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Abstract—Communication learning is an effective way to
solve complicated cooperative tasks in multi-agent reinforcement
learning (MARL) domain. Graph neural network (GNN) has
been widely adopt for learning the multi-agent communication
and various GNN-based MARL methods have emerged. However,
most of these methods are not specially designed for heteroge-
neous multi-agent scenarios, where agents have heterogeneous
attributes or features based on different observation spaces or
action sets. Without effective processing and transmission of
heterogeneous feature information, communication learning will
be useless and even reduce the performance of cooperation.
To solve this problem, we propose a communication learning
mechanism based on heterogeneous GNN and graph information
maximization to learn effective communication for heterogeneous
agents. Specifically, we use heterogeneous GNN for learning
the efficient message representations, which aggregate the local
feature information of neighboring agents. Furthermore, we
maximize the mutual information (MI) between message repre-
sentations and local values to make efficient use of information.
Besides, we present a MARL framework that can flexibly
integrate the proposed communication mechanism with existing
value factorization methods. Experiments on various heteroge-
neous multi-agent scenarios demonstrate the effectiveness and
superiority of the proposed method compared with baselines.

Index Terms—Communication learning, Multi-agent reinforce-
ment learning, Mutual information, Graph neural network.

I. INTRODUCTION

In recent years, multi-agent reinforcement learning (MARL)
has seen tremendous growth and attracted wide attention
[1]. The paradigm of centralized training and decentralized
execution (CTDE) is popular and widely used in MARL be-
cause it can address scalability issues and partial observability
limitations of MARL [2]. Most of the CTDE based MARL
methods can be roughly divided into value factorization meth-
ods [3], [4], [5] and communication learning methods [6],
[7], which provide different solutions for further exploiting
CTDE paradigm. The value factorization methods factorize the
global value function into the set of the local individual value
function of each agent to further tackle the scalability issue.
The communication learning methods enable agents to share
important information in the decentralized execution period,
which can further promote action coordination.
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Recently, graph neural network (GNN), as an efficient
representation learning method [8], has been widely utilized
to build communication learning mechanism of MARL, which
generally regards agents as nodes in the graph, with the
communication channels corresponding to edges. Many state-
of-the-art MARL methods fall into this GNN-based com-
munication paradigm [9], [10]. However, most GNN-based
communication learning methods are not specially designed
for heterogeneous scenarios, where agents have different ob-
servation spaces or action sets. Therefore, these methods can
not effectively process and transmit heterogeneous feature
information, which leads to inefficient communication learning
and affects action coordination.

To solve these problems, we present a Communication
Learning mechanism of multi-Agent Reinforcement learning
(CLAR) for heterogeneous scenarios. The proposed mecha-
nism utilizes heterogeneous GNNs to model the heteroge-
neous agents and fuse feature information of neighboring
agents to obtain high-level message representations. Besides,
the proposed mechanism leverages mutual information (MI)
optimization to obtain high-quality message representations
for action coordination. Furthermore, we present a MARL
framework that integrates the value factorization and the pro-
posed communication learning mechanism. This framework
can maintain the advantages of the stability and scalability
of the value factorization methods, and promote better action
coordination between agents by effectively processing and
utilizing heterogeneous feature information. The following are
the primary contributions of the proposed method,

1) We present a MARL framework that integrates commu-
nication learning mechanism and value factorization methods
for heterogeneous scenarios, which solved the communication
learning challenge of heterogeneous scenarios and the action
discoordination issue of value factorization methods.

2) We first introduce the MI between the local values and
the message representations in MARL. We use the MI maxi-
mization to learn the most valuable and expressive information
from different classes of agents for better action coordination.

3) We design the heterogeneous GNN to learn heteroge-
neous multi-agent communication, which efficiently models
the heterogeneous scenarios and achieves the fusion and
transmission of heterogeneous information.



