
An Efficient Lossless Graph Summarization Method
for Large Streaming Graphs

Qia Wang, Yi Wang ∗, Ying Wang
College of Computer and Information Science College of Software

Southwest University
ChongQing, China

1159838035@qq.com, ∗echowang@swu.edu.cn, waying95@swu.edu.cn

Abstract—Graph summarization aims to extract critical in-
formation from large graphs by creating summaries that repre-
sent the original data. Especially, real-world daily applications
generate massive dynamic streaming graphs, representing as
edge or node streams. How to efficiently generate compact and
lossless graph summaries for large streaming graphs is still
a challenging problem. This paper proposes an efficient and
scalable lossless summarization method for streaming graphs,
called Partition and Similarity-based Two-Stage Summarization
(PSTSS). PSTSS uses a streaming graph partitioning algorithm
as the first stage to generate coarse-grained summaries by
on-the-fly subgraph partitioning. The second stage generates
fine-grained supernodes within these coarse-grained supernodes
through efficient node similarity calculation. Our experiments on
six large datasets demonstrate that our method achieves better
operational efficiency, compression rate, scalability, and graph
query speed compared to state-of-the-art lossless summarization
algorithms.

Index Terms—graph summary; graph compression; complex
network; streaming graph; graph partition

I. INTRODUCTION

Graphs are applied to represent interconnected data for the
applications including web graphs, social networks, commu-
nication networks, citation networks, and even protein-protein
interactions. With the emergence of big data, the sizes of
real-world graphs are growing at an unprecedented rate. For
instance, as of June 30th, 2022, WeChat has reached a scale
of billions with 1.299 billion monthly active accounts [1]. The
World Wide Web’s indexed web pages have surpassed at least
6.42 billion [2] by November 2022. Moreover, large graphs
generated by the daily activities of real-world applications
are normally dynamic graph streams, representing as edge
streams or node streams. Therefore, efficient storage, querying
and visualization of large streaming graphs is an urgent
problem that needs to be solved to better support downstream
applications.

Graph summarization is a crucial technique for representing
large graphs in a concise manner, which is a trending topic
in data mining. Most previous works have focused on static
graphs [3]–[8]. These static graph summarization methods

This research is sponsored by the Educational Reform Research Project of
Southwest University (2022JY085) and the Fundamental Research Funds for
the Central Universities-Doctoral Fund (SWU222001).

DOI reference number: 10.18293/SEKE2023-107

require importing the entire graph into memory for summa-
rization which results in high memory requirements and poor
scalability. Existing streaming graph summarization methods
[9]–[13] generate lossy summaries and cannot achieve the
accurate reconstruction of the original graph. Moreover, in
incrementally summarization, they mainly consider the case of
directly adjacent nodes. They lack recognition of the features
of nodes in a more comprehensive local range, which affects
the compression ratio and readability of the graph summary.

To address the shortcomings of the above graph sum-
marization methods, this study proposes PSTSS (Partition
and Similarity-based Two-Stage Summarization), an efficient
lossless graph summarization method for large-scale streaming
graphs. Our contributions are as follows:

• Efficient Lossless Graph Summarization Algorithm
We propose PSTSS for lossless graph summarization.
With linear scalability, PSTSS summarizes large-scale
graph faster and achieves better compression than the
state-of-the-art graph summarization method.

• Query Evaluation Algorithm for PSTSS Summary We
propose neighborhood queries evaluation algorithm for
PSTSS Summary. Neighborhood queries can be answered
quickly from a summary graph and edge corrections.

• Extensive Experiments We confirmed that PSTSS out-
performs 3 state-of-the-art graph summarization algo-
rithms on 6 real graphs in different domains.

II. RELATED WORK

Graph summarization is a known NP-hard problem [14].
Previous research has extensively explored state-of-the-art
methods in graph summarization, including a comprehensive
review of existing algorithms [15], [16]. This section specif-
ically discusses lossless and lossy summarization techniques
as well as streaming graph summarization, which are related
to our study closely.

