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Abstract—The rapid and accurate decomposition of multi-
period time series is crucial for reliable forecasting, anomaly
detection, and classification. However, the traditional approach
of first detecting the periodicity and then selecting from a range
of decomposition algorithms based on the periodicity results
in inefficiencies and complexity. To address this challenge, we
propose the automatic seasonal-trend decomposition (ASTD), a
unified method for automatic time series decomposition. With the
ASTD, users no longer need to worry about whether their time
series is multi-period, single-period, or aperiodic. They simply
provide the time series, and the ASTD automatically returns
the final decomposition results. Careful consideration of runtime
cost and accuracy requirements has been taken in the design of
the ASTD, which has an overall time complexity of O(/NlogN).
Extensive experimental results show that the proposed ASTD
outperforms other state-of-the-art decomposition algorithms in
terms of minimum mean square error (MSE) and mean absolute
error (MAE). Notably, when applied to the Taylor dataset,
the ASTD is approximately 3 times faster than other baseline
decomposition algorithms.

Index Terms—time series, periodic detection, seasonal-trend
decomposition

I. INTRODUCTION

The digital age has led to an increase in recorded time series,
such as Central Processing Unit (CPU) usage and request
numbers in Operation and Maintenance, spending and purchas-
ing indices in economics, and daily electricity consumption.
Many time series have periodic behavior, such as human
heartbeat and rush-hour traffic, as well as tides related to
lunar and solar cycles. Accurate time series decomposition is
essential for tasks like anomaly detection [1]-[4], forecasting
[5]-[8], and classification [9]-[12], and can improve predic-
tion accuracy by extracting seasonal and trend components.
Many decomposition algorithms have been proposed for time
series, including single-period and multi-period algorithms.
Single-period algorithms include STL [13] and RobustSTL
[14], while multi-period algorithms include MSTL [15], Fast
RobustSTL [16], STR [17], and TBATS [18]. Non-periodic
time series can have their trend extracted using filters like HP
[19], Supermoother [20], and [1 [21] trend filter . If unsure of
the type of time series, beginners can use periodic detection
tools to identify the periodicity and choose the corresponding
algorithm.

There are two types of periodic detection tools: single period
and multiple periods. Nevertheless, existing algorithms can

be affected by outliers, noise, and spectral leakage, which
can result in inaccurate periodicity detection and decompo-
sition. Auto-period [22] may select incorrect periods due to
spectral leakage and limited resolution. CFD-Autoperiod [23]
addresses this issue with clustering, filtering, and detrending,
but noise can still cause the centroid to be offset from the
actual period. Robust-period [24] uses Huber-periodogram
and Huber autocorrelation function (Huber-ACF) to mitigate
outlier effects, but it requires multiple iterations, making it
time-consuming.

Seasonal-trend decomposition methods have been proposed
to analyze periodic information, but STL is only suitable
for single-period time series. MSTL was introduced in 2021
to handle multi-period time series, but it may include data
from other seasons. Hyndman proposed STR and TBATS for
robustness to outliers in multi-period time series, but they have
high computational complexity. Robust-STL was introduced
to handle outliers, noise, and abrupt trend changes, but it
is not suitable for multi-period time series. To address this
limitation, Fast Robust-STL was introduced, which extends
Robust-STL and reduces computational complexity, but still
requires multiple iterations. Existing methods for time series
only focus on either periodic detection or decomposition,
making it inconvenient and inefficient for users.

To address these issues, we propose a unified method
called ASTD for automatic time series decomposition, which
detects and decomposes time series regardless of their periodic
characteristics. ASTD uses a pruning method and partition
idea to detect the period robustly and accurately, while a
comprehensive score is calculated to mitigate spectral leakage
effects. For decomposition, ASTD uses the input data spectrum
to extract trends and seasons and the spectral residual (SR)
[25] to obtain complete and accurate residuals. ASTD greatly
expands its application in long time series and speeds up
decomposition.