II. RELATED WORK

A. GNN-based MARL

Recently, learning multi-agent communication via GNN
in MARL has attracted popular attention. Jiang et al. [9]
first extends GNN to MARL for multi-agent communication
learning. Das et al. [10] leverages GNN with soft attention
mechanism to learn whom to receive messages and what
messages to pass. Sheng et al. [11] utilizes the hierarchical
GNN to achieve effective communication learning by sharing
information among agents and groups. Ryu et al. [12] presents
a hierarchical attention mechanism based on GNNs, which
models the relationships between agents effectively. Liu et al.
[13] utilizes a two-stage attention mechanism to model the
complete graph for communication learning. Niu et al. [14]
proposes an attentional GNN to tackle the challenges of how
to process information and when to communicate.

The existing GNN-based MARL methods have achieved
efficient communication learning by modeling interactions or
relationships between agents. However, most of these methods
are not specially designed for heterogeneous scenarios, where
agents have heterogeneous attributes or features based on dif-
ferent observation spaces or action sets. Although some works
attempt to use heterogeneous GNNs to learn communication in
heterogeneous scenarios [15], [16], these works do not further
optimize the high-level message representation, resulting in
communication learning less effective. Different from them,
the proposed method utilizes MI optimization to obtain high-
quality message representations for action selection.

B. Graph Convolutional Network

Graph Convolutional Network (GCN) as a popular GNN
module generally utilizes the information passing between the
graph nodes to learn the structural dependency between nodes
[8]. Concretely, each node aggregates the feature of adjacent
graph nodes to compute a new high-level feature vector, the
feature aggregation procedure is shown in Eq.(1).

h′
i = σ

( ∑
b∈N(i)

ωhb/dib
)

(1)

where h′
i represents the aggregated feature vector of node i ,

σ(.) denotes the activation function and ω denotes the learn-
able weights. b ∈ N(i) contains the immediate neighbor nodes
of node i , where b represents the index of the neighbors. dib
denotes the normalization term, which has several options and
the common one is

√
|N(i)N(b)|. After feature aggregation

through several layers, the high-level feature representation
of node i can integrate the structural information of nodes
reachable from graph node i.

In our work, we use an efficient enhancement of Eq. (1),
which replace dib with the attention coefficients αib as follows:
αib = softmaxb

(
σ′ (āT [ωhi∥ωhb]

))
where σ′ utilizes the

LeakyReLU nonlinearity function, ā represents the learnable
weight, || denotes concatenation operation. The softmax func-
tion is utilized to normalize the coefficients over all neighbor
nodes b .

III. METHODOLOGY

In this section, we introduce the proposed MARL frame-
work and the proposed communication learning mechanism
based on the heterogeneous GCN and MI optimization.

A. Problem formulation

In our work, we formulate the heterogeneous multi-agent
issue as the Heterogeneous Multi-Agent POMDP represented
by G = ⟨C, I, {Sc}c∈C , {Ac}c∈C , {Oc}c∈C , R⟩ [16]. C
represents the set of all classes of agents in the heterogeneous
scenarios and the index c ∈ C represents the class that the
agent belongs to, the total number of classes is denoted as
n. I =

∑
c∈C Ic represents the total number of collaborating

agents in which Ic denotes the number of agents that belong
to class c . {Sc}c∈C denotes the state space in which Sc

represents the joint state of agents of class c. Sc = [sci ]|
Ic

i=1 and
sci represents the state of agent i of class c. {Ac}c∈C represents
the action space in which Ac represents the joint action space
of agent i of class c. Ac = [aci ]|

Ic

i=1 and aci represents the
action of agent i that belongs to class c. {Oc}c∈C represents
the observation space where Oc represents the observation
space of agents of class c. Each agent i of class c obtains
a partial observation oci ∈ Oc and takes an action aci ∈ Ac,
which forms the joint action a ∈ {Ac}c∈C . Then agent
i can obtain an immediate shared reward R(s, a), which
encourages cooperated behavior among agents. The target of
all the agents is to learn the optimal joint action-value function
Qtot(τ, a) = Es,a[

∑∞
t=0 γ

tR(s, a)], where τ represents the
joint action-observation history, and γ represents the temporal
discount factor.