A. Lossless Summarization

The goal of lossless summarization is to identify the most
concise summary graph G∗ = (S, P) that can accurately
recreate the initial graph. Navlakha et al. [3] were the pio-
neers in solving the problem of lossless graph summarization
using the minimum description length (MDL) principle [17].
They introduced two heuristics, Randomized and Greedy, to

minimize the summary graph and edge corrections through
random selection and greedy strategies respectively. Khan et
al. [4] employed unified locality sensitive hash (ULSH) to
quickly select node pairs for merging, requiring a relatively
high computational cost. Shin et al. [5] grouped node pairs
using min-hash before merging highly similar nodes in each
group. Ko et al. [9] on the other hand, maintain a streaming
graph summary incrementally in response to edge additions
and deletions while ensuring compression ratio and efficiency.

B. Lossy Summarization

The goal of lossy graph summarization is to create a
brief summary graph that preserves the neighbors of each
node in the original decompressed graph. Two algorithms,
APXMDL [3] and SWEG-lossy [5], are used for this purpose.
Both algorithms take edge corrections into account in their
output results to minimize the most concise representation
G∗ = (S, P,C+, C−) of the original graph. Other algorithms,
such as K-GS [6], S2L [7], and SSUMM [8], represents
the summary graph as G∗ = (S, P) without considering
edge corrections. The K-GS algorithm selects node pairs
from a pool of candidate nodes and merges them repeatedly
to decrease the adjacency matrix of both the input graph
and its reconstructed output representation. Meanwhile, S2L
guarantees an approximate ”p-reconstruction error” for the
input graph by utilizing geometric clustering to summarize it.
Finally, SSUMM applies the MDL principle to balance size
and accuracy of summarising by sparsifying the original graph
for lossy summarization purposes.

C. Streaming graph Summarization

Streaming graph summarization is more challenging than
static graph summarization due to the dynamic of streaming
data. Algorithms of streaming graph summarization mainly
use statistical methods to process and analyze basic structures
in the streaming graph, such as estimating edge frequency and
node degree distribution. For example, MoSSo groups similar
nodes and incrementally calculates a lossless summary, while
gSketch [19] estimates edge frequency to generate a lossy
summary that supports structural queries. GS4 [10] generates
a lossy summary using the sliding window model and vertex
properties of the graph stream. In literature [11], a compressed
binary tree corresponds to the streaming graph data for lossy
summarization. In literature [12], hash functions maintain a
minimum neighborhood sample subgraph in real-time. GSS
[13] first generates a sketch of the streaming graph using hash
functions, then uses a novel data structure to store it, achieving
lossy summarization supporting various queries.

Mainly of the streaming graph summarization algorithms
mentioned above are lossy and focus primarily on directly
adjacent nodes. However, they fail to recognize the features
of nodes within a broader local range, which can impact both
compression ratio and readability of the graph summary.

Fig. 1. Partition and Similarity-based Two-Stage Summarization (PSTSS)

III. TWO-STAGE LOSSLESS SUMMARIZATION METHOD FOR
STREAMING GRAPH

A. Overview of PSTSS

PSTSS adopts a divide-and-conquer algorithm to parti-
tion the streaming graph online and generate coarse-grained
summary by dividing it into multiple subgraphs. Addition-
ally, fine-grained supernodes are generated through efficient
node similarity calculation. Fig. 1 illustrates the two-stage
summarization process. Firstly, a greedy algorithm partitions
the streaming graph [20], [21] to generate a coarse-grained
summary of the graph. Secondly, each coarse-grained su-
pernode is summarized separately using a node similarity
algorithm to obtain fine-grained supernodes along with their
corresponding sets of superedges and edge corrections. This
lossless summarization method enables reconstruction of the
original graph.

