
An Empirical Study of Adversarial Training in
Code Comment Generation

Yiheng Shen
Nantong University

China
yiheng.s@outlook.com

Xiaolin Ju∗
Nantong University

China
ju.xl@ntu.edu.cn

Xiang Chen∗
Nantong University

China
xchencs@ntu.edu.cn

Guang Yang
Nanjing University of Aeronautics

and Astronautics, China
novelyg@outlook.com

Abstract—The code comment generation task is designed for
developers to understand programs more quickly during devel-
opment and maintenance. However, the existing automatic code
comment generation models can not generate valuable comments
for developers. It is necessary to explore a technology that can
optimize the performance of code comment generation models
without changing the model. We consider adversarial training
as the experimental object, which can improve the robustness
and generalization of the model. We present a large-scale study
to experimentally validate the performance of gradient-based
adversarial training methods in the code comment generation
task. The results show that adversarial training can improve the
model performance by generating adversarial examples without
changing the model. Our empirical study can provide a new
perspective for researchers to improve the performance of code
comment generation models.

Index Terms—Code comment generation, Adversarial Train-
ing, Bash code, Deep Learning, Empirical Study

I. INTRODUCTION

Research shows that software developers and maintainers
spend 59% [1] of their time on program understanding. A
good code comment can improve the efficiency of software
development and maintenance. Automating the generation of
comments for code is a pressing issue. With the development
of deep learning techniques and pre-trained models, the task of
automatic code comment generation has also achieved SOTA
(state-of-the-art) in academic research [2], [3]. However, recent
empirical studies have shown that comments automatically
generated for code based on existing models [3], [4] are
ineffective in guiding developers. For example, Mastropaolo et
al. [5] found that only 10% of the comments could reach the
level of human writing. This suggests that software comment
generation is still a development away from full industrial use.

For this reason, we consider using some techniques to
optimize the model performance without changing the model,
and adversarial training is a good way. Some studies used rule-
based adversarial training methods in NLP (Natural Language
Processing) tasks. For example, Ribeiro et al. [6] found that
adversarial attacks can be useful when debugging NLP models.
Zhang et al. [7] also found that model performance can be
significantly improved in the field of code comment generation
by generating adversarial examples. Different adversarial rules

∗ Corresponding author.
DOI reference number: 10.18293/SEKE2023-108.

have been designed for various natural language processing
(NLP) tasks. In this context, we focus on gradient-based adver-
sarial training methods [8]–[11] and present a large-scale study
evaluating the impact of adversarial training on code comment
generation. Previous studies have not investigated whether
gradient-based adversarial training methods can optimize the
performance of code comment generation models.

In our empirical study, we explore the performance of
gradient-based adversarial training methods on different code
annotation generation models and different adversarial training
methods on the same model. We considered four classic
adversarial training methods: FGSM [8], FGM [9], PGD [10],
and FreeLB [11]. Moreover, we also consider three types of
code comment generation methods: deep learning-based [12],
[13], pre-trained model-based [3], [4], [14], and hybrid model
[5], [15], [16].

In summary, the contributions of our empirical study can be
summarized as follows.

• To the best of our knowledge, we are the first to in-
vestigate improving the performance of code comment
generation models by adversarial training.

• We conducted a large-scale empirical study to investigate
this issue. In our empirical study, we selected five adver-
sarial training methods and three types of code comment
generation models. Our empirical results validate that
adversarial training can improve the performance of code
comment generation models. Moreover, we find that
the PGD method is optimum for evaluating different
adversarial training methods.

• To let other researchers follow our research, we shared
our scripts, datasets, and results on the project homepage
1.

II. RELATED WORK AND RESEARCH MOTIVATION

In this section, we first analyze the work related to the task
of adversarial training and code comment generation. After
analyzing the relevant research, we emphasize the novelty of
this research.

A. Code Comment Generation
Code comment generation [2], [5], [12] can be defined as

a code understanding and neural machine translation problem.