Our main contributions are listed as follows:

o We propose ASTD, a unified method for the automatic
decomposition of periodic time series. With ASTD, users
are no longer required manually detect the periodicity
of time series and then select different decomposition
algorithms according to the detection results.

e« In ASTD, we propose a low-complexity and high-
accuracy algorithm for detecting periodicity in multi-
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Fig. 1. Diagram of our methodology (ASTD method)

period time series, which effectively mitigates the effects
of noise and limited resolution of DFT.

« Additionally, we also propose a novel method for fast and
accurate decomposition of multi-period time series, which
can accurately quantify each component and extract them
in a single calculation, without the need for multiple
iterations.

« Finally, our proposed method is validated through exper-
iments on real datasets, which demonstrate its generality
and effectiveness.

The remainder of this article is structured as follows: Sec-
tion II presents the framework of ASTD, Section III reports the
experimental results and analysis, and Section IV concludes
the paper.

II. FRAMEWORK OF ASTD

A. Framework Overview

ASTD has two main parts: periodic detection and decompo-
sition, as shown in Figure 1. It aims to automatically decom-
pose periodic time series accurately and efficiently. To achieve
this, ASTD prunes invalid periods, uses blocking to reduce
time complexity, and applies a seasonal trend decomposition
algorithm with only one iteration. The periodic time series is
defined as:

X, =T+ ZSM +Ry, t=1,2,..N 1)

where X, is the observation at time t, T} is the trend, S; is
the sum of seasonal components with periods, and R; is the
residual signal.

B. Precise Period Detection

Real-world time series have diverse trends that can im-
pact periodic detection accuracy. LOWESS (Locally Weighted
Scatterplot Smoothing) is used to estimate trends, particularly
for complex trends with no theoretical models.

Once the trend is estimated, the Periodogram and ACF are
computed for the detrended time series. This involves working
with a detrended sequence x’.

A(f) = Amplitude(F(z")) (2a)
P(f)=A%(f)/n (2b)
ACF(p) = F~1(P) (2c)

The Fourier Transform and Inverse Fourier Transform are
denoted as F and F !, respectively. The amplitude spectrum
is denoted as A(f), the Periodogram as P(f), and the auto-
correlation coefficient as ACF(p).

As a result of spectrum leakage, a periodogram may produce
multiple potential periods for a signal. Relying solely on the
power of the periodogram to determine the candidate period
is not reliable. To achieve greater accuracy, the ACF can be
utilized in conjunction with the periodogram to provide a more
refined estimate of the candidate period. There are two steps
involved in Period Detection, which we will explain in detail
in the following sections:

o Step 1: Screening. To identify potential periods, we first
set a threshold power equal to A = 1/6 of the maximum
power in the Periodogram. Any period with power greater
than the threshold is considered a candidate period. We
then narrow down the range of candidate periods further
by utilizing the ACF. If a candidate period is not present
in the ACF peak, it is discarded.

o Step 2: Ranking. In this step, we calculate the com-
prehensive ranking of candidate periods. The candidate
periods near each peak of ACF are grouped together, and
their ranks in the ACF and Periodogram are calculated
respectively. We then calculate a score for each period
based on its ranking in the periodogram and ACF. The
period with the smallest score is considered as the best
period in the group. We set v = 0.6 to determine the
score, but we will discuss the range of v later.

We derive the period from the following equation:

A(f) = Amplitude(F(z")) (3a)
P(f)=A%(f)/n (3b)
Pthre = A X arg m?X(P) (30)
hpeak(z) = PeakHeight(ACF(x)) (3d)
2= 3] (o)
1

fcand = {f‘P(f> > DPthre N ACF(Z) > ihpeak(z)}
(30
Pcand = I_l/fcandj (3g)
score(i) =y X u; + (1 =) X 03, @ € Peand (3h)

Pihre 18 the minimum power threshold for a period to
be considered a candidate. hpeqr is the ACF peak height.
Deand 18 @ period that satisfies both the Periodogram and ACF
conditions. u; and v; are the rankings of ¢ in the Periodogram
and ACF. score(i) is the combined score of the Periodogram
and ACF.
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Fig. 2. Detect periodicity in electricity demand in England and Wales from June 5 to August 27, 2000. Screen by power threshold (red dash line) and ACF
peak. Rank using ACF and Periodogram, with 336 ranked highest, and 48 also detected.