B. Streaming Graph Summary Problem Description

This study focuses on streaming (undirected) graphs rep-
resented as node streams, which consist of a sequence of
nodes with their corresponding neighbor lists. Alternatively,
streaming graphs can also be represented as edge streams, but
for the purposes of this study, they will not be considered.
Given a node streaming graph Gt = (vt, N(v)t)

t=∞
t=0 ,where

vt is a node and N(vt) is the set of neighboring nodes of vt
. G = (V,E) is a snapshot of the streaming graph at a given
moment, and V and E are the set of nodes and the set of edges
of the streaming graph, respectively. The lossless summary of
G is G∗ = (S, P) and the set of edge corrections C, where S
is the set of supernodes, P is the set of supernodes, and C is
the set of edge corrections C = (C+, C−).

For a given streaming graph G, the goal of lossless graph
summarization is to efficiently generate a compact summary
that can be used to reconstruct the original graph without
losing any nodes or edges.

C. Coarse-grained Summary Method Based on Greedy Parti-
tioning Algorithm

This study uses a streaming graph partitioning algorithm
to partition the streaming graph and create a coarse-grained

TABLE I
TABLE OF SYMBOLS

Symbol Meaning
N(v) neighborhood of node v

C = (C+, C−) edge corrections
C+ set of edges to be inserted
C− set of edges to be deleted
k number of partitions, k ∈ N

Pai
a set of vertices in

a partition i, i ∈ [1, k]
Gi = (Pai, Ei) subgraph after graph partition

π = {G1, G2..., Gk} a set of subgraphs(Coarse-grained Summary)
S(v) supernode in G∗ that contains node v
S a set of supernodes in G∗

G∗ = (S, P)
a summary graph with

supernodes S and superedges P

summary. The algorithm takes a sequence of nodes with
their neighbor lists as input (node stream) and partitions
them into subgraphs based on load balancing principles while
minimizing edge cuts. Unlike traditional graph partition algo-
rithms, this process only requires one graph traversal, making
it suitable for large-scale graphs with lower time complex-
ity. References include [22], [23]. For an undirected graph
G = (V,E), the node division of the graph divides the
nodes in the graph G into k partitions, each of which is
denoted by Pai(i ∈ {1, ..., k}) and satisfies the following
three conditions: 1) Pai ̸= Paj(i, j ∈ {1, ..., k} , i ̸= j); 2)
∪Pai = V ; 3)∅ ≠ Pai ⊆ V .

Definition 1 Coarse-grained summary of streaming
graph Given a node streaming graph Gt = (vt, N(v)t)

t=∞
t=0 ,

π = {G1, G2..., Gk}, where Gi = (Pai, Ei)(i ∈ {1, ..., k})is
the subgraph after division, and eC ⊆ E is the set of edge
cuts resulting from the division of the set of nodes. π and eC
are the coarse-grained summary of the streaming graph.

Algorithm 1 is given the number of divisions k. Firstly, the
original graph is read in real-time as a sequence of nodes and
their neighborhood; Secondly, under the premise of satisfying
load balancing, the nodes are divided according to equations
(1) and (2), and the read nodes are divided into partitions
that maximize the value of Equation (1); Finally, the coarse-
grained summary is calculated, and the edges connecting each
subgraph are saved as edge corrections.

g(v, Pai) = |Pai ∩N(v)|(1− |Pai|
Ca

) (1)

f(v) = argmaxi∈[1,k] {g(v, Pai)} (2)

In Equation (1), the partition capacity Ca = |V |/k, node
division needs to ensure the load balancing degree to achieve
the division of the nodes of the balanced graph as much
as possible. g(v, Pai) denotes the value of load balancing
degree with |PaiϵN(v)|, and f(v) in Equation (2) denotes
the division of node v into partitions that maximize the value
of g(v, Pai).