B. Overall Framework

The overall framework of the proposed method is shown in
Fig. 1, which contains 3 modules: feature encoding module,
communication learning module, and value decomposition
module. For agent i, it receives the local observation oi and
then utilizes Multi-Layer Perceptron (MLP) and Gated Recur-
rent Unit (GRU) to process the local observation and produce
the feature hi . Then hi is fed to encoder to generate type-
specific features

(
h1
i , h

c
i , . . . , h

n
i

)
for communication. The

communication module is built by the heterogeneous GCN to
pass the heterogeneous feature information among agents and
learn specific communication policies based on agent types. By
stacking multiple heterogeneous GCN layers, the high-level
embedding mi of agent i can be extracted through multiple
rounds of communication.

In value decomposition module, the local individual action-
value function Qi (τi, ai,mi) is calculated based on local
observation history τi and feature messages mi received from
the communication learning module. Then the local Q values
obtained by all the agents are input into a mixing network
to generate an estimation of the global value. Besides, we
utilize mutual information optimization to further strengthen
the correlation between the communication learning module
and value decomposition module. The proposed communi-
cation mechanism can be fused with any value factorization



Fig. 1: Framework of the proposed method

methods under the paradigm of centralized training and decen-
tralized execution. During the decentralized execution phase,
the agents can communicate and take actions in a decentralized
manner based on the communication learning module.

C. Communication Learning

In this section, we utilize the heterogeneous GCN to build
the communication learning mechanism. The overall frame-
work of the communication module is shown in Fig. 2, which
contains the message sender procedure and receive procedure.
For simplicity and universality, we consider a heterogeneous
scenario with three types of agents, C = ⟨F,K,L⟩ and
take the agent of class F as an example. For agent f of
class F , its obtained feature hf is processed by different
weight matrixes and sent to other agents during the sender
procedure. On the one side, hf is processed utilizing a class-
specific weight matrix wF ∈ Rd×d, where d and d′ represents
the dimension of the input feature and the output feature,
respectively. On the other side, hf is processed by heteroge-
neous edgetypes utilizing the edgetype-specific weight matrix
wEdgetype ∈ Rd′′×d,where the d′′ represents the output feature
dimension of the agent that agent f sent messages to.

For example, F → K represents the edgetype from the
agent of class F to the agent of class K. hK

f = wF→Khf

denotes the feature processed by edgetype-specific weight
matrix wF→K that from agent f of class F to the any agent of
class K. Then the obtained feature hK

f are sent to any agent
of class K . During the message receive phase, for each edge

Fig. 2: Framework of the communication learning module.

type that the agent f of class F is connected to other agents,
we utilize the heterogeneous GCN with attention mechanism
to obtain the per-edge-type aggregation feature. It is obtained
by weighted calculation of messages received by neighbor
agents along the same edge type with αEdgetype , which denotes
normalized attention coefficients.

Then, the aggregation embeddings are integrated with trans-
formed embedding wFhf to compute the output message
embedding. Therefore, for agent f of class F , the message
aggregation equation can be represented as follows, where
Nf (F ), Nf (K) and Nf (L) represents the neighbor agents
that belongs to class F , K and L , respectively.

mf = σ
(
wFhf +mF

f +mK
f +mL

f

)
(2)

where mF
f =

∑
f ′∈Nf (F ) αff ′hF

f ′ , mK
f =

∑
k∈Nf (K) αfkh

F
k ,

and mL
f =

∑
l∈Nf (L) αflh

F
l . To consider heterogeneous com-

munication, we utilize Eq.(3)-Eq.(5) to compute the attention
coefficient αff ′ , αfk, αfl in the message representations.