The true period is close to the periodogram and ACF peaks,
despite spectral leakage and noise interference. Autoperiod
and robust period methods use these peaks to find the period,
but we are the first to rank candidate periods using both the
ACF and periodogram. Higher rankings in both increase the
probability of the true period. Extensive experiments showed
that a score ranking with v = 0.6 was most accurate. A
larger v implies a greater weight of the periodogram in the
result, making the periodic detection more dependent on the
ranking of the periodogram. Here, v = 0.6, so the weight of
the periodogram is slightly larger than that of the ACF, but
they are very close.

Figure 2 shows the process of detecting periodicity in
electricity demand data for England and Wales from June 5,
2000, to August 27, 2000. The data was sampled at a half-hour
interval, and we hypothesized that the periods would be 48 (a
day) and 336 (a week). The ACF plot revealed a peak at 24,
which we disregarded. The Periodogram plot showed many
green dots near 48 and 336, which we selected as candidate
periods using a threshold of maximum power of A = 1/6.
However, due to noise in the data, it is inaccurate to rely solely
on the ACF peak. Therefore, we used both the Periodogram
and ACF to narrow down the candidate periods, selecting those
whose power exceeded the threshold in the Periodogram and
stayed near the ACF peak. In Figure 2, five points near 336
had greater power than the threshold in the Periodogram, but
they were not continuous. To address this, we interpolated a
cubic curve and identified the valid candidate period near 336
as ranging from 326 to 344 in the ACF. We then calculated
the rankings of the candidate periods and obtained a score
based on the two rankings. The period with the highest ranking
(lowest score) was the best candidate period, which was 336.

C. Quantitative Decomposition

We utilize the period obtained through periodic detection to
decompose the signal, resulting in two distinct components:
trend extraction and season extraction. The decomposition
process is illustrated in Figure 3.

Step 1: Season Extraction. The process of decomposing
a multi-period time series is identical for each period. We
decompose the series from high frequency (short period)

to low frequency (long period) in a sequential manner. In
particular, we avoid using classic filtering techniques such as
Butterworth or Chebyshev filters, which require the setting
of different parameters for different datasets. Incorrectly set
parameters can lead to inaccurate data. Instead, we leverage
the Fast Fourier Transform (FFT) to filter the data and extract
seasons based on their respective periods. We obtain the season
by using the following equation:

fp = 1/period (4a)

L f=f,
HFE(f) = 4b
() {07 oy b
A(f) = Amplitude(F(x)) (4c)
AS(f) = A(f) x HE(f) (4d)
S(z) = [|FHASN)| (4e)

In this equation, f, represents the cut-off frequency, HF'(f)
is the function used to obtain the high frequency amplitude,
AS(f) represents the amplitude of the season, and S(z)
represents the season itself.

Step 2: Extracting Trends. After removing all of the
seasonal components, the remaining parts consist of trends
and residuals. To extract the trend, we apply a low-pass filter.
The trend is derived from the following equation:

fp = 1/period (5a)

L f</fp
LF(f) = 5b
bl
A(f) = Amplitude(F(x)) (5¢)
AT(f) = A(f) x LF(f) (5d)
T(z) = [|F~H (AT ()] (Se)

The symbol f, represents the cut-off frequency, while
LF(f) refers to the function used to calculate the amplitude
at low frequencies. The term AT'(f) denotes the amplitude of
the seasonal variation, and 7T'(z) represents the trend.
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D. Accurate Residual

In this paper, we use the Spectral Residual (SR) model
to detect outlier positions and extract them. Residuals, which
represent noise, are typically high-frequency and random. By
leveraging the SR model, we identify residual locations in the
most high-frequency seasonal terms, smooth these points, and
compute the difference between the original and smoothed sea-
sons, which yields the residual. Notably, Microsoft introduced
the use of the SR model for time series analysis in 2019,
marking the first instance of applying the SR model from
visual saliency detection to detect anomalies in time series
data.

