
DGNN: Dynamic Graph Neural Networks for
Anomaly Detection in Multivariate Time Series

Bowen Chen1, Hancheng Lu1,Yuang Chen1, Haoyue Yuan1, and Minghui Wang2
1 University of Science and Technology of China, Hefei, China

2 AI Institute of H3C Technologies Co., Ltd.,
{chenbowen, yuangchen21, yhyue}@mail.ustc.edu.cn, hclu@ustc.edu.cn, mhwang@h3c.com

Abstract—In recent years, there has been significant progress
in the importance of anomaly detection for multivariate time
series in industrial applications. However, there are still limita-
tions. Although deep learning methods have improved anomaly
detection in high-dimensional multivariate time series, they
are computationally expensive and do not explicitly learn the
relational structure between sequences. In this paper, we propose
an unsupervised anomaly detection algorithm called Dynamic
Graph Neural Networks (DGNN). Firstly, we propose a data-
driven method of generating ”subgraphs” to interpret interior
correlations between sequences, instead of using the traditional
method of a fully connected graph. Secondly, we introduce a novel
Graph Attention Networks based on correlation to fuse neighbor
sequence features. Experimental results on five public datasets
demonstrate that our method consistently achieves state-of-the-
art performance compared to other baseline methods, while
reducing the edges of the graph by nearly 70%.

Index Terms—time series, anomaly detection, graph attention
network, correlation coefficient

I. INTRODUCTION

With the advent of the Internet of Things (IoT) era, the
recording of time-series data [1]–[3] has experienced a sig-
nificant increase. This data is collected from various do-
mains, including operations and maintenance, economics, and
transportation, and encompasses metrics such as CPU usage,
online shopping request numbers, resident purchasing and
expenditure indexes, traffic flow, and average vehicle speed.
Many time series exhibit periodic behavior, such as human
heartbeat, rush-hour traffic, and tides linked to lunar and solar
cycles. Anomaly detection in time series data has emerged
as a critical topic in data mining, with diverse applications
across industries [4]–[6]. Accurate and timely anomaly detec-
tion enables industrial systems to continuously monitor key
indicators in time series data and issue early warnings for
potential events. While detecting anomalies in a single time
series is relatively straightforward, with the advancement and
expansion of systems, an increasing number of time series
data for key indicators (KPIs) are being recorded. As the
dimensionality of time series data grows, manual monitoring
by humans becomes increasingly challenging. Therefore, there
is a need for automatic anomaly detection methods that can
efficiently identify anomalies in high-dimensional data and
provide explanations to human operators.

Recent techniques based on Graph Neural Networks
(GNNs) have improved anomaly detection in high-dimensional
datasets. For example, MTAD-GAT (Zhang et al. 2020) [7]

learns the relationship between feature dimension and time
dimension of multivariate time series through Graph Attention
Network (GAT) (Velickovic et al. 2017) [8], and finds potential
anomalies in high-dimensional multivariate time series. GDN
(Deng et al. 2021) [9] employs Embedding technology to
learn the potential relationship of multivariate time series and
represent the relationship of each sequence time using embed-
ding, which is convenient for human operators to diagnose and
locate anomalies.

However, the existing methods use GAT to directly learn the
attention coefficient and aggregate the features of the neigh-
boring time series, which is coarse and inefficient. Because
the time series in real-world scenarios have various modes,
such as stationary, irregularly fluctuating, or periodic. These
existing GAT-based methods all use a fully connected graph,
which results in a waste of computing resources for GAT
graph learning and may lead to inaccurate aggregation results.
There is a wealth of information in multivariate time series,
such as the possibility of similar changing trends between
series, as well as slow-changing trends within individual series.
However, since GAT was not designed for multivariate time
series, it cannot fully exploit the information contained within
them. Existing anomaly detection methods utilize GAT to fuse
multivariate time series features and can only roughly extract
some of their internal features.

To overcome these challenges, we propose Dynamic Graph
Neural Networks (DGNN), a novel framework for detecting
anomalies in multivariate time series. DGNN utilizes dynamic
subgraphs that are generated based on correlations, which
replace static fully connected graphs, and Adaptive Graph
Attention Network(AGAT), a correlation-based alternative to
traditional GAT. Compared to previous methods, dynamic
subgraphs more accurately depict the proximity between each
time series and help to narrow down the potential locations of
anomalies. Furthermore, when GNN is employed for feature
fusion, fewer edges result in less interference from indepen-
dent sequences and faster convergence rates of the GNN
model. AGAT leverages correlations to calculate attention
coefficients and is effective in extracting features from multiple
time series compared to GAT.