1https://github.com/syhstudy/AT_Empirical_Study



We classify these studies into information retrieval-based, deep
learning-based, and hybrid methods. The method based on
information retrieval is applicable to code with high reusabil-
ity. Wong et al. [17] used SIM (a token-based code cloning
detection tool) to detect stack overflow code fragments and
corresponding descriptions, which used the detected pseu-
docode as the final comment. Recently, Yang et al. [18]
proposed the method CCGIR, which retrieves smart contract
codes based on semantic similarity, lexical similarity, and
syntactic similarity. In terms of deep learning-based methods,
Allamanis et al [19] put forward a model, which uses CNN
and attention mechanism to detect the attention characteristics
of local time-invariant and remote topics, and uses GRU to
decode the output. Recently, Yang et al. [2] proposed a new
Transformer-based method ComFormer and a fusion method
based on mixed code representation. The hybrid method takes
advantage of both information retrieval and deep learning. Li et
al. [20] combined the code comments obtained by information
retrieval with the semantic information of the input code to
generate code comments. Recently, Yu et al. [16] proposed
a hybrid method of two-stage training, which generates Bash
comments through one-stage information retrieval and two-
stage CodeBERT fine-tuning.

B. Adversarial Training in NLP

Adversarial training is an important way to enhance the
robustness of neural networks. In the process of adversarial
training, examples will be mixed with some small perturba-
tions (the change is small, but it is likely to cause misclassifi-
cation), and then the neural network will adapt to this change,
thus being robust to adversarial examples.

The general principle of adversarial training can be summa-
rized as the following maximum-minimum formula:

min
θ

E(x,y) ∼ D

[
max
∥δ∥≤ϵ

L(fθ(X + δ), y)

]
(1)

where x represents input, δ represents perturbation, y rep-
resents the label of the example, and max(L) represents the
optimization objective.

In the NLP (natural language processing) domain, typical
adversarial training methods can be categorized as rule-based
and gradient-based methods. In terms of rule-based methods,
researchers generate adversarial examples by heuristic rules.
Ebrahimi et al. [21] proposed a white-box method, which uses
character/word substitution to generate adversarial examples.
Ribeiro et al. [6] found that adversarial attacks can be useful
when debugging NLP models. Cheng et al. [22] also found
that model performance can be significantly improved in the
field of neural machine translation by generating adversarial
examples. In the type of gradient-based methods, researchers
generate adversarial examples by adding a perturbation to
the Embedding layer. Miyato et al. [9] introduced adversarial
training and virtual adversarial training [23] to improve the
performance of classification models. Zhu et al. [11] proposed
FreeLB for the language model, which promotes higher invari-
ance in the embedding space by adding hostile perturbation to

the word embedding and minimizing the risk of result hostility
in different regions around the input sample. Recently, Zhou
et al. [24] achieved optimal performance using adversarial
training and integrated learning techniques by two separately
trained encoder-decoder models for source code sequences and
corresponding abstract syntax trees (ASTs) in the area of code
summarization generation.

C. Research Motivation

Research [5] shows that only 10% of the automatically
generated comments can reach the human level. For this
reason, we hope to explore a technology that can optimize
the model performance without changing code comment gen-
eration models, and verify the feasibility of this exploration
direction through preliminary results. We consider adversarial
training as the experimental object, which can improve the
robustness [25] and generalization [26] of the model, and
can also be used as a technology for data augmentation [27].
However, to the best of our knowledge, we haven’t found any
work related to adversarial training in code comment genera-
tion task. To fill this gap, we have done novel experiments
to explore the performance of adversarial training in code
comment generation.

III. RESEARCH QUESTIONS

In our empirical study, we aim to answer the following three
research questions (RQs).
RQ1: How efficient is adversarial training on classic deep
learning models?
Motivation. The classical deep learning model is a highly
recognized model in earlier studies, and it is often used as
a baseline in current studies [16], [28]. We consider them as
experimental objects, which can better reflect the rigor of our
experiments.
RQ2: How efficient is adversarial training on pre-trained
models?
Motivation. Code comment generation task is a typical text-
to-text problem and PLMs (pre-trained language models) [3],
[4], [14] have achieved SOTA in the current task, which
is the focus of current researchers. We consider them as
experimental objects, which can better reflect the universality
of confrontation training.
RQ3: How efficient is adversarial training on hybrid
models?
Motivation. The hybrid models [5], [15], [16] use deep
learning and information retrieval technology to enhance the
model representation through retrieval. We consider them as
experimental objects, which can better reflect the comprehen-
siveness of our experimental setup.

IV. CASE STUDY DESIGN

In this section, we describe our experimental setup to
address our research questions. We show the overview of our
experiment design in Figure 1. This figure mainly shows the
process of building code comment generation models through
adversarial training method.