αff ′ = softmaxf ′
(
σ′ (āT [ωFhf∥ωF→Fhf ′ ]

))
(3)

αfk = softmaxk
(
σ′ (āT [ωFhf∥ωK→Fhk]

))
(4)

αfl = softmaxl
(
σ′ (āT [ωFhf∥ωL→Fhl]

))
(5)

The similar calculation procedure can be carried out for agent
k of class K and agent l of class L , the corresponding
equations are represented as follows:

mk = σ
(
wKhk +mK

k +mF
k +mL

k

)
(6)

ml = σ
(
wLhl +mL

l +mF
l +mK

l

)
(7)

Besides, the corresponding message representation are com-
puted in a similar manner as abovementioned. At each time
step, obtained messages embeddings are passed to other neigh-
bor agents. In this way, one heterogeneous GCN layer can
correspond to one round of message passing among neighbor
agents and feature updates within each agent. We can extract
the high-level message representation of each agent by stack-
ing multiple heterogeneous attention network layers, which
correspond to multiple rounds of communication. To stabilize
the communication learning process, we extend the multi-head
variant of the attentional mechanism to heterogeneous settings
and utilizes M heads to obtain features in parallel.



D. Mutual information optimization

In this section, we introduce mutual information opti-
mization to enable more efficient communication learning
among agents. For agent i, it obtains message embeddings(
m1

i ,m
c
i , . . . ,m

n
i

)
from neighbor agents of class (1, c, . . . , n)

and fuses them to generate the final message mi. We define
the agent’s immediate neighbor agents as other agents within
the field of view of this agent. We utilize the random walk
with restart (RWR) [17] to sample a fixed number of samples
from the defined neighbors of agent i.

Specifically, the neighbors sampling process are as follows:
(1) random walk starting from the agent i , select agents using
probability p , and put selected agents to set Zi. Its total
number of agents is fixed, and the number of different types
of neighbors are limited to ensure that all types of agents in
the initial immediate neighbors are included in the new set
Zi. (2) The agents in set Zi are then grouped via types. For
agents that belongs to class c, we choose top kc agents from
set Zi according to frequency and collect them as the new set
Ni(c) of c-class neighbors of agent i.

For agent i, at each timestep, it fuses messages of all n class(
m1

i ,m
c
i , . . . ,m

n
i

)
to obtain the final message embeding mi.

Nevertheless, some messages of some class may be not useful
at a certain time-step. To tackle this issue, we utilize mutual
information to implicitly learn which class messages of agent
is more valuable at certain time-step, so that the agent can
learn the most expressive information from different types of
information, so as to better coordinate actions. The mutual
information can be calculated by learning a discriminator D
inspired by the idea of [17]. The discriminator D is aim at
telling a positive message-value pairs sample (mc

i , Qi) from
a negative sample (m̃c

i , Qi), therefore the corresponding loss
function is represented as follows:

LMI =
∑
i∈I+

logDi (mi, Qi)+
∑
i∈I−

[1− logDi (m̃i, Qi)] (8)

For agent i , we aim to maximize the MI between the messages
mc

i of c class and corresponding individual action value Qi.
The discriminator Di is designed to score message-value pairs
(mc

i , Qi), we utilize a bilinear layer to be the scoring function
which is represented as follows:

Di (m
c
i , Qi) = σ

[
(mc

i )
T
M c

i Qi

]
(9)

where M c
i represents a learnable scoring vector, σ utilizes

the logistic sigmoid activation function. Therefore, given mes-
sages embeddings of c class and the discriminators, we can
maximize the MI utilizing the message embedding-value loss
function for N agents as follows:

LMI =

I∑
i=1

n∑
c=1

Lc
i (10)

Lc
i =

∑
⟨c,j⟩∈N+

i

logDi (m
c
i , Qi)+

∑
⟨c,j⟩∈N−

i

log [1−Di (m̃
c
i , Qi)]

(11)
where Lc

i represents the message-value loss of c class, the
set N+

i represents a sub-set of set Zi , in which the agents

are sampled from the Zi utilizing the RWR. Specifically, a
sampling sub-set Ui is built by selecting agents from set Zi .
For agent j of the sub-set Ui, if the conditions dist(i, j) ≤ δ
are met, the agent j and its corresponding class are together
added into the sub-set N+

i until the number of sub-set N+
i

reaches the batch-size. Where dist(·) represents the distance
of two agents, and δ denotes an adjustable parameter that
can be set according to different scenarios in the experiment.
N−

i denotes the complement set of the N+
i . We utilize

the communication learning mechanism designed above to
generate the negative message embedding m̃c

i based on the
set N−

i . The designed mutual-information loss function in
Eq. (11) can be utilized to maximize the MI.