In summary, our main contributions are as follows:

• We propose DGNN, a dynamic graph neural network
approach that enables faster and more accurate learning of

temporal relationships between time series than existing
methods.

• We introduce Dynamic Subgraph Generation (DSG), a
real-time approach for generating graphs between se-
quences based on input time series, dynamically adapting
to changing data.

• We present the Adaptive Graph Attention Network
(AGAT), a novel approach for effectively capturing fea-
tures from multiple time series data by leveraging corre-
lations to compute attention coefficients.

• We conduct extensive experiments on five public real-
world datasets. Our results demonstrate the superior per-
formance of DGNN over state-of-the-art baseline meth-
ods.

II. RELATED WORK

PCA (Shyu et al. 2003) [10] and IForest (Liu et al. 2008)
[11] are machine learning-based methods for anomaly detec-
tion. PCA detects anomalies by reducing dimensionality and
projecting data back to the original space, and comparing the
deviation between original data and reconstructed data. It is
fast but may lose information. IForest is an ensemble-based
fast anomaly detection algorithm that determines anomalies by
constructing randomly generated isolation trees, with shorter
path lengths indicating a higher likelihood of anomalies.
However, IForest is not suitable for high-dimensional data as
randomly selecting dimensions may reduce algorithm reliabil-
ity.

To address the issue of high-dimensional data loss, deep
learning methods have been introduced. Time series anomaly
detection methods based on deep learning, such as LSTM
(Malhotra et al. 2008) [12], DAGMM (Zong et al. 2018)
[13], and USAD (Audibert et al. 2020) [14], are able to
incorporate contextual information of time series for pre-
diction. Transformer-based models like TranAD (Tuli et al.
2020) [15] and Anomaly Transformer (Xu et al. 2021) [16]
can better learn the contextual information of time series,
leading to significant performance improvement. However,
they still do not fully utilize the relationships among multiple
time series. For example, Anomaly Transformer proposed an
anomaly detection model based on the differences between
associations, but it only focuses on the contextual information
of individual time series without considering the relationships
among sequences.

In recent years, GNNs have achieved success in handling
graph-structured data. GNNs consider the state of neighboring
nodes and utilize the latent relationships among nodes. Graph
Convolutional Networks (GCNs) (Kipf and Welling 2016) [17]
model node features by aggregating representations of one-step
neighbors. GATs extend the approach of GCN by introducing
attention functions to compute weights for different neighbors
during the aggregation process. GDN (Deng et al. 2017) is
a multivariate time series anomaly detection method based
on GAT, but it uses a fully connected graph as the input to
the GAT network, treating all time series as having the same
relationship, which does not align with the actual scenario.

Using fully connected graph as input leads to difficulties in
model training and slow convergence. Additionally, GAT is
not specifically designed for time series, and its effectiveness
in feature extraction for time series is limited.

III. FRAMEWORK OF DGNN

A. Problem Statement

We represent the network as a graph G = (V,E), where
V is a finite set of nodes with |V | = N , corresponding to
the observation of N sensors, and E is a set of edges. The
observed graph signal X(t)

G ∈ RN×d indicates the observation
of graph information G at time step t, where each element
represents the observation of d sensor features. In this paper,
we utilize a forecasting-based model to detect anomalies by
comparing the errors between predicted and actual values.
The objective of forecasting is to learn a function f from the
previous T observations, which can predict the next step from
N correlated sensors.

[Xt−T+1
G , ..., Xt

G]
f−→ [Xt+1

G] (1)

Our training dataset comprises sensor data (i.e., multivariate
time series) from N sensors across Ttrain time steps. The
sensor data is denoted as strain = [s

(1)
train, ..., s

(Ttrain)
train] and

is utilized to train our approach. At each time step t, the
sensor values s(t)train ∈ IRN form an N -dimensional vector
representing the values of our N sensors. Consistent with
the standard unsupervised anomaly detection formulation, the
training data is assumed to consist solely of normal data.

Our goal is to detect any irregularities in the testing data,
which is collected from the same N sensors but covers a
distinct set of Ttest time intervals. The test data is denoted
by stest = [s

(1)
test, ..., s

(Ttest)
test]. The label is a collection of

Ttest binary values that indicate whether each test time interval
contains an anomaly or not. Specifically, a(t) ∈ {0, 1}, where
a(t) = 1 indicates that the time interval at t is anomalous.