Adversarial
Training

Code Comment
Generation models

original-input

example_1

······

Training Data
Comment

Fig. 1. Overall framework of our experiment design.

A. Experimental Subject

We consider the corpus shared by Yu et al. [16] as the
experimental object in our research and continue to do re-
search on more corpus in the future. This high-quality corpus
contains 10,592 samples from NL2Bash [29] and NLC2CMD
competition2. The statistics of corpus are shown in TABLE I.

TABLE I
LENGTH STATISTICS OF SAMPLES IN THE CORPUS

Code length statistics

Average Mode Median <16 <32 <48
8.528 4 7 90.8% 99.7% 99.9%

Code comment length statistics

Average Mode Median <16 <32 <48
11.874 10 11 80.3% 99.5% 99.9%

In this table, we find that Bash codes and comments are
mostly within 48. In the corpus division, we use the random
sampling method [28] to randomly divide the corpus into the
training set, evaluation set, and test set according to the ratio
of 8:1:1.

B. Performance Measures

In order to quantitatively compare the performance of each
code comment generation method, we consider three perfor-
mance metrics (BLEU [30], METEOR [31] and ROUGE-L
[32]) from the research of neural machine translation. These
performance metrics are also widely used in the research of
automatic code comment generation [33], which can compare
the quality of generated comments and reference comments.
The higher the calculated performance metric, the better the
performance of the corresponding method.

We use the implementation provided by the nlg-eval library3

to evaluate the performance, which can avoid the difference
in results caused by different experiments.

C. Adversarial Training Methods

Adversarial training generates adversarial examples xadv by
adding perturbation δ to model input x, where xadv = x +
δ. In this experiment, we mainly consider the following four
methods of adversarial training that are often used in NLP:

• FGSM. FGSM is a method of adversarial training pro-
posed by Goodfellow et al. [8]. The input gradient is
g = ∇xL(fθ(x), y), where θ is the model parameter
value, x is the model input, y is the label, and L() is

2https://eval.ai/web/challenges/challenge-page/674/leaderboard/1831
3https://github.com/Maluuba/nlg-eval

the loss function of the training model. The perturbation
goes to the maximum of the loss function along the
gradient direction, which is expressed as δ = ϵsign(g),
where sign() is the regularization method, and ϵ is the
constraint that the perturbation is limited by infinite norm
(i.e. ∥δ∥∞ < ϵ).

• FGM. FGM is also the method proposed by Goodfellow
et al. [9]. Unlike FGSM, which takes the sign function to
regularize the gradient, FGM carries out L2 regularization
on the gradient. In addition, FSGM takes the same step
in each direction, while FGM scales according to the
specific gradient to get better adversarial examples. The
perturbation is expressed as δ = ϵ(g/ ∥g∥2), where ϵ is
the constraint of perturbation (L2 norm of the distance
between the original example and the adversarial example
is always ϵ).

• PGD. FGM calculates the perturbation directly through
epsilon parameter, which may not be optimal. Therefore,
PGD [10] has been improved and iterated several times to
find the optimal perturbation. The input gradient of each
step is expressed as gt = ∇xt

L(fθ(xt), y) and the per-
turbation of each step is expressed as δt = ϵ(gt/ ∥gt∥2).
In the iteration, δt is gradually accumulated, and only the
gradient calculated by the last xt + δt is used when the
parameters are finally updated.

• FreeLB. In order to find the optimal perturbation, Zhu
et al. [11] proposed the FreeLB method. PGD takes the
gradient gt of the last perturbation after iterating K times
when updating parameters, and FreeLB takes the average
gradient gavg of K times of iteration when updating
parameters, where gavg = (g1 + · · ·+ gt)/t.

D. Code Comment Generation Methods

To show the feasibility of our proposed research, we have
recently considered three types of methods that researchers
have focused on (i.e., classical deep learning method, pre-
training model method, and hybrid method).

The first type is deep learning-based methods.
• CODE-NN. CODE-NN [12] is the first to generate code

comments using LSTM and attention mechanism.
• Transformer. Transformer [13] is an encoder-decoder

model that utilizes the self-attention mechanism.
The second type is pre-trained-based methods.
• CodeBERT. CodeBERT [34] builds the model based on

the neural architecture of Transformer, and uses the mixed
objective function to train the model.