Algorithm 1 computes a coarse-grained summary of the
resulting streaming graph based on the greedy partitioning
algorithm described above. Let the number of partitions be

Algorithm 1 Coarse-grained summary of streaming graph
Input: Gt = {vt, Nt(v)}
Output: Gi and eC

1: for i = 1 to i = k do
2: wi = 1− |Pai|/Ca

3: g(v, Pai) = |Pai ∩N(v)| ∗ w(i)
4: end for
5: for i = 1 to i = k do
6: ptno = argmax(g(v, Pai)
7: end for
8: Paptno ← Paptno ∪ vt
9: C.add(Et)

10: Return Gi and eC

k. Algorithm 1 traverse every node in the graph, so the space
complexity is O(V) and the time complexity is O(k|V |+|E|),
where V and E are the set of nodes and the set of edges of
the graph at the current moment.

Example 1 Be provided with an undirected graph G shown
in Fig. 1, containing 13 nodes and 11 edges, and determine the
number of partitions k = 2. Under the premise of satisfying
the capacity constraint Capacity = 11/2 = 6, g(v, Pai) is
computed separately for all possible partitioning cases into two
subgraphs, then the maximum value of g(v, Pai) is selected
among all partitioning results, which is the two subgraphs
G1 and G1 for graph partitioning. The process of graph
partitioning generates edge cut sets, i.e., edge {a, b} and edge
{a, c}, which are saved as edge cut set eC supports the
reconstruction of the graph.

D. Fine-grained Summary Method Based on Node Similarity

This study uses coarse-grained summarization to perform
fine-grained supernode calculation. The method is based on
node similarity, which groups nodes by identifying their struc-
tural similarities. This allows a supernode to replace a group
of nodes in the resulting fine-grained summary.

Definition 2 Fine-grained summary of streaming graph
Given a node streaming graph Gt = (vt, N(v)t)

t=∞
t=0 , the

coarse-grained summary is obtained as π and eC. And for
each subgraph, Gi = (Pai, Ei)(i ∈ {1, ..., k}) in the coarse-
grained summary, the nodes are merged according to the node
similarity to form the fine-grained supernodes. The superedges
and edge corrections are generated to obtain the fine-grained
summary of the streaming graph G∗ = (S, P) and edge
corrections C.

Algorithm 2 describes the fine-grained summary method.
Algorithm 2 is divided into three main tasks: 1) calculating
node pairs to compute similarity and sorting node pairs by
similarity; 2) merging highly similar nodes; 3) connecting
supernodes to form super edges and edge correction.

Selection of Fine-grained Supernode Candidates When
dealing with large graphs that have node bases of orders of
magnitude, evaluating all possible pairs of directly or indi-
rectly connected nodes to determine supernodes is inefficient.
To address this issue, PSTSS introduces the locality-sensitive

hashing (LSH) method which accurately identifies similar
nodes. LSH calculates similarity by comparing hash codes
of each node’s neighborhood. Nodes falling into different
buckets are considered dissimilar and their similarity is set
to 0; these node pairs are not merged. This approach limits
the computation of node similarity to only those in the same
bucket, significantly reducing computational resources and
running time while still identifying similar nodes.

Algorithm 2 Fine-grained summary of streaming graph
Input: π, eC, h(HashFunction), τ(SimilarityThreshold)
Output: G∗ = (S, P), C

1: for Gi ∈ π do
2: for v ∈ Gi do
3: Create minhash signature column, MSCv , using

neighbors of v by h hash functions
4: end for
5: for Gi ∈ π do
6: compute Sim(v, u) for each bucket
7: Sim(v, u)←− 0 for v and u in different buckets
8: Rank AdaSim scores to generate F
9: Pop v, u from F

10: if Sim(v, u) > τ then
11: merge v, u and update S
12: end if
13: end for
14: end for
15: for A ∈ S do
16: for B ∈ S do
17: if EAB ̸= ∅ and |EAB | ≤ (|TAB |+1

2) then
18: C+ ←− C+ ∪ EAB

19: else
20: P = P/cupA,B
21: C− ←− C− ∪ (TAB − EAB)
22: end if
23: end for
24: end for