Except for the proposed MI constraints on the message
representations, all the parameters in other modules are gener-
ally updated by minimizing the global TD loss. In this paper,
CLAR utilizes the mixing network of [4]. Therefore, TD loss
function utilized in CLAR is presented as follows:

LID =
[
r + γmax

a′
Qtot

(
τ ′, a′; θ−

)
−Qtot(τ, a; θ)

]2
(12)

where θ− represents the parameters of target network, θ de-
notes all parameters in CLAR. Then, the overall optimization
of CLAR is presented as follows:

L = LTD + λLMI (13)

where λ represents the adjustable hyper-parameter to achieve a
trade-off between the TD loss LTD and the sum of MI loss of
all agents LMI . We set λ = 0.1 for it performs best compared
to the other values of λ in the experiments.

IV. EXPERIMENTS

In this section, we select Predator-Capture-Prey (PCP) [16]
and StarCraft II Multi-Agent Challenge (SMAC) [18] as our
benchmarks. We conduct various experiments on these bench-
marks with GPU Nvidia RTX 2080 to answer: Q1: Whether
CLAR can improve performance in diverse heterogeneous
scenarios? Q2: Whether CLAR can be applied to large-scale
multi-agent scenarios? Q3: Does the superiority of CLAR
come from communication learning and MI optimization? Q4:
How are the learned message embeddings distributed in the
representation space and how do they affect team-work and
action coordination? More details about experiment setting and
algorithm are published to facilitate future research1.

Fig. 3: Illustrations of PCP and SMAC

1https://github.com/Ayeliauk/Clar



Fig. 4: Learning curves of the proposed method and baselines on heterogeneous scenarios of SMAC.

A. Environments and baselines

As shown in Fig. 3, we first select the heterogeneous en-
vironment PCP to conduct experiments, which contains three
types of agents, predators, captures, and preys. Predators and
captures are cooperative, while preys is adversary. Predators
can observe environment while the captures cannot obtain
any observation from the environment. Therefore, captures
necessitate communication and coordination with predators.
We build the communication learning module utilizing het-
erogeneous graph attention networks with M = 4 attention
heads. Because the PCP scenario is relatively simple, we do
not use MI optimization in the proposed method.

To further demonstrate the effectiveness and superiority of
CLAR, we evaluate it on the more complicated benchmark
SMAC and select the challenging heterogeneous scenarios
of SMAC as shown in Fig. 3. Our experiments are con-
ducted based on the PyMARL framework [18] and utilize
its default structure and hyper-parameter settings of the value
decomposition module. The hyper-parameters of the proposed
communication learning module are set as follows: p is set to
0.6, δ is set to 5. Zi, N−

i and N+
i can be adjusted according

to different scenarios. The rest part is set as same as in the
PCP environment.

We select 2 value decomposition methods Q Mixing net-
work (QMIX) [4], Q duplex network (QPLEX) [5] and 3
communication learning methods Nearly Decomposable Q
network (NDQ) [3], Targeted Multi-Agent Communication
(TarMAC) [9], and Heterogeneous Policy Network (HetNet)
[16] as baselines, in which TarMAC and HetNet utilize GCN
in the communication learning module.

B. Performance

Effectiveness (Q1). Table I shows the average reward of the
baselines and CLAR of 3 different random-seed initialization
on PCP, in which the bold numbers represents the highest
performance results. Fig. 4 shows the average win rate of the
baselines and CLAR of 5 different random-seed initialization
on SMAC, while the shadow in represent a 95% confidence
interval. As shown in Table I and Fig. 4, the proposed method
outperforms other MARL baselines on diverse heterogeneous
scenarios, which may be due to the effective representation
and communication learning of heterogeneous agent features.