B. Overview

Our DGNN (Dynamic Graph Neural Network) method
aims to cluster sensors with comparable characteristics into
subgraphs and subsequently detects and clarifies discrepancies
from learned patterns. The method comprises three primary
components:

1) Dynamic Subgraph Generation: Builds subgraphs con-
sisting of sensors with similar characteristics.

2) AGAT Features Learning: Uses Adaptive GAT based
on correlation coefficients to learn representations from
neighboring nodes.

3) Forecasting: Predicts the next step values of each sen-
sor by leveraging a fusion representation generated by
AGAT.
Figure 1 provides an overview of our framework.

Dynamic Subgraph
Generation

Adaptive GAT
Forcasting-based

Model

Input Output

Fig. 1. Overview of our proposed framework.

(a) Dynamic Subgraph Generation

(b) Fully connected graph
(GAT)

(c) Strongly connected subgraphs
(DGNN)

Fig. 2. Dynamic Subgraph Generation.

C. Data Preprocessing

To make our model more robust, we apply data normaliza-
tion and segment the data into time-series windows for both
training and testing. We normalize the time-series data using
the following equation:

x̃ =
x−min(X)

max(X)−min(X)
(2)

Here, max(X) and min(X) represent the maximum and
minimum values in the training dataset, respectively.

D. Dynamic Subgraph Generation

One of the primary goals of our framework is to establish
subgraphs between sensors. To achieve this, we utilize an
undirected graph, where the nodes represent sensors and the
edges represent dependency relationships between them. An
edge connecting two sensors indicates that they can model
each other’s behavior.

In our approach, we employ the correlation coefficient to
establish subgraphs. Specifically, we connect two nodes with
an edge if the correlation coefficient of their features exceeds
a specified threshold. The correlation coefficient measures the
degree of linear correlation between two sets of data variables,
denoted as X and Y. It is the ratio of the product of their

covariance and their standard deviations. Essentially, it is a
normalized measure of covariance, with a range of values
between -1 and 1. The correlation coefficient is defined as
follows:

Corr(X,Y) =
Cov(X,Y)√
V ar[X]V ar[Y]

(3)

where Cov(X,Y) represents the covariance of X and Y ,
and V ar[X] and V ar[Y] represent the variance of X and Y ,
respectively.
Wi,j represents the relationship between the two nodes i

and j, and Wi,j ∈ {0, 1}, indicating that the two nodes have
an edge (Wi,j = 1) or no edges (Wi,j = 0), respectively. It is
defined as follows:

Wi,j = Corr(xi, xj) > threshold (4)

Where threshold is an experience value, the default is 0.65.
Graph neural networks require the input of the structure

of a graph. The lower part of Figure 2 shows a comparison
between two methods. As shown in the figure, there are time
series generated by seven sensors. The left side represents a
model based on GAT that takes a fully connected graph as
input, while the right side represents DGNN that uses a graph
constructed by DSG as input. The subgraph constructed by
DSG has a closer relationship than the fully connected graph.

By DSG, we split a fully connected graph into multiple sub-
graphs with similar features. Next, we will define our adaptive
graph attention network which utilizes those subgraphs.

Algorithm 1: Dynamic Subgraph Generation
Input: N time series from V(|V| = N)

1 W Initialization, reset to zero matrix;
2 E Initialization, reset to empty set E;
3 for i = 1, 2, ..., n do
4 for j = i+ 1, i+ 2, ..., n do
5 // CDC: Correlation Distance Calculation

defined in Equation 3;
6 disti,j = CDC(Vi, Vj); (Equation. 3)
7 if disti,j > threshold then
8 Wi,j = 1; Wj,i = 1;
9 end

10 end
11 end
12 for i = 1, 2, ..., n do
13 for j = 1, 2, ..., n do
14 if Wi,j = 1 then
15 E ← E ∪ {i, j};
16 end
17 end
18 end
19 return Edge list E of Subgraph G.

E. AGAT Features Learning

We propose a graph attention-based feature extractor that
captures the relationships between neighboring sensors by
fusing a node’s information with its neighbors based on
subgraphs. Unlike existing graph attention mechanisms, our
feature extractor uses the correlation coefficient.

Our AGAT takes a set of node features, denoted by h =−→
h1,
−→
h2, ...,

−→
hN , where hi ∈ RF and N is the number of nodes

with F features in each node. The AGAT produces a new
set of node features, denoted by h′ =

−→
h′1,
−→
h′2, ...,

−→
h′N , where

h′i ∈ RF ′
may have a potentially different cardinality than F .