Method of calculating node similarity Algorithm 2 cal-
culates the similarity of node pairs using the recursive sim-
ilarity measure in AdaSim [24]. In some of the existing
similarity calculation methods, only the common neighboring
nodes directly connected to the selected node pair are often
considered; In this method, indirectly connected nodes are
also considered. Equations (3) and (4) give the formulas
for calculating the iterative form of AdaSim. When l = 0,
Sim0(a, b) = 1 if a = b, and Sim0(a, b) = 0 if a ̸= b.
D ∈ (0, 1) is the determining damping factor, the parameter
θ ∈ (0, 1] is the important parameter, and m is the maximum
value of Ada similarity. First, the weights of the common
neighbor nodes directly connected to nodes a and b (with path
length 1) are summed and calculated to obtain the similarity
Sim1(a, b) in the first step. Next, the common nodes indirectly
connected with nodes a and b at a distance of path length
two are iteratively computed. To balance the computational
efficiency and similarity accuracy, this study considers the

node similarity within two steps, i.e., Sim2(a, b) is used as
the similarity of nodes.

Siml(a, b) =D ∗ (θ
m

∑
i∈N(a)∩N(b)

wti+

1− θ∑
r∈N(a) wtr

∑
t∈N(b)wtt

∑
i∈N(a)

∑
j∈N(b)

wti∗

Siml−1(i, j) ∗ wtj
(3)

wti =
1

log(|N(i)|+ e)
(4)

After calculating the similarity of node pairs, the node pairs
with high similarity need to be merged. The node pair se-
quence F is obtained by fast sorting according to the likeness
of node pairs, setting the similarity threshold τ , and selecting
node pairs greater than τ from the node pair sequence for
merging according to the similarity. After generating the
supernodes, the method connects the supernodes to form su-
peredges and edge corrections according to the best encoding.

Optimal encoding For each supernode pair {u, v}, let
EAB = {{u, v} ∈ E|u ∈ A, v ∈ B, u ̸= v} and TAB =
{{u, v} ⊆ V |u ∈ A, v ∈ B, u ̸= v} be the set of existing and
potential edges between A and B, respectively. The edges
between A and B (i.e., EAB) are encoded according to the
following rules.

(1) If |EAB | ≤ (|TAB + 1|)/2 , then add all edges in EAB

to C+;
(2) If |EAB | > (|TAB+1|)/2 , then add the superedge A,B

to P and TAB \ EAB to C−.
Complexity Analysis Algorithm 2 is divided into three

main tasks. The time complexity of task 1 is O(E), and the
space complexity is O(V), where E is the base of the set
of edges in the original graph and V is the base of the set
of nodes in the original graph; Task 2 first applies the LSH
algorithm in the graph with time complexity of O(E), and
then calculates the similarity and sorts the node pairs for each
bucket with space complexity of O(V). The time complexity
of sorting the sequence of node-pairs is O(FlogF), where
F is the number of node pairs; The time complexity of task
3 is O(E), and the space complexity is O(V). In summary,
the space complexity of Algorithm 2 is O(V), and the time
complexity is O(E + FlogF).

Example 2 The undirected graph G shown in Fig. 1, is
divided to generate a coarse-grained summary, and then two
subgraphs, G1, G2, and edge correction C are formed. Then
the nodes are fine-grained summarized according to similarity.
Firstly, the LSH algorithm is used to group the nodes and
calculate the AdaSim similarity, merge the highly similar
nodes to form the supernodes and connect the superedges,
and finally obtain the summary graph G∗ = (S, P) and
edge correction C. Note that in the process of grouping the
nodes to form the supernodes, unlike calculating the similarity
within only one step, this study considers the nodes at a

distance of two steps to calculate the parallel, which more
accurately captures the local similarity features of the nodes.
For example, nodes c, j, h, k are merged into one supernode
based on the high similarity of AdaSim within two steps.