• UniXcoder. UniXcoder [14] is a unified cross-modal pre-
trained model, which uses a masked attention matrix
to control the model and uses cross-modal content to
enhance code representation.

• CodeT5. CodeT5 [3] supports multi-task learning and can
make better use of the information of code tokens to train
the model.

The third type is the methods of hybrid information retrieval
and deep learning techniques.

https://eval.ai/web/challenges/challenge-page/674/leaderboard/1831
https://github.com/Maluuba/nlg-eval


• Rencos. Rencos [15] first retrieves similar codes, and then
the encoder vectors are fused by the decoder.

• Hybrid-DeepCom. Hybrid-DeepCom [5] considers the
semantics of Java and traverses AST to obtain syntax
information and structure information of the code.

• BASHEXPLAINER. BASHEXPLAINER [16] utilizes
two-stage training strategies: fine-tuning stage and the
information retrieval enhancement stage.

E. Experimental Settings

We implement our experiment based on Pytorch 2.0. Specif-
ically, we choose AdamW as the optimizer and utilize Hug-
gingFace 4 to implement our selective method. We set the
value of epoch to 30 and set early stopping with epoch 5.

We run all the experiments on a computer with an Intel
CPU i5-13600K and a GeForce RTX 4090 GPU with 24 GB
memory. The running OS platform is Windows OS.

V. RESULT ANALYSIS

A. RQ1: How efficient is adversarial training on classic deep
learning models?

TABLE II
COMPARISON BETWEEN BASELINES OF DEEP LEARNING MODELS

WHETHER TO ADD PGD

Model Name BLEU-3 BLEU-4 METEOR ROUGE-L

CODE-NN 29.53 24.17 26.85 47.21
32.15 27.55 27.98 49.44

Transformer 25.42 19.97 25.22 44.01
30.22 27.03 26.37 46.18

Table II shows the overall results of the different deep
learning methods concerning three evaluation measures (i.e.
BLEU, ROUGE-L, and METEOR), and we mark the best one
of each metric in bold. The first line of the table is without
PGD method, and the second line is with PGD method.

According to the experimental results, we find that adversar-
ial training PGD can improve the performance of classic deep
learning models. Specifically, compared with not using PGD,
the performance of classic deep learning models is improved
by 18.89%, 35.35%, 4.56%, and 4.93% for BLEU-3, BLEU-4,
METEOR, and ROUGE-L at least. This result indicates that
adversarial training, as a special regularization method [35],
plays an important role in optimizing the model performance
method.

Answer to RQ1: Comparison results show that adversarial
training can improve the performance of classic deep learn-
ing models.

B. RQ2: How efficient is adversarial training on pre-trained
models?

Table III shows the overall results of the different pre-trained
methods concerning three evaluation measures (i.e. BLEU,
ROUGE-L, and METEOR), and we mark the best one of

4https://huggingface.co

TABLE III
COMPARISON BETWEEN BASELINES OF PRE-TRAINED MODELS WHETHER

TO ADD PGD

Model Name BLEU-3 BLEU-4 METEOR ROUGE-L

CodeBERT 29.84 24.83 27.16 47.36
33.83 29.28 28.95 50.18

UniXcoder 31.80 27.25 29.03 48.24
33.64 29.12 29.68 49.26

CodeT5 33.25 28.70 29.49 48.36
34.70 29.93 30.29 50.56

each metric in bold. The first line of the table is without PGD
method, and the second line is with PGD method.

According to the experimental results, we find that ad-
versarial training PGD can improve the performance of pre-
trained models. Specifically, compared with not using PGD,
the performance of pre-trained models is improved by 13.37%,
17.92%, 6.59%, and 5.95% for BLEU-3, BLEU-4, METEOR,
and ROUGE-L at least. This result indicates that adversarial
training, as a data augmentation method [27], greatly improves
the pre-trained model that needs to be trained with a large-
scale corpus.

Answer to RQ2: Comparison results show that adversarial
training can improve the performance of pre-trained models.