To increase the expressive power required to transform
input features into higher-level features, at least one learnable
linear transformation is necessary. Initially, a shared linear
transformation is applied to every node, parametrized by a
weight matrix, W ∈ RF ′×F . Next, self-attention is performed
on the nodes using the correlation coefficient, which computes
attention coefficients, ei,j , indicating the significance of node
j’s features to node i.

ei,j = Corr(W
−→
hi ,W

−→
hj) (5)

To incorporate graph structure into the mechanism, masked
attention is used, computing ei,j only for nodes j ∈ Ni, where
Ni represents the neighborhood of node i in the graph. In
all experiments, the neighborhood will include only the first-
order neighbors of node i (including i). To make coefficients
comparable across different nodes, the softmax function is
used to normalize them across all choices of j as follows:

ai,j = softmaxj(ei,j) =
exp(ei,j)∑

k∈Ni
exp(ei,k)

(6)

In our experiments, the attention mechanism is computed
as the correlation coefficient and is then subjected to the
LeakyReLU nonlinearity with a negative input slope of α =
0.2. This allows us to express AGAT as follows:

ai,j =
exp(LeakyReLU(Corr(Whi,Whj)))∑

k∈Ni
exp(LeakyReLU(Corr(Whi,Whk)))

(7)

Once the attention coefficients have been normalized, they
are used to compute a linear combination of the features cor-
responding to them, which serves as the final output features
for each node (with the possibility of applying a nonlinearity
σ):

−→
h ′i = σ(

∑
j∈Ni

αi,jW
−→
hj) (8)

Figure 3 illustrates the attention mechanism based on cor-
relation used in AGAT.

F. Forecasting-based model

The forecasting model predicts the value for the next step by
utilizing recurrent neural networks (RNNs) to model temporal
dependency. Specifically, we employ Gated Recurrent Units
(GRUs) (Chung et al., 2014), a simple yet powerful variant

Fig. 3. Adaptive Graph Attention Network.

of RNNs. The predicted output of the forecasting model is
denoted as ŝ(t). To minimize error, we use the Mean Squared
Error (MSE) loss function between the predicted output ŝ(t)

and the observed data s(t):

LMSE =
1

Ttrain − w

Ttrain∑
t=w+1

||ŝ(t) − s(t)||22 (9)

Here, w represents the sliding window size of the input time
series.

G. Anomaly Detection

To ensure a fair comparison, we employ the Peak Over
Threshold (POT) method to automatically and dynamically
select the threshold. This method is essentially a statistical
approach that uses ”extreme value theory” to fit the data dis-
tribution with a Generalized Pareto Distribution and determine
appropriate value at risk for dynamically selecting threshold
values. For each dimension i, the anomaly diagnosis label (yi)
and detection result (y) are defined as:

yi = 1(si >= POT (si)) (10)

To compute the overall anomalousness at time tick t, we
aggregate over sensors using the max function. We use max
as anomalies may affect only a small subset of sensors or even
a single sensor:

y = max
i

(yi) (11)

Thus, if any of the N dimensions are anomalous, we label
the current timestamp as anomalous.

IV. EXPERIMENTS

A. Datasets

In our experiments, we use several publicly available
datasets, and their characteristics are summarized in Table
I. For example, the SMAP dataset has 25 dimensions, with
a training dataset length of 135,183, a test dataset length of
427,616, and an anomaly ratio of 13.13%.

TABLE I
Dataset Statistics

Datasets Fearures Train Test Anomalies(%)

SMAP [4] 25 135183 427616 13.13
MSL [4] 55 58317 73729 10.72
SMD [18] 38 708405 708420 4.16
SWaT [19] 51 496800 449919 11.98
WADI [20] 123 1048571 172801 5.99

TABLE II
The F1-score(%) results for anomaly detection on five publicly available

datasets.

Method ASD MSL SMAP SWaT WADI

PCA[2003] 82.28 91.16 24.67 58.64 31.86
IForest[2008] 75.70 84.56 67.18 73.50 69.64
LSTM-NDT[2018] 97.63 88.23 90.25 57.39 73.31
DAGMM[2018] 71.33 92.54 71.71 75.02 18.58
MTAD-GAT[2018] 97.83 97.33 94.77 77.79 69.75
USAD[2018] 62.30 86.75 76.15 55.37 50.67
GDN[2021] 96.31 96.52 94.33 27.29 73.59
TranAD[2021] 97.17 96.66 93.61 58.35 74.01
AnomalyTransformer[2022] 90.87 95.51 93.45 55.82 64.37
DGNN 98.21 97.94 96.34 77.80 77.19

B. Baseline

We conduct a comparison between our AGAT and a wide
range of state-of-the-art multivariate time-series anomaly de-
tection models, including: 1) Statistics-based models: IFor-
est. 2) Reconstruction-based models: PCA, DAGMM, and
USAD. 3) Forecasting-based models: LSTM-NDT, MTAD-
GAT, GDN, TranAD, and Anomaly Transformer.