E. Query Evaluation Algorithm for Summary Graph

Neighborhood queries are a key building block that is
reused in many graph algorithms (Dijkstra algorithm, PageR-
ank, ShorestPaths, etc.).Algorithm 3 describes how to answer
neighbor queries (given a node v ∈ V , find the neighbors
N(v) of v) on a summary graph G∗ = (S, P) and edge
correctionC = (C+, C−) without reconstructing the original
graph. Let the neighbors of node v in edge corrections C+ be
N+(v) and the neighbors of node v in edge corrections C−

be N−(v).

Algorithm 3 Neighbor Query Processing on PSTSS summary
Input: summary graph G∗ = (S, P), edge corrections C =

(C+, C−), query node v ∈ V
Output: N(v)

1: if S(v) has a self-loop in G then
2: N(v) = N(v) ∪ (S(v)− {v})
3: end if
4: if for each neighbor A(̸= S(v)) of S(v) in G∗ then
5: N(v) = N(v) ∪A
6: end if
7: N(v) = (N(v) ∪N+(v))−N−(v)
8: Return N(v)

IV. EXPERIMENTS

A. Experimental Settings

Experimental environment:Intel Core i5 and 8 GB main
memory, having 64 bit Windows 10 Professional edition.
Comparison algorithms:Experimentally, three state-of-the-art
algorithms are selected from the lossless graph summarization
algorithms as comparison algorithms. (1) SAGS [4] (h=30,
b=10, p=0.3) (2) SWeG [5] (T=10,e =0) (3) MoSSo [9] (e =
0.3, c = 120).

B. Datasets

To verify the effectiveness of PSTSS, six large graph
datasets from different domains (Table II) were selected for
the experiments of running efficiency and compression rate
comparison.In every graph in Table II, the experiment ignores
the direction of all edges and removed both self-loops and
multiple edges.

C. Speed

The experiment first compared the running time of the
PSTSS algorithm with the lossless graph summarization al-
gorithms SAGS, SWeG, and MoSSo. The specific running
time comparison results are shown in Table III. With the
same datasets selected for graph summarization, the PSTSS
algorithm proposed in this paper has higher summarization
efficiency than the other three lossless graph summarization

TABLE II
DATASETS

Name Nodes Edges Summary
Protein 6,229 146,160 Protein Interaction

UK-2007 100,000 3,216,152 Hyperlinks
CNR-2000 325,557 5,565380 Hyperlinks
LiveJournal 4,847,571 68,993,773 Social

Ego-Facebook 4,039 88,234 Social
Email-Enron 36,692 183,831 Email

TABLE III
RUNNING TIME(SECONDS)

Dataset SAGS SWeG MoSSo PSTSS
Protein 1.84 ∗ 102 1.44 ∗ 102 1.24 ∗ 102 0.91 ∗ 102

UK-2007 1.89 ∗ 104 1.39 ∗ 104 1.28 ∗ 104 0.86 ∗ 104

CNR-2000 1.24 ∗ 105 1.87 ∗ 105 1.45 ∗ 105 0.97 ∗ 105

LiveJournal 1.66 ∗ 105 1.50 ∗ 105 1.57 ∗ 105 1.88 ∗ 105

Ego-Facebook 1.29 ∗ 101 1.24 ∗ 101 1.17 ∗ 101 0.69 ∗ 101

Email-Enron 1.21 ∗ 103 0.91 ∗ 103 1.14 ∗ 103 0.79 ∗ 103

comparison algorithms on all six datasets. Among them, the
PSTSS algorithm significantly outperforms the other lossless
summarization methods on the dataset Ego-Facebook.

D. Compression Ratio

To verify the effectiveness of the PSTSS algorithm, the
experimental uses the compression ratio defined in Equation
(5) to measure the relative size of the summary graph to the
original graph. With the same original graph, the smaller the
compression ratio value, the more compact the output graph is
proved to be, and the more influential the algorithm is in com-
pressing the original graph.The experiments were performed
to summary the datasets in Table II by three comparison
algorithms and PSTSS, and the specific experimental results
are shown in Fig. 2.

