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Abstract—As cloud computing becomes more prevalent in various
domains, such as e-commerce, healthcare, education, etc., there is
a growing demand for cloud-based applications that can perform
complex tasks by integrating multiple cloud services. Despite
QoS-aware automatic service composition has been extensively
studied, conventional approaches face limitations in evaluating
intelligent services and ensuring correctness and reliability for
AI systems. To address these challenges, we propose five metrics
for differentiating between intelligent and non-intelligent services
and evaluating service composition solutions based on user-
defined metrics constraints. We also explore ways to improve
system correctness and reliability, and adapt these approaches
to fit with AI systems. Building on these insights, we propose
ASC4AI, a novel automatic service composition framework
designed specifically for AI systems, which can automatically
generate service composition solutions that meet user-defined
functional and metrics constraints. Furthermore, we implement
ASC4AI as a user-friendly tool that minimizes technical com-
plexity for developers.

Index Terms—Artificial intelligent systems, Automatic service
composition, Service metrics, Service composition patterns

I. INTRODUCTION

As cloud native technology advances, the use of cloud ser-
vices for performing complex tasks has become increasingly
popular. Additionally, to promote the diffusion and adoption
of AI technologies form cloud, cloud service providers have
started to offer out-of-the-box reasoning services [1]. However,
service-oriented AI systems consist of a multitude of logical
independent intelligent and non-intelligent services, which
makes existing service composition approaches and evaluation
metrics unsuitable for AI systems. Hence, it is necessary
to develop a new automatic service composition framework
specifically tailored to AI systems.

To our knowledge, no study has yielded a systematic solution
to the problem. For example, some works propose to automatic
service composition based on the service description model,
but this approach not be suitable for AI systems due to lack
evaluation metrics and satisfy user constraints [2]–[4]. And
some other works propose to evaluate the reliability of the
component-based systems [5]–[7], but user constraints extend
beyond just reliability metrics.
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Therefore, an intuitive idea we want to explore is, can we
automatically provide service composition solutions to satisfy
specific metrics constraints for AI systems? Realizing this
intuition based on existing research raises two challenges:
(1) Establishing distinct metrics for AI systems can help
differentiate between intelligent and non-intelligent services.
(2) Automatically compositing services that can meet user
workflow’s functional and metrics constraints while enhancing
correctness or reliability.

Regarding the first challenge, we begin by defining what is
intelligent task or service in AI systems. Next, we propose five
key metrics extended quality of service: correctness, reliability,
throughput, response time, and GPU memory usage. Of these
metrics, correctness stands out as particularly important since
it provides a comprehensive measure of AI systems accuracy
and can effectively differentiate between intelligent and non-
intelligent services based on functionality.

To address the second challenge, we compare the semantic
information of services’ input and output to determine com-
patibility and establish edges between matching services with
associated metrics information for automatic composition. In
terms of correctness and reliability, we analyze commonly
used service composition patterns. Our findings suggest that
fault-tolerant structures can enhance system correctness and
reliability. These structures can be customized and applied to
critical service nodes to effectively improve AI systems.

Based on the above explorations, we have designed a frame-
work for automatic service composition called ASC4AI. This
framework is capable of automatically generating service
composition solutions that meet user-defined metrics and
functional constraints, while improving the correctness or
reliability of the solution. To make it more accessible, we have
also developed a user-friendly tool that simplifies the technical
complexity for developers or users.

The main contributions of this paper are as follows:

• We propose five metrics for AI systems: correctness,
reliability, throughput, response time and GPU memory
usage that can be used to differentiate between intelligent
and non-intelligent services.



• We design a framework for AI systems that can automat-
ically generate trustworthy and reliable service composi-
tion solutions and implement the framework as a user-
friendly tool. The result demonstrates that our approach
can be applied to AI systems.

The rest of this paper is organized as follows. In Section
II, we review the related work. In Section III, we introduce
the architecture of ASC4AI. In Section IV, we present the
process of the proposed approach and the evaluation method.
In Section V, we present the implementation of the framework
and a case study. Finally, we conclude this paper in Section
VI.