C. RQ3: How efficient is adversarial training on hybrid mod-
els?

TABLE IV
COMPARISON BETWEEN BASELINES OF HYBRID MODELS WHETHER TO

ADD PGD

Model Name BLEU-3 BLEU-4 METEOR ROUGE-L

Rencos 28.66 24.39 25.82 45.06
30.22 27.70 26.83 47.48

Hybrid-DeepCom 27.91 22.75 26.27 45.36
30.47 26.09 27.33 47.55

BASHEXPLAINER 33.73 29.13 28.78 48.81
35.06 30.39 29.35 49.78

Table IV shows the overall results of the different hybrid
methods concerning three evaluation measures (i.e. BLEU,
ROUGE-L, and METEOR), and we mark the best one of
each metric in bold. The first line of the table is without PGD
method, and the second line is with PGD method.

According to the experimental results, we find that adver-
sarial training PGD can improve the performance of hybrid
models. Specifically, compared with not using PGD, the per-
formance of hybrid models is improved by 9.17%, 14.68%,
4.04%, and 5.37% for BLEU-3, BLEU-4, METEOR, and
ROUGE-L at least. The result indicates that the model ro-
bustness improved by adversarial training [25] may be helpful
to the model that needs multi-stage training.

Answer to RQ3: Comparison results show that adversarial
training can improve the performance of hybrid models.

https://huggingface.co


VI. DISCUSSION & IMPLICATIONS

In this section, we first study the effect of the adversarial
training method considered on code comment generation mod-
els. Secondly, we introduce the implication of the experiment
and propose a novel adversarial training method based on
regularization optimization, and verify the feasibility of this
exploration direction through preliminary results.

A. Analysis on Adversarial Training Methods

In this subsection, we want to explore which adversarial
training method is suitable for code comment generation. We
consider evaluating the performance of different adversarial
training methods on CodeBERT. Table V shows the compari-
son results, and we mark the best one of each metric in bold.
The first line of the table is without the adversarial training
method, and the other lines are with the adversarial training
method.

TABLE V
COMPARISON BETWEEN DIFFERENT ADVERSARIAL TRAINING (AT)

METHODS ON CODEBERT

AT Name BLEU-3 BLEU-4 METEOR ROUGE-L

FGSM 29.69 25.22 27.12 47.99
FGM 33.52 29.05 28.10 49.28
PDG 34.55 29.98 29.31 49.86

FreeLB 33.83 29.28 28.95 49.67

According to the experimental results, we find that the
performance of CodeBERT can be improved to the maximum
by using PGD method. Specifically, compared with the method
with the lowest index, CodeBERT can improve the perfor-
mance by 16.36%, 18.87%, 8.08%, and 3.90% for BLEU-3,
BLEU-4, METEOR, and ROUGE-L respectively. This result
indicates that only the last iteration of PGD method is more
suitable for the code comment generation task.

B. Practical Guidelines

Our experimental results show that adversarial training tech-
nology can affect the performance of the model, especially for
the complex pre-trained model. In this subsection, we provide
practical guidelines for future research on code comment
generation.

Researchers can consider improving the performance of
code comment generation models from outside the model.
The results in Section 3 show that adversarial training technol-
ogy can significantly improve the performance of code com-
ment generation models. As a special regularization method
[35], adversarial training can optimize model parameters by
generating adversarial examples without changing the model.
We suggest that future researchers can optimize code comment
generation models by using adversarial training technology.

Researchers can change the regularization method to
make adversarial training more suitable for the code
comment generation task. As mentioned in the previous para-
graph, as a special regularization method [35], the optimization
loss function can be expressed as L̃(x, y) ≈ L(x, y) +
ϵ
2 ∥∂xL∥q , where x represents the input, y represents the label,

L̃ represents the loss after joining the adversarial training,
L represents the original loss, and ϵ

2 ∥∂xL∥q represents the
special regularization term. This shows that the model perfor-
mance can be further optimized by changing the regularization
method. On this basis, we propose a novel adversarial training
method, normPGD, which is oriented to the code comment
generation task. Limited by space, the related introduction and
results are on the project homepage 5. We suggest that future
researchers can customize the adversarial training method
which is more suitable for the code comment generation task
by changing the regularization term.

VII. THREATS TO VALIDITY

Internal threats. The main first internal threat is the imple-
mentation correctness of code comment generation models we
chose. To alleviate this threat, we re-implement their method
according to the description of their empirical research and
achieve similar performance. The second internal threat is the
potential defect of the experimental model we designed. To
alleviate this threat, we use mature libraries to implement code,
such as Pytorch and Transformers.