RN = |S|/|V | (5)

As shown in Fig. 2, the compression ratio of the proposed sum-
marization method PSTSS algorithm in this study outperforms
all three comparison algorithms, SAGS, SWeG, and MoSSo.

E. Scalability

To measure the scalability of the PSTSS algorithm, experi-
ments were designed to test the variation of the running time of
the PSTSS algorithm on datasets of different sizes. Experiment
sampled different numbers of nodes from the LiveJournal
dataset and generated multiple graph datasets and used them
as input graphs. As shown in Fig. 3, the running time of the
PSTSS algorithm increases linearly with the number of nodes
in the input graph with a slope close to 1, which indicates that
the PSTSS algorithm has great scalability.

F. Neighbor quries on query PSTSS summary

The summary results generated by the PSTSS algorithm
can significantly reduce the query time to the original graph.
To verify this property of the PSTSS algorithm, experiments
on neighbor node queries are designed in this study. The
experiments were performed using the results of the PSTSS

Fig. 2. Relative size of outputs Fig. 3. scalability Fig. 4. Runtime improvement

algorithm in the dataset of Table II for neighbor queries,
running Algorithm 3 and comparing the queries times with
the SWeG algorithm. Fig. 4 shows the reduction in running
time.

V. CONCLUSION

This study proposes a two-level lossless summarization
method called PSTSS to address the challenge of large
streaming graph summarization. The method is based on
streaming graph partitioning and node similarity. Results from
experiments conducted on six large graph datasets demonstrate
that compared to three typical lossless graph summarization
algorithms, PSTSS has lower time complexity, better compres-
sion rate, higher operational efficiency, good scalability, and
can improve the query efficiency of graphs. It can effectively
implement large graph summarization.

Future research directions include exploring parallel stream-
ing graph summarization and combining stream graph summa-
rization methods with techniques such as graph visualization
and mining.

REFERENCES

[1] Tencent Tencent Announces Second Quarter
and Interim Results for 2022. ([EB/OL],2022),
https://static.www.tencent.com/uploads/2022/08/17.pdf.

[2] WorldWideWeb The size of the World Wide Web (The Internet).
([EB/OL],2022), https://www.worldwidewebsize.com.

[3] Navlakha, S., Rastogi, R. & Shrivastava, N. Graph summarization with
bounded error. Proceedings Of The 2008 ACM SIGMOD International
Conference On Management Of Data. pp. 419-432 (2008).

[4] Khan, K., Nawaz, W. & Lee, Y. Set-based approximate approach for
lossless graph summarization. Computing. 97 pp. 1185-1207 (2015).

[5] Shin, K., Ghoting, A., Kim, M. & Raghavan, H. Sweg: Lossless
and lossy summarization of web-scale graphs. The World Wide Web
Conference. pp. 1679-1690 (2019).

[6] LeFevre, K.& Terzi, E. GraSS: Graph structure summarization. Proceed-
ings Of The 2010 SIAM International Conference On Data Mining. pp.
454-465 (2010).

[7] Riondato, M., Garcıa-Soriano, D.& Bonchi, F. Graph summarization
with quality guarantees. Data Mining And Knowledge Discovery. 31
pp. 314-349 (2017).

[8] Lee, K., Jo, H., Ko, J., Lim, S. & Shin, K. Ssumm: Sparse summa-
rization of massive graphs. Proceedings Of The 26th ACM SIGKDD
International Conference On Knowledge Discovery Data Mining. pp.
144-154 (2020).

[9] Ko, J., Kook, Y. & Shin, K. Incremental lossless graph summarization.
Proceedings Of The 26th ACM SIGKDD International Conference On
Knowledge Discovery Data Mining. pp. 317-327 (2020).