II. RELATED WORK

Approaches for ASC problem can be categorized into AI plan-
ning or graph-based. For instance, [8] proposes an integrated
approach for automated semantic web service composition us-
ing AI planning techniques. The authors of [2] and subsequent
work [3] address the automatic service composition and QoS-
aware service selection by utilizing an inverted index table
and a counting mechanism. However, their works focus solely
on generating optimal QoS-aware compositions without taking
into account user QoS requirements constraints and intelligent
services.

To guarantee QoS requirements constraints of users, the QoS-
aware ASC problem has attracted the attention of a lot of
researchers from different fields. For example, [9] introduce a
top k query mechanism to satisfy user constraints as much as
possible. The work in [10] presents a novel approach based
on a Harmony Search algorithm under respect global QoS
constraints. In [11] the authors propose a new SOC-based
approach to ensure application development which ensures the
discovery, selection, and composition of the most appropriate
Web services to meet the developer requirements. Unfortu-
nately, these approaches do not consider the reliability and
correctness of the AI systems.

In many cases, the effects of service faults on the business
are disastrous. The fault-tolerant structure can improve the
reliability and real-time capabilities of the systems [12] and
the work in [13] detailed introduction of those structures.
Although these works can provide guidance on how to im-
prove systems reliability, further research is still needed on
how to combine automated service composition techniques to
automatically select the appropriate structure.

Overall, these approaches enable a wider search space and
flexible service composition under QoS constraints, but they
have limitations. Firstly, the composition patterns and QoS
calculation methods are not always clear. Secondly, they do
not take into account the specific requirements of AI systems.

III. ASC4AI ARCHITECTURE

The architecture of ASC4AI is illustrated in Fig. 1. The
browser, representing the presentation layer, facilitates user
visual interaction. The ASC4AI, serving as the logic layer,

generates service composition solutions that meet the metrics
constraints of the user’s workflow requirements. Finally, the
database acts as the data layer and is responsible for persis-
tently storing the data used.
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Fig. 1: ASC4AI architecture

The remainder of this section we describe the ASC4AI main
process from user requirement to automatic service composi-
tion solution generation, the compositor will be introduced in
next Section.

Users provide their workflow requirements in a flowchart
format, consisting of intelligent and non-intelligent task nodes.
Each node requires the description of input and output, func-
tional requirements, and metrics constraints. For intelligent
nodes, users must also specify the dataset used and evaluation
method. In order to better understand the workflow require-
ments, we introduce the following concepts.
1) Intelligent Tasks or Services: Intelligent tasks or services
are the ones that use artificial intelligence technology. They
have the ability to analyze and process complex data be-
yond human capabilities in specific domains. However, they
require extensive data training and GPU resources to function
efficiently. For example, image recognition is an intelligent
service, whereas adding a watermark to an image is a non-
intelligent service.
2) Interaction Patterns in Workflow: The interaction between
task nodes based four basic composite structure, Sequential,
Parallel and Conditional from [14], shown in Fig. 2. Fox
example, the workflow start from task node T1 with output
[c, d, e], then the T2 and T3 can be executed in Parallel with
input [c, d, e], output [f, g]. Finally, the output [h] is can be
executed in Conditional with conditions c1 and c2 to get final
output [i].
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Fig. 2: Workflow interaction patterns

3) Metrics: To evaluate and distinguish between intelligent
and non-intelligent services in AI systems, this paper proposes
five metrics are as follows.



• Correctness(corr) refers to the ability of a service or
component to produce accurate results. This metric is
represented as a vector corr = (e1, e2, . . . , en), where
ei represents the evaluation result obtained using various
evaluation techniques such as confusion matrix, F1-score,
ROC curve, etc. For simplifies, we use the weighted
summation to calculate the correctness, which is defined
as follows:

corr =

n∑
i=1

wie
′
i (1)

where wi is the weight of the i-th evaluation technique,
and e′i is the normalized evaluation result of the i-th
evaluation technique. For non-intelligent services, the
correctness is always 1.