External threats. The threat of external validity is the
choice of experimental subjects. In order to alleviate this
threat, we chose the corpus provided by Yu et al. [16]. Yu
et al. improved the quality of data pairs by pre-processing the
corpus. At the same time, this corpus has also been used in
the research of code comment generation. In the future, we
hope to verify the performance of our questions in popular
languages (such as Java, Python, etc.).

Construct threats. The construct threat in this study is
the performance measures used to evaluate our proposed
experiments performance. In order to alleviate this threat, we
choose three popular performance metrics (i.e. BLEU [30],
METEOR [31], and ROUGE-L [32]) in the field of neural
machine translation. These evaluation metrics are also widely
used in the field of code comment generation [33].

Conclusion threats. The conclusion threat in our study
is mainly that there is no cross-validation. Due to the high
training cost of deep learning, this method has not been widely
used in the field of neural machine translation. In this study,
we only divide the corpus once, which is consistent with some
previous studies on code comment generation [15].

VIII. CONCLUSION

This paper gives a comprehensive evaluation of the adver-
sarial training methods in the field of code comment genera-
tion. Specifically, we first collect the existing popular adversar-
ial training methods and find out the most suitable method for
the code comment generation task through experiments. Then,
we propose three types of research questions and conduct
experiments on them. Finally, we draw a conclusion about
the performance of adversarial training in the code comment
generation task. We believe that this study can help to further
evaluate and improve the code comment generation task. The

5https://github.com/syhstudy/AT_Empirical_Study



limitation of this work lies in the limited corpus, models,
and metrics. This can draw the help of adversarial training
as a data augmentation method better for low-resource tasks.
Future work may be carried out by collecting more corpus or
evaluating more popular (such as Java, Python, etc.) corpus
to more accurately evaluate the performance of adversarial
training in the code comment generation task.

ACKNOWLEDGEMENTS

This work is supported in part by the Jiangsu Province
Modern Educational Technology Research Project under Grant
No. 2022-R-98984 and the Nantong Application Research Plan
under Grant No. JCZ21087.

REFERENCES

[1] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
Program Comprehension: A Large-Scale Field Study with Profession-
als,” IEEE Trans. Software Eng., vol. 44, no. 10, pp. 951–976, Jul. 2017.

[2] G. Yang, X. Chen, J. Cao, S. Xu, Z. Cui, C. Yu, and K. Liu, “Comformer:
Code comment generation via transformer and fusion method-based
hybrid code representation,” in 2021 8th International Conference on
Dependable Systems and Their Applications (DSA). IEEE, 2021, pp.
30–41.

[3] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding
and generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, 2021, pp. 8696–8708.

[4] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” in Findings of the Association for Computational
Linguistics: EMNLP 2020, 2020, pp. 1536–1547.

[5] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation
with hybrid lexical and syntactical information,” Empirical Software
Engineering, vol. 25, pp. 2179–2217, 2020.

[6] M. T. Ribeiro, S. Singh, and C. Guestrin, “Semantically equivalent
adversarial rules for debugging nlp models,” in Annual Meeting of the
Association for Computational Linguistics (ACL), 2018.

[7] X. Zhang, Y. Zhou, T. Han, and T. Chen, “Training deep code com-
ment generation models via data augmentation,” in 12th Asia-Pacific
Symposium on Internetware, 2020, pp. 185–188.

[8] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 3th International Conference on Learning Rep-
resentations, ICLR 2015, 2015.

[9] T. Miyato, A. M. Dai, and I. Goodfellow, “Adversarial training methods
for semi-supervised text classification,” 5th International Conference on
Learning Representations, ICLR 2017, 2017.

[10] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” 6th International
Conference on Learning Representations, ICLR 2018 - Conference Track
Proceedings, 2018.

[11] C. Zhu, Y. Cheng, Z. Gan, S. Sun, T. Goldstein, and J. Liu, “Freelb:
Enhanced adversarial training for natural language understanding,” 8th
International Conference on Learning Representations, ICLR 2020,
2020.

[12] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
Source Code using a Neural Attention Model,” in Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics:
Long Papers. Association for Computational Linguistics, Aug. 2016,
pp. 2073–2083.

[13] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A transformer-
based approach for source code summarization,” in Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics,
2020, pp. 4998–5007.

[14] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “Unixcoder:
Unified cross-modal pre-training for code representation,” in Proceed-
ings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2022, pp. 7212–7225.

[15] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based
neural source code summarization,” in 2020 IEEE/ACM 42nd Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2020, pp.
1385–1397.