[10] Ashrafi-Payaman, N., Kangavari, M., Hosseini, S. & Fander, A. GS4:
Graph stream summarization based on both the structure and semantics.
The Journal Of Supercomputing. 77 pp. 2713-2733 (2021).

[11] Nelson, M., Radhakrishnan, S. & Sekharan, C. Queryable compression
on time-evolving social networks with streaming. 2018 IEEE Interna-
tional Conference On Big Data (Big Data). pp. 146-151 (2018).

[12] Bandyopadhyay, B., Fuhry, D., Chakrabarti, A. & Parthasarathy, S.
Topological graph sketching for incremental and scalable analytics. Pro-
ceedings Of The 25th ACM International On Conference On Information
And Knowledge Management. pp. 1231-1240 (2016).

[13] Gou, X., Zou, L., Zhao, C. & Yang, T. Graph stream sketch: Summa-
rizing graph streams with high speed and accuracy. IEEE Transactions
On Knowledge And Data Engineering. (2022).

[14] Liu, X., Tian, Y., He, Q., Lee, W. & McPherson, J. Distributed graph
summarization. Proceedings Of The 23rd ACM International Conference
On Conference On Information And Knowledge Management. pp. 799-
808 (2014).

[15] Liu, Y., Safavi, T., Dighe, A. & Koutra, D. Graph summarization
methods and applications: A survey. ACM Computing Surveys (CSUR).
51, 1-34 (2018).

[16] Wang Xiong, Dong Yihong, Shi Weijie Pan Jianfei. Progress and
Challenges of Graph Summarization Techniques[J]. Journal of Computer
Research and Development, 2019, 56(6): 1338-1355.

[17] Barron, A., Rissanen, J. & Yu, B. The minimum description length
principle in coding and modeling. IEEE Transactions On Information
Theory. 44, 2743-2760 (1998).

[18] Durbeck, L. & Athanas, P. DPGS Graph Summarization Preserves Com-
munity Structure. 2021 IEEE High Performance Extreme Computing
Conference (HPEC). pp. 1-9 (2021).

[19] Zhao, P., Aggarwal, C. & Wang, M. gsketch: On query estimation in
graph streams. ArXiv Preprint ArXiv:1111.7167. (2011).

[20] Stanton, I. Streaming balanced graph partitioning algorithms for random
graphs. Proceedings Of The Twenty-fifth Annual ACM-SIAM Symposium
On Discrete Algorithms. pp. 1287-1301 (2014).

[21] Stanton, I. & Kliot, G. Streaming graph partitioning for large distributed
graphs. Proceedings Of The 18th ACM SIGKDD International Confer-
ence On Knowledge Discovery And Data Mining. pp. 1222-1230 (2012).

[22] Wang, X., Chen, W., Yang, Y. & Others Research on Knowledge Graph
Partitioning Algorithms: A Survey. Chinese Journal Of Computers. 44,
235-260 (2021)

[23] Abbas, Z., Kalavri, V., Carbone, P. & Vlassov, V. Streaming graph parti-
tioning: an experimental study. Proceedings Of The VLDB Endowment.
11, 1590-1603 (2018).

[24] Rehyani Hamedani, M. & Kim, S. AdaSim: A Recursive Similarity Mea-
sure in Graphs. Proceedings Of The 30th ACM International Conference
On Information Knowledge Management. pp. 1528-1537 (2021).

	Introduction
	Related Work
	Lossless Summarization
	Lossy Summarization
	Streaming graph Summarization

	Two-stage lossless summarization method for streaming graph
	Overview of PSTSS
	Streaming Graph Summary Problem Description
	Coarse-grained Summary Method Based on Greedy Partitioning Algorithm
	Fine-grained Summary Method Based on Node Similarity
	Query Evaluation Algorithm for Summary Graph

	EXPERIMENTS
	Experimental Settings
	Datasets
	Speed
	Compression Ratio
	Scalability
	Neighbor quries on query PSTSS summary

	Conclusion
	References