• Reliability(rel) is the ability of a service or component
to perform the required functions within a specified time
interval and under specified conditions.

• Throughput(tp) refers to the ability of the service to
handle multiple requests.

• Response Time(rt) refers to the average get response time
for a single request sent to the service.

• GPU Memory(gm) reflects the minimum required GPU
memory for a service to perform optimally and often
represents the service’s usage cost, with higher GPU
Memory indicating higher cost.

Since the architecture cannot directly accept a flowchart, a data
converter is used to translate the user’s workflow requirements
into some format that can be processed by the architecture.
This converter is also responsible for translating the results
generated by ASC4AI back into a format that can be easily
parsed by the flowchart.

The split and merge workflow is a design approach that
simplifies the execution of large-scale workflows. It achieves
this by dividing them into smaller sub-workflows or task
nodes, processing each one separately, and then merging their
results to form a single completed workflow.

After obtaining a set of service composition solutions, the
user can select the most appropriate solution based on the
metrics of the service composition. The user can also modify
the workflow requirements and re-run the ASC4AI to obtain
a new set of service composition solutions.

IV. SERVICE COMPOSITOR

Our aim is to automatically generate trustworthy and reliable
service composition solutions while taking into account the
constraints of user workflow requirements. The remainder of
this section we describe the service composition process and
evaluation method.

A. Automatic Service Composition

The automatic service composition process for one task node
is shown in Fig. 3. The process includes three steps: generate
a service composition graph, find a set of service sequences

maybe DAGs that satisfy the constraints, and optimize re-
liability by replacing the key service nodes in fault-tolerant
structures.
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Fig. 3: Automatic service composition process

1) Generate Service Composition Graph: Generating service
composition diagrams requires the use of service semantic
information, and by constructing a concept tree structure,
the semantic similarity between concepts can be calculated.
Suppose the output of service A is OA and the input of service
B is IB . The formula for calculating the similarity between
OA and IB is as follows:

Sim(OA, IB) = 1−
√

1

2
a ·Dis(OA, IB) (2)

where a is Dep(OA)
Dep(IB)+Dep(OA) , Dep(X) is the depth of concept

X in the concept tree. And Dis(OA, IB) is the distance
between OA and IB in the concept tree. The distance between
two concepts is defined as the length of the shortest path
between them in the concept tree.

Once the similarity between two services up to a value θ
(which can be provided by the user) then the link between
the two services is considered to exist. After that, a service
composition directed graph is constructed starting from the
task node input to the output.
2) Find DAGs: After constructing the service composition
directed graph, the automatic service composition problem is
transformed into a directed graph path-finding problem. This
paper uses the algorithm from [2] to find all the paths that
satisfy the metrics constraints. But our approach differs from
the original method in how we calculate these new metrics for
AI systems.

In the service composition graph, it can be found the the Se-
quential and Parallel are deterministic, i.e., for the Sequential,
the output of the previous service is the input of the next
service; for the Parallel, the output of each service is the input



of the next service. So the metrics in the process of finding
the optimal path are calculated in the table I.

However, the Loop and Conditional patterns in workflow in-
teraction(see Fig. 2) involve uncertainty. For Loop, the number
of loops is uncertain, and for Conditional, the probability of
each condition is uncertain. So for these two patterns, we can
calculate the corresponding metrics based on the component
[15], [16] analysis, and a workflow is a component(task node)
software with transfer probabilities(can be specified by user).
We also have some assumptions: (1) The correctness and
reliability of a task node is known (determined by calculating
the service composition later). (2) The control transfer between
task nodes is Markovian in nature, i.e., future behavior is
independent of past behavior. (3) The failure of one task node
does not affect any other task node.

In this way, the calculation method for each metric can be
obtained shown in Table I. In the table, Pi,j represents the
probability of task node Ti transitioning to task node Tj , while
k denotes the maximum loop value collected by users.