III. EXPERIMENTS
A. Datasets

In our experiments, we utilized a combination of public and
synthetic datasets, the characteristics of which are outlined in
Table 1. For instance, the "M4-Hourly” dataset is a multi-
period time series with a period distribution ranging from 24
to 168. This dataset consists of a total of 10 sequences, each
with a sequence length of 700 data points.

To generate the synthetic data in Figure 4, we start by
creating a trend signal with 700 data points. This signal
includes a triangle wave to depict a gradual trend change.
Then, we incorporate two cosine waves with periods of 20 and
70. Finally, we add random data for the residuals to simulate
real-world situations.

TABLE I
Data Set Statistics

Data Set Periodics Periods  Count Length
CRAN Non-period None 17 24 — 827
CRAN Single-period 2-52 58 24 -3024
M4-Hourly Multi-period  (24,168) 10 700
AusGrid-Energy Multi-period ~ (48,336) 5 4416
Synthetic Multi-period (20,70) 1 700

| gyt ey = 5
. LTI
— residual

Fig. 4. The synthetic Data

B. Setup

We have selected four state-of-the-art (SOTA) algorithms
for periodicity detection comparison: findfrequency, sazed,
Autoperiod, and Robust-period. Both Autoperiod and Robust-
period are capable of multi-period detection and single-period
detection. For the purpose of decomposition comparison, we
have chosen three SOTA decomposition algorithms: MSTL,
STR, and TBATS. These are all multi-period time series
decomposition algorithms and can also be used for decom-
posing single-period time series. The details of the baseline
algorithms are presented in Table II. Through a grid search on
the validation set, we have set A = 1/6 and v = 0.6.

C. Periodic Detection and Run-Time Cost

Table III compares different period detection algorithms.
ASTD performs well in detecting periods for multi-period,
single-period, and non-periodic time series with the low-
est false positive rate. Sazed and robust-period have lower



TABLE 11

Source of the baseline algorithms

Type Name Source
Sazed https://cran.r-project.org/web/packages/sazedR/index.html
Findfrequency  https://rdrr.io/cran/forecast/man/findfrequency.html

periodicity-detection

Auto-period
Robust-period

https://github.com/akofke/autoperiod
https://github.com/ariaghora/robust-period

decomposition

MSTL
STR
TBATS

https://github.com/KishManani/MSTL
https://cran.r-project.org/web/packages/stR/index.html
https://rdrr.io/cran/forecast/man/tbats.html

TABLE III

Detected periodicities on different dataset.

CRAN (Non-period)

CRAN (Single-period)

M4 (Multi-period) AusGrid (Multi-period)

Algorithm
precision  recall F1 precision  recall F1 precision  recall F1 precision  recall F1
Findfrequncy 0.58 0.58  0.58 0.60 0.60  0.60 0.9 0.45 0.6 0 0 0
Sazed 0.0 0.0 0.0 0.65 0.65  0.65 1 0.5 0.66 0.4 0.2 0.26
Autoperiod 0.64 0.64 0.64 0.24 024 0.24 0.9 0.45 0.6 0.6 0.3 0.4
Robust-period 0.0 0.0 0.0 0.19 0.87 031 0.19 055 0.28 0.33 0.5 0.39
ASTD 0.76 0.76  0.76 0.98 098  0.98 0.96 1 0.98 0.86 1 0.91
precision for detecting single-period time series. Autoperiod TABLE V

recognizes some aperiodic sequences but has a higher false
positives rate. In multi-period detection, ASTD achieves the
highest F1 value, while Autoperiod and Sazed detect only one
cycle, and robust-period detects multiple cycles. Findfrequency
obtains the period using an autoregressive model, but it is
prone to interference from multi-period data. ASTD effectively
mitigates the side effects of spectral leakage and abnormal
values, making it the only algorithm that can correctly detect
periods in time series with an outlier ratio from 0% to 20%.