[16] C. Yu, G. Yang, X. Chen, K. Liu, and Y. Zhou, “Bashexplainer:
Retrieval-augmented bash code comment generation based on fine-
tuned codebert,” in 2022 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2022, pp. 82–93.

[17] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question and an-
swer sites for automatic comment generation,” in 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2013, pp. 562–567.

[18] G. Yang, K. Liu, X. Chen, Y. Zhou, C. Yu, and H. Lin, “Ccgir:
Information retrieval-based code comment generation method for smart
contracts,” Knowledge-Based Systems, vol. 237, p. 107858, 2022.

[19] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention
network for extreme summarization of source code,” in International
conference on machine learning. PMLR, 2016, pp. 2091–2100.

[20] J. Li, Y. Li, G. Li, X. Hu, X. Xia, and Z. Jin, “Editsum: A retrieve-
and-edit framework for source code summarization,” in 2021 36th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2021, pp. 155–166.

[21] J. Ebrahimi, A. Rao, D. Lowd, and D. Dou, “Hotflip: White-box
adversarial examples for text classification,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), 2018, pp. 31–36.

[22] Y. Cheng, L. Jiang, and W. Macherey, “Robust neural machine transla-
tion with doubly adversarial inputs,” in Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, 2019, pp.
4324–4333.

[23] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii, “Virtual adversarial
training: a regularization method for supervised and semi-supervised
learning,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 41, no. 8, pp. 1979–1993, 2018.

[24] Z. Zhou, H. Yu, and G. Fan, “Adversarial training and ensemble learning
for automatic code summarization,” Neural Computing and Applications,
vol. 33, no. 19, pp. 12 571–12 589, 2021.

[25] P. Bielik and M. Vechev, “Adversarial robustness for code,” in Interna-
tional Conference on Machine Learning. PMLR, 2020, pp. 896–907.

[26] J. Y. Yoo and Y. Qi, “Towards improving adversarial training of nlp
models,” in Findings of the Association for Computational Linguistics:
EMNLP 2021, 2021, pp. 945–956.

[27] J. Morris, E. Lifland, J. Y. Yoo, J. Grigsby, D. Jin, and Y. Qi, “Textattack:
A framework for adversarial attacks, data augmentation, and adversarial
training in nlp,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations,
2020, pp. 119–126.

[28] G. Yang, Y. Zhou, X. Chen, and C. Yu, “Fine-grained pseudo-code
generation method via code feature extraction and transformer,” in 2021
28th Asia-Pacific Software Engineering Conference (APSEC). IEEE,
2021, pp. 213–222.

[29] X. V. Lin, C. Wang, L. Zettlemoyer, and M. D. Ernst, “Nl2bash:
A corpus and semantic parser for natural language interface to the
linux operating system,” in Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018), 2018.

[30] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[31] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evalua-
tion with improved correlation with human judgments,” in Proceedings
of the acl workshop on intrinsic and extrinsic evaluation measures for
machine translation and/or summarization, 2005, pp. 65–72.

[32] L. C. ROUGE, “A package for automatic evaluation of summaries,” in
Proceedings of Workshop on Text Summarization of ACL, Spain, 2004.

[33] B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, “Retrieve and refine:
exemplar-based neural comment generation,” in 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2020, pp. 349–360.

[34] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A Pre-Trained Model for
Programming and Natural Languages,” ACL Anthology, pp. 1536–1547,
Nov. 2020.

[35] C.-J. Simon-Gabriel, Y. Ollivier, L. Bottou, B. Schölkopf, and D. Lopez-
Paz, “First-order adversarial vulnerability of neural networks and input
dimension,” in International conference on machine learning. PMLR,
2019, pp. 5809–5817.


	Introduction
	Related Work and Research Motivation
	Code Comment Generation
	Adversarial Training in NLP
	Research Motivation

	Research Questions
	Case study design
	Experimental Subject
	Performance Measures
	Adversarial Training Methods
	Code Comment Generation Methods
	Experimental Settings

	Result analysis
	RQ1: How efficient is adversarial training on classic deep learning models?
	RQ2: How efficient is adversarial training on pre-trained models?
	RQ3: How efficient is adversarial training on hybrid models?

	Discussion & implications
	Analysis on Adversarial Training Methods
	Practical Guidelines

	Threats to Validity
	Conclusion
	References