TABLE I: Metrics calculation method for Sequential, Parallel,
and Conditional

Metrics Sequential Parallel Conditional

qcorr
∏n

i=1 q
corr
i

∏k
i=1 q

corr
i Pi,jq

corr
j + Pi,kq

corr
k

qrel
∏n

i=1 q
rel
i

∏k
i=1 q

rel
i Pi,jq

rel
j + Pi,kq

rel
k

qtp min{qtp1 , . . . , qtpn } min{qtp1 , . . . , qtpk } Pi,jq
tp
j + Pi,kq

tp
k

qrt
∑n

i=1 q
rt
i max{qrt1 , . . . , qrtk } Pi,jq

rt
j + Pi,kq

rt
k

qgm max{qgm1 , . . . , qgmn }
∑k

i=1 q
gm
i Pi,jq

gm
j + Pi,kq

gm
k

3) Optimize Correctness and Reliability: AI systems used in
production require accuracy and reliable capabilities. However,
a limitation of the previously mentioned algorithms is that if
any service within the service composition solution fails or
produces an error output, it can cause a system-wide failure.
Since we do not have prior knowledge of a service’s internal
implementation, we can only improve these capabilities of AI
systems by using functionally equivalent components for fault-
tolerant processing.

To more efficiently determine which service nodes should use
a fault-tolerant structure, i.e. which service nodes have the
greatest impact on the system, we use a method proposed in
[17] as follows:

Fi = α1InF (i) + α2InP (i) + (1− φ)InS(i) (3)

where InF (i), InP (i), and InS(i) represent failure influence,
fault propagation influence and self-influence of service i,
respectively. The user can provide the weights of the three
influences, which are represented by α1, α2, and φ = α1+α2.

In this way, three commonly fault-tolerant structures can be
used to improve correctness or reliability capabilities are
shown in Fig. 4. The following introduces the three fault-
tolerant structures in detail.
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Fig. 4: Three commonly used fault-tolerant structures

• Recovery block mechanism(RB): When the main service
fails, the backup services will be executed in sequence,
and the recovery block mechanism will only fail when
all the services have failed.

• Parallel strategy(PS): Multiple independent services are
called in parallel, and the final result is determined by
the return result of the first service. This strategy will
only fail if all services fail to execute.

• N-version programming(NVP): Multiple independent ser-
vices are called in parallel, and the final result is deter-
mined by a voting result. Typically, when M services are
executing normally, N-version programming will not fail,
where M is equal to [n/2] + 1, the number of services
executing in parallel is n.

It should be noted that when a fault-tolerant structure is used,
we assume that all services are executed and the final selection
of results follows the uniform distribution. The calculation
method is shown in Table II.

TABLE II: Metrics calculation method for fault-tolerant struc-
tures

Metrics Recovery Block Parallel Strategy N-version Programming

qcorr 1
n

∑n
i=1 q

corr
i

1
n

∑n
i=1 q

corr
i 1−

∏n
i=1 (1− qcorri )

qrel 1−
∏n

i=1(1− qreli ) 1−
∏n

i=1(1− qreli ) R′∗

qtp min{qtp1 , . . . , qtpn } min{qtp1 , . . . , qtpn } min{qtp1 , . . . , qtpk }
qrt

∑n
i=1 q

rt
i max{qrt1 , . . . , qrtn } max{qrt1 , . . . , qrtn }

qgm max{qgm1 , . . . , qgmn }
∑n

i=1 q
gm
i

∑n
i=1 q

gm
i

* Assuming a three-version structure, with each service’s reliability being
qreli , and requiring M = 2 services to be functioning normally, the
reliability of the structure is : R′∗ = qrel1 qrel2 qrel3 +qrel1 qrel2 (1−qrel3 )+
qrel1 qrel3 (1− qrel2 ) + qrel2 qrel3 (1− qrel1 ).

While fault-tolerant structures may decrease certain metrics
such as correctness, throughput, and response time, they are
generally effective at identifying a range of solutions that
satisfy user constraints under normal conditions. If the user’s
constraints are not met, the approach can still offer several
relatively better composition solutions for the user to choose
from or modify.

