurations of active and inactive neurons in the network.
For a SDN with m layers, we define an activation pattern
A = (Act1, Ina1, · · · , Actm, Inam), where Acti and Inai
correspond to the indices of the active and inactive doors in
layer i, respectively (counting from 0 to be consistent with
the code). If the active or inactive door does not exist, we fill
Acti or Inai with ni

k (the number of groups in this layer).
Therefore, given an activation pattern A, we give the

specification of activation conditions as:

for i in range(m):
if Act[i ] != n[ i ]// k:

s .add([_Hidden[i ][ j ] > 0 for j in range(Act[i ] * k, (
Act[ i ]+1) * k) ])

if Inc[ i ] != n[ i ]// k:
s .add([_Hidden[i ][ j ] < 0 for j in range(Ina[ i ] * k, (

Ina[ i ]+1) * k) ])

The constraint is denoted as CAP (A) and skipped when
Act[i] or Ina[i] is equal to ni

k . Note that we do not explicitly
model the minimality of Act[i] or Ina[i], which may result in
covered and common boundaries of activation regions.

The above issues are addressed by successively eliminating
already-covered or common boundaries in [8]. For instance,
to remove covered or common boundaries with a previous
region

∧
Pj , they conjunct each ¬Pj with

∧
i Ri to create

a new region. Using this approach, we only need to consider
¬CAP (A′)∧CAP (A) to remove covered and common bound-
aries with A′ for A.
B. Modeling Sliding Door Activation
Recall from Section III-A that we have modeled the linear
transformation from hi−1 to ĥi. Now, we provide the formal
specification of the activation function hi = ai(ĥi−1), which
is dependent on a given activation pattern A.

for i in range(m):
for j in range(n[i ]// k) :

if Act[i ] == j : # Active Door
s .add([Hidden[i ][ j+l] == alpha * _Hidden[i ][ j ] for

l in range(k) ])
elif Ina[ i ] == j : # Inactive Door

s .add([Hidden[i ][ j+l] == 0 for l in range(k) ])
else : # Trivial Door

s .add([Hidden[i ][ j+l] == _Hidden[i ][ j ] for l in
range(k) ])

We denote this set of constraints (including the constraints
on linear mappings) as CForward(A).
C. Modeling the Adversarial Dangerous Regions
Recall our refined definition of ADRs in Section II, where
we aim to find feasible y that satisfies the boundary condition
(i.e., ∃i ̸= j such that ∀k ̸= i, j. F (y)i = F (y)j ≥ F (y)k) and

the meaningful condition (i.e., F̃ (y) = i). In Section III-A, we
present the Z3 specification for the boundary condition, which
we denote as CBoundary(i, j). [8] attempt to find feasible and
meaningful solutions in the ADRs instead of considering the
meaningful condition. Specifically, a trained autoencoder [1] is
used to optimize a feasible solution x0 in a given ADR, while
ensuring that it remains within the same ADR. However, this
optimization-based method has some limitations. For instance,
the meaningful solution may not always exist for all ADRs,
which is a possible scenario when all samples in the region
are deemed "rubbish". Additionally, optimizing the solution
along certain directions within the region can be extremely
time-consuming.

Therefore, we propose a new approach that allows for more
straightforward identification of meaningful samples. Note that
the meaningful condition is F̃ (y) = i. While judging each
sample by F̃ (i.e., human-perception) is not practical, we can
still use autoencoders as surrogate models.

For a given class i ∈ {1, 2, · · · ,K}, we hope to find a
meaningful region by the surrogate model AE where F̃ (y) =
i. To achieve this, we train an autoencoder E(·) and leverage it
to define the center of class i as ci = 1

|Xi|
∑

x∈Xi
E(x), where

E(·) is the encoder function, and Xi represents the samples in
the training set with class i, and define the prototype of class
i as Pi = D(ci). The prototype model for class i is decoded
from the average code of samples in that class, making it
a standard representation of that class. Our assumption is
that any meaningful sample y with F̃ (y) = i should not be
significantly different from the prototype Pi. To ensure this,
we restrict y to a meaningful region |y−Pi|p ≤ r, where r is
a pre-specified radius. It’s worth noting that the definition of
the meaningful region is fundamentally different from that of
adversarial examples (see Section II), where the perturbation
δ is limited to a specific bound ϵ. Generally, r is much larger
than ϵ, as all samples in this region are close to the prototype
and potentially meaningful. The definition of adversarial ex-
amples is more restrictive than that of meaningful regions, as
it only focuses on a small perturbed region.

Based on the above analysis, taking l∞-norm as example,
we specify the meaningful condition as follows:

for i in range(d):
s .add([ Input [ i ] − P[i ] < r , P[i ] − Input [ i ] < r ])

We denote this set of constraints as CMeaningful(i). So far,
we have completed all specifications for DeepGlobal in Z3. To
find the feasible and meaningful sample y in the target class
i, which is on the decision boundary of the boundary class j,
with regard to activation pattern A, one only need to solve the
following constraints in Z3:

CInput ∧ CAP (A) ∧ CForward(A)∧
CBoundary(i, j) ∧ CMeaningful(i).

V. ALGORITHMIC IMPLEMENTATION DETAILS

In this section, we demonstrate the implementation of using
Z3 solver to specify the DeepGlobal framework and identify
global adversarial regions.