C. Evaluation Metrics

We use F1-Score (F1) over the test dataset and its ground
truth values to evaluate the performance of our method
and baseline models. The F1-Score is calculated as F1 =
2×Prec×Rec
Prec+Rec , where Prec = TP

TP+FP and Rec = TP
TP+FN .

Here, TP, TN, FP, FN represent the numbers of true positives,
true negatives, false positives, and false negatives, respectively.

D. Results

Our experimental results, presented in Table II, show out-
standing performance on all five datasets with the F1 score
calculated based on POT. Our model outperforms LSTM-
NDT due to its neighbor feature fusion mechanism, while
MTAD-GAT falls short due to the fully connected graph
causing the GAT model to extract internal connections. The
importance of dynamic subgraph generation is emphasized.
GDN’s poor performance on the SWaT dataset is attributed to
the ineffective use of a fully connected layer as a predictive
model. Figure 4 shows a significant reduction in the number of
edges generated by DSG, with the MSL dataset experiencing
a 98% reduction.

E. Ablation

To investigate the necessity of each component in our
method, we gradually removed them to observe how the

TABLE III
Ablation.

Method ASD MSL SMAP SWaT WADI

DGNN 98.21 97.94 96.34 77.80 77.19
w/o DSG 97.75 97.33 95.45 77.45 62.62
w/o AGAT 97.63 88.23 90.25 57.39 73.31
w/o Forecasting 95.31 70.42 92.49 76.86 50.14

3 0 %

2 % 6 % 4 % 4 %
A S D M S L S M A P S W a T W A D I

0

2 0

4 0

6 0

8 0

1 0 0

Nu
mb

er
of

ed
ge

s

D a t a s e t s

 F u l l
 P r o p o s e d D S G

Fig. 4. Comparison of number of edges.

model’s performance was affected. Firstly, we evaluated the
importance of the learned graph by substituting it with a static
complete graph, where every node is connected to all the other
nodes. Secondly, to assess the significance of the , we disabled
the attention mechanism and aggregated the information from
neighboring nodes using equal weights. Lastly, to assess the
significance of the Forecasting-based Model, we replaced GRU
with a fully connected layer. The outcomes are summarized
in Table III, revealing the following findings:

• Replacing the learned graph structure by DSG with a
complete graph degrades performance in both datasets.
The effect on the WADI dataset is more pronounced.
This indicates that the graph structure learner enhances
performance, especially for large-scale datasets.

• Removing the attention mechanism degrades the model’s
performance most in our experiments. Since sensors have
very different behaviors, treating all neighbors equally
introduces noise and misleads the model. This verifies
the importance of the graph attention mechanism.

These findings suggest that the adoption of a learned graph
structure, adaptive attention mechanisms, and forecasting-
based model all contribute to the accuracy of our DGNN
method, which provides an explanation for its superior per-
formance over baseline methods.

Proposed DGNN
prediction results

 GDN prediction results

No false alarm.

False alarm, disturbed by node 0.

Fig. 5. Comparison of forecasting results of DGNN and GDN in SMAP-P3
dataset.

F. Interpretability of Model

The edges present in our learned graph provide interpretabil-
ity as they indicate the relationship between different sensors.
The attention weights further add to this by indicating the
importance of each node’s neighbors in modeling the node’s
behavior.

Figure 5 shows a comparison of the forecasting results
between DGNN and GDN on the SMAP dataset. The upper
graph in the figure shows the result predicted by DGNN,
while the lower graph shows the result predicted by GDN. The
orange line represents the predicted value, while the blue line
represents the true value. It can be observed that DGNN uses
the correlation coefficient to calculate the weight of neighbors,
while GDN uses a multi-head attention mechanism to obtain
the weight. Due to the low feature correlation between node
0 and node 5, DGNN does not link these two nodes. When
node 1 becomes abnormal at x=1500, the predicted value of
node 5 does not interfere with node 1. On the other hand,
GDN’s multi-head attention mechanism fails to build a proper
relationship between node 0 and node 5. Therefore, when an
abnormality occurs in node 1, the predicted value of node 5
is disturbed by node 0. DGNN can deduce that node 0 is
abnormal based on the deviation between the predicted value
and the true value. However, the GDN method prompts both
node 0 and node 5 to be abnormal simultaneously, leading to
false alarms.