B. Evaluation

After the metrics of the service composition solution are
calculated, the evaluation is performed, which based on the
user’s constraints and the metrics of the service composition
solution. These metrics are classified into positive and negative
attributes. Positive attributes are characterized by higher values



being better, such as correctness, reliability and throughput.
Negative attributes are characterized by smaller values being
better, such as average response time and GPU graphics
memory.

Since the metrics of a service are not always within the
same range, differences in such ranges will impact the final
evaluation results. To address this issue, we normalize the
metrics of the service to a range of [0, 1] before evaluation. The
resulting normalized for both positive and negative attributes
can be defined as follows:

For positive, q′i =

{
qi−qmin

i

qmax
i −qmin

i
, qmin

i ̸= qmax
i

1, qmin
i = qmax

i

(4)

For negative, q′i =

{
qmax
i −qi

qmax
i −qmin

i
, qmin

i ̸= qmax
i

1, qmin
i = qmax

i

(5)

where q′i is the normalized metric of the service, qi is the one
metric of the service, qmin

i and qmax
i are the minimum and

maximum values of the metric, respectively.

However, users have varying preferences for different metrics.
For example, some may prioritize higher throughput and lower
response time. The user’s preferences can be represented by a
weight vector w = (w1, w2, · · · , wn), where wi is the weight
of the ith metric. The weight vector is normalized to the range
of [0, 1], and the sum of the weight vector is 1. The score of
the service is then calculated as follows:

Scoremetrics =

n∑
i=1

wiq
′
i (6)

By doing this, we can obtain the score of the candidate
service composition solution(Scorecomposition) and the con-
straint score of the task node(Scoreconstraints). The constraint
score of the workflow is calculated based on the user’s
workflow requirements, which are represented by a constraint
vector c = (c1, c2, · · · , cn), where ci is the constraint of the
ith metric.

Once we have obtained the metrics score and constraints score,
we can get the overall score(Score = Scorecomposition −
Scoreconstraints) of the service composition solution by sub-
tracting the two values. The overall score should be positive,
otherwise, it means that the candidate service composition
solution does not meet the user’s workflow requirements.

If the weighted sum method fails to meet all requirements, a
full evaluation method is available. Unfortunately, it’s unlikely
that all metric constraints can be met in real systems. This
method involves comparing the number of metrics that a
service composition solution with the given constraints and
determining its domination number. The resulting value is then

subtracted from 5 (the total number of metrics in this paper)
to align with the weighted sum method.

V. CASE STUDY

This section demonstrates the application of the proposed ap-
proach using a traffic light recognition example from Baidu’s
open-source Apollo platform in the context of advanced au-
tonomous driving systems that contain both intelligent and
non-intelligent services driven by machine learning.

The workflow example includes three tasks, as illustrated in
Fig. 5. The first task detects signal lights, determines the
traffic light style using an input image, and outputs the traffic
light style and the cropped image. Then, a conditional node is
employed to execute different tasks based on the traffic light
style and probability. The remaining tasks are intelligent, but
differ in the datasets used for training and styles of traffic
lights applied.

Fig. 5: Workflow design

The generate service composition solutions shown in Fig. 6.
With the aid of expert evaluation, our tool can generate service
composition solutions that meet user demand constraints.

VI. CONCLUSION

In this paper, we present ASC4AI, a framework for au-
tomated service composition, which is tailored specifically
for AI systems. The novelty of our framework is that we
propose five metrics executed quality of service that distin-
guish intelligent services from non-intelligent ones. We also
utilize fault-tolerant structures to improve the correctness and
reliability capabilities of AI systems. Furthermore, we have
developed a user-friendly tool based on the ASC4AI that has
been successfully applied to intelligent manufacturing systems.
Our ongoing research efforts aim to improve the algorithm
efficiency and add more service composition patterns to the
framework.
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Fig. 6: Service composition solution
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