Algorithm 1: Find feasible and meaningful solutions
Input: SDN Network f = (m,N,W,A, k); Target

class i; Boundary class j
Output: Feasible and Meaningful solutions

1 Initialize CInput, CBoundary(i, j), CMeaningful(i);
2 CChecked ← ∅;
3 Solutions← ∅;
4 for All valid AP A do
5 s← new Z3 solver;
6 s.add([CInput, CBoundary(i, j), CMeaningful(i)]);
7 s.add( ¬CChecked );
8 s.add([CAP (A), CForward(A)];
9 if s.solve() == sat then

10 Solutions.Append(s.model());
11 end
12 CChecked ← Cchecked ∨ CAP (A);
13 end
14 return Solutions;

To find samples y that belong to class i and are on the deci-
sion boundary of class j (i.e., F (y)i = F (y)j ≥ F (y)k(∀k ̸=
i, j)), we need to enumerate all target-boundary class pairs
(i, j), which form a complete set of samples supporting the
ADRs and are referred to as boundary samples.

Algorithm 1 presents a complete workflow for this im-
plementation. Line 1 initializes the input, boundary, and
meaningful constraints, which are shared for each valid ac-
tivation pattern. In line 2, we use Cchecked to track the
regions that have already been checked in previous activation
patterns to avoid redundancy, as described in Section IV-A.
The Solutions list in line 3 stores the solved feasible and
meaningful samples. In lines 4-8, we create a Z3 solver s for
each valid activation patternA and add the required constraints
to it. If the constraints can be solved, we append the generated
sample to Solutions as shown in lines 9-11. A checked region
is added to Cchecked in line 12 to avoid solving it again for
other activation patterns. The algorithm returns all feasible and
meaningful solutions for target class i and boundary class j.

We now discuss the details for implementing enumeration
of activation patterns in line 4 of Algorithm 1. Recall that there
are ni

k +1 possible values for Acti and Inai, respectively. The
unique constraint on Acti and Inai is (Acti ̸= Inai)∨Acti =
ni

k , since any group cannot be both active and inactive door,
except one case that Acti = Inai = ni

k , i.e., the groups
are neither activated nor inactivated. We arrange all activation
patterns in a tree structure. In this way, we can implement the
enumeration of activation patterns by breadth-first searching
and execute from the shallow layers to the deep layers.

The experiment includes two parts: the utilization of au-
toencoders and the generation of boundary and adversarial
examples. Autoencoders are employed to generate prototypes
for each dataset that represent meaningful samples with ex-
plicit semantics. The prototypes can be used for global verifi-
cation, distinct from instance-wise local robustness. Boundary

samples were produced for each class by identifying samples
that are situated on the decision boundary between that class
and the adjacent class. Adversarial examples were generated
from both the exact and relaxed boundary regions. Starting
from the boundary samples, perturbations were added to
create adversarial examples. More details can be found in
https://arxiv.org/abs/2304.10558.

VI. CONCLUSION

In this paper, we provide a complete and refined definition
of SDNs and ADRs in the DeepGlobal framework. We then
present a complete specification of the framework using the
SMT solver Z3 and demonstrate its detailed algorithmic imple-
mentation. Additionally, we leverage prototypes crafted by au-
toencoder to improve the verification framework by searching
for meaningful solutions. The experiments on two benchmark
datasets show that increasing the activation coefficient α
will lead to better model performance. Besides, the proposed
specification support the generation of extensive boundary and
adversarial samples, which can be used for identifying global
ADRs of a given model. The selected customized tactics in
Z3 further improve the effectiveness of our framework.

ACKNOWLEDGEMENT

This research was sponsored by NSFC under Grant No.
62172019, and CCF-Huawei Populus Grove Fund.

REFERENCES
[1] D. Bank, N. Koenigstein, and R. Giryes. Autoencoders. arXiv

preprint arXiv:2003.05991, 2020.
[2] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaud-

huri, and M. Vechev. Ai2: Safety and robustness certification
of neural networks with abstract interpretation. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 3–18, 2018.
doi:10.1109/SP.2018.00058.

[3] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[4] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety
verification of deep neural networks. In International conference
on computer aided verification, pages 3–29. Springer, 2017.

[5] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu.
Towards deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083, 2017.

[6] L. d. Moura and N. Bjørner. Z3: An efficient smt solver.
In International conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 337–340. Springer,
2008.

[7] W. Ruan, M. Wu, Y. Sun, X. Huang, D. Kroening, and
M. Kwiatkowska. Global robustness evaluation of deep neural
networks with provable guarantees for the hamming distance.
International Joint Conferences on Artificial Intelligence Orga-
nization, 2019.

[8] W. Sun, Y. Lu, X. Zhang, and M. Sun. Deepglobal: A
framework for global robustness verification of feedforward
neural networks. Journal of Systems Architecture, 128:102582,
2022.

[9] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199, 2013.

[10] H. Zhang, H. Chen, C. Xiao, S. Gowal, R. Stanforth, B. Li,
D. Boning, and C.-J. Hsieh. Towards stable and efficient
training of verifiably robust neural networks. arXiv preprint
arXiv:1906.06316, 2019.

https://arxiv.org/abs/2304.10558
https://doi.org/10.1109/SP.2018.00058

	Introduction
	Preliminaries
	Formalization of Sliding Door Networks
	Formulation of FNNs
	Formulation of SDNs

	Complete Modeling
	Modeling the activation conditions
	Modeling Sliding Door Activation
	Modeling the Adversarial Dangerous Regions

	Algorithmic Implementation Details
	Conclusion