V. CONCLUSION

In this paper, we introduce Dynamic Graph Neural Net-
works (DGNN) for anomaly detection in multivariate time-
series data. Our model uses dynamic subgraph generation
(DSG) to identify relationships and generate subgraphs in
a data-driven way, instead of fixed fully connected graphs.
DSG brings similar time series closer, reduces edges, and
speeds up GNN convergence. We propose Adaptive Graph
Attention Network (AGAT) for accurate neighbor node feature
extraction and fusion, outperforming existing GAT methods.
Our algorithm outperforms existing SOTA algorithms on five

public datasets. In the future, we plan to apply DSG to more
GNN models, replacing fully connected graphs with dynamic
subgraphs to enhance their performance.

VI. ACKNOWLEDGEMENT

This work was supported by National Key R&D Program
of China under Grant 2020YFA0711400, and National Science
Foundation of China under Grant U21A20452, U19B2044.

REFERENCES

[1] G. Kirchgässner, J. Wolters, and U. Hassler, Introduction to modern time
series analysis. Springer Science & Business Media, 2012.

[2] W. A. Fuller, Introduction to statistical time series. John Wiley & Sons,
2009.

[3] H. Madsen, Time series analysis. CRC Press, 2007.
[4] D. Park, Y. Hoshi, and C. C. Kemp, “A multimodal anomaly detector

for robot-assisted feeding using an lstm-based variational autoencoder,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1544–1551,
2018.

[5] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed, “Deepant: A deep
learning approach for unsupervised anomaly detection in time series,”
Ieee Access, vol. 7, pp. 1991–2005, 2018.

[6] R. Wu and E. Keogh, “Current time series anomaly detection bench-
marks are flawed and are creating the illusion of progress,” IEEE
Transactions on Knowledge and Data Engineering, 2021.

[7] H. Zhao, Y. Wang, J. Duan, C. Huang, D. Cao, Y. Tong, B. Xu, J. Bai,
J. Tong, and Q. Zhang, “Multivariate time-series anomaly detection via
graph attention network,” in 2020 IEEE International Conference on
Data Mining (ICDM). IEEE, 2020, pp. 841–850.

[8] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” stat, vol. 1050, p. 20, 2017.

[9] A. Deng and B. Hooi, “Graph neural network-based anomaly detection
in multivariate time series,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, no. 5, 2021, pp. 4027–4035.

[10] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang, “A novel
anomaly detection scheme based on principal component classifier,” Mi-
ami Univ Coral Gables Fl Dept of Electrical and Computer Engineering,
Tech. Rep., 2003.

[11] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 eighth
ieee international conference on data mining. IEEE, 2008, pp. 413–422.

[12] P. Malhotra, L. Vig, G. Shroff, P. Agarwal et al., “Long short term
memory networks for anomaly detection in time series,” in Proceedings,
vol. 89, 2015, pp. 89–94.

[13] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and
H. Chen, “Deep autoencoding gaussian mixture model for unsupervised
anomaly detection,” in International conference on learning representa-
tions, 2018.

[14] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga,
“Usad: Unsupervised anomaly detection on multivariate time series,”
in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 3395–3404.

[15] S. Tuli, G. Casale, and N. R. Jennings, “Tranad: Deep transformer
networks for anomaly detection in multivariate time series data,” arXiv
preprint arXiv:2201.07284, 2022.

[16] J. Xu, H. Wu, J. Wang, and M. Long, “Anomaly transformer: Time
series anomaly detection with association discrepancy,” arXiv preprint
arXiv:2110.02642, 2021.

[17] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[18] A. Siffer, P.-A. Fouque, A. Termier, and C. Largouet, “Anomaly detec-
tion in streams with extreme value theory,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2017, pp. 1067–1075.

[19] A. P. Mathur and N. O. Tippenhauer, “Swat: A water treatment testbed
for research and training on ics security,” in 2016 international workshop
on cyber-physical systems for smart water networks (CySWater). IEEE,
2016, pp. 31–36.

[20] C. M. Ahmed, V. R. Palleti, and A. P. Mathur, “Wadi: a water distribution
testbed for research in the design of secure cyber physical systems,” in
Proceedings of the 3rd international workshop on cyber-physical systems
for smart water networks, 2017, pp. 25–28.