TABLE IV
Comparison of periodic detection for single-period time series with different
outlier ratio.

Methods n=0% n=5% n=10% n=15% n=20%

Findfrequency 71 71 83 91 83
Auto-period 69 69 69 67 67
ASTD 70 70 70 70 70

Table V shows the running time comparison of different
multi-period detection algorithms in different datasets. From
the table, we can see that the running time of each algorithm
increases with the amount of data. In the same dataset, ASTD
has the shortest running time and Robust-period the longest.
In the Taylor dataset, Robust-period runs 6882 times longer
than ASTD. Therefore, in the case of long time series, ASTD
is faster than auto-period and Robust-period, which can better
extend the application of long time series.

D. Decomposition and Run-Time Cost

To quantitatively evaluate the performance, we compared
the mean squared error (MSE) and mean absolute error (MAE)
in the synthetic dataset, and ASTD outperformed other algo-
rithms (Table VI).

Running time comparison of periodic detection for multi-period time series
with different lengths.

CRAN-cafe
(length=114)

0.1631 s
7.7395 s
0.0428 s

CRAN-cafe
(length=114)

0.5717 s
60.2719 s
0.0285 s

CRAN-cafe
(length=114)

2.7062 s
838.9443 s
0.1219 s

Methods

Auto-period
Robust-period
ASTD

178.5610

89.8403

0.0890
=
ASTD

0.3095
MSTL

Fig. 5. Comparison of decomposition time of different algorithms in Taylor
dataset.

In terms of decomposition time, ASTD was found to be 3
times faster than state-of-the-art algorithms (Figure 5). Overall,
ASTD performed well in recovering the location and magni-
tude of seasonality and residuals. Its decomposed seasonal and
residuals had smaller MAE and MSE than other algorithms,
and its decomposition trend was close to the current state-
of-the-art algorithms. ASTD’s low time complexity makes it
suitable for decomposing long time series.



TABLE VI
Comparison of MSE and MAE for trend, seasonality, and residual components of different decomposition algorithms.

Methods MSE MAE

trend season=20  season=70  residual trend season=20  season=70  residual
MSTL 0.2108 3.1543 2.6806 6.1802  0.3610 1.0254 1.0605 1.4478
STR 0.1714 0.2161 0.5422 0.6984  0.3400 0.3812 0.5789 0.6541
TBATS 0.8824 0.1981 0.1590 0.9622  0.7815 0.3295 0.3566 0.8050
ASTD 0.2463 0.0799 0.0081 0.2385  0.4025 0.2584 0.0814 0.3953

IV. CONCLUSION

Multi-period time series decomposition is a fundamental
technique widely used in anomaly detection, prediction, and
classification. However, the current state-of-the-art decomposi-
tion algorithms require users to identify the periodicity of time
series and select different decomposition methods accordingly.
In this paper, we propose a unified method called ASTD,
which provides an automatic decomposition of time series,
greatly expanding the scope of applications for time series
decomposition. In particular, the proposed ASTD requires
only the input of time series data, and can automatically
detect the periodicity and decompose the sequence. We have
designed ASTD with low time complexity requirements to
handle long time series that are commonly encountered in
real-world scenarios. The complexity of ASTD is O(NlogN).
Extensive experiments have demonstrated that ASTD outper-
forms existing SOTA algorithms in terms of decomposition
accuracy and run-time cost. Besides, it is highly robust to
outliers. Furthermore, our method achieves the smallest Mean
Absolute Error (MAE) and Mean Squared Error (MSE), and it
is nearly 3 times faster than the state-of-the-art decomposition
algorithm on the Taylor dataset. In the future, we will continue
to improve the accuracy of trend extraction and explore the
application of ASTD in various time series-related tasks.
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