Scalability (Q2). To further verify that CLAR can be
extended to large-scale heterogeneous scenarios, we compared
the performance of CALR and baselines with different num-
bers of agents. The number of agents varies from 5 to 40, with
the predators, captures, and preys ratio being 3:1:1. As shown
in Table I, CLAR always performs optimally as the number
of agents increases. The results demonstrate that the proposed
method CLAR can be extended to large-scale scenarios.

TABLE I: PERFORMANCE OF DIFFERENT METHODS ON PCP.
Methods n=5 n=10 n=20 n=40
QMIX -0.42±0.07 0.38±0.06 -0.33±0.06 -0.30±0.05

QPLEX -0.39±0.05 0.35±0.04 -0.29±0.03 -0.26±0.03
NDQ -0.34±0.05 0.28±0.04 -0.17±0.04 -0.12±0.03

TarMAC -0.30±0.04 0.23±0.04 -0.05±0.02 +0.06±0.02
HetNet -0.31±0.05 0.25±0.04 -0.19±0.02 -0.13±0.03
CLAR -0.26±0.03 -0.18±0.02 +0.07±0.01 +0.15±0.01

Contributions (Q3). To evaluate the contributions of each
component of CLAR, we design an ablation experiments,
in which three variants of CLAR are selected as the base-
lines. As shown in Table II, CLAR-H is the CLAR without
heterogeneous GCN. It directly uses the normal GCN for
communication learning. CLAR-V is CLAR without the value
decomposition component. CLAR-M is the CLAR without MI
optimization. The performance of all three variants decreases
compared to the CLAR, illustrating the effectiveness of each
component. The heterogeneous GCN can achieve efficient
communication for heterogeneous agents, the MI optimization
can further enhance the quality of communication, and the
value decomposition can promote the policy learning.

TABLE II: ABLATION EXPERIMENTS ON SMAC.
Methods MMM2 1c3s5z 2c3s5z 1o2r vs 4r
CLAR-H 77.32±6.09 89.32±4.16 82.13±6.43 78.49±7.14
CLAR-M 83.16±5.52 94.17±3.59 87.16±4.60 83.05±5.17
CLAR-V 85.83±4.75 95.25±2.43 90.61±3.24 87.73±3.67
CLAR 87.55±4.52 97.58±1.94 93.03±2.17 90.42±3.29

Visualizations (Q4). As shown in Fig. 5, the message
representations produced by CLAR-M are almost randomly
distributed in the representation space. On the contrary, with
the proposed MI optimization, the message representations
produced by CLAR automatically cluster several clusters in the
space. According to the locations of message representations,
we divide the agents into groups. We color the message em-
beddings by the group to which each agent belongs. That is, for
each group in the space, the message embeddings are colored



Fig. 5: Visualization of the video frames and t-SNE projection of the message embedding representation space, e.g., in (a),
top subgraph (Visualization), left subgraph (t-SNE projection of CLAR), right subgraph (t-SNE projection of CLAR-M).

uniformly. In the video frame of the same time-step, we can
see the correspondence between the agent groups formed in the
game and those formed in the message representation space.
Agents in the same group tend to receive similar message
embedding and accomplish more cooperation.

V. CONCLUSIONS

This paper provides a novel GNN-based communication
learning mechanism and MARL framework for heterogeneous
scenarios. To our knowledge, our work is the first attempt
to solve the heterogeneous multi-agent tasks by integrating
heterogeneous GNN, MI optimization and value factorization,
which simultaneously solves the issues of scalability, effec-
tive communication and action coordination in heterogeneous
scenarios. We believe that the proposed method can provide a
new way for other researchers to solve the MARL problem.

In the future, further implementation of sub-task partitioning
of heterogeneous agents is a promising direction that can be
explored to build efficient and scalable heterogeneous multi-
agent systems. We intend to apply the proposed method in
real-world heterogeneous multi agent scenarios, such as traffic
signal control.
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