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Abstract—The active participation of contributors is key to
the success of any open source software (OSS) projects. In the
open source community, it can be found that some developers
have participated together in multiple projects and also built
social connections so that they form an independent team.
Independent teams can be high-quality developer candidates
for OSS projects. By modeling the developers and independent
teams, we design approaches to recommend independent teams
to OSS projects. We used the interaction data between develop-
ers to build the developers’ social connection network, on which
independent teams can be discovered by utilizing the commu-
nity discovery algorithm. Based on the graph attention net-
work, we designed a team recommendation model GAT-team.
The performance of the GAT-team is evaluated on a real-world
dataset. GAT-team achieves much better results compared with
the other algorithms in the experiments. We provide the data
and the code at https://doi.org/10.5281/zenodo.4646651.

Index Terms—Open Source Software Project, Independent
Team, Team Recommendation, Graph Attention Network

I. Introduction
Finding and attracting developers with relevant exper-

tise and interest to contribute to open-source software
(OSS) projects is crucial to their sustainable development
[1]. However, developers often find it hard to obtain
suitable resources from tremendous OSS projects. This
largely discourages their participation in OSS projects.
Therefore, many approaches have been proposed to rec-
ommend developers to OSS projects [2]–[5].

Software development is a sophisticated task which
inherently requires teamwork. Researchers have proposed
approaches for team formation, task assignment, conflict
management, collaboration mechanisms and information
sharing [6]–[9]. Comparing with teamwork in traditional
projects, an OSS project team is often composed of
unknowns and volunteers [10], who are often distributed
in different places. Therefore, improving the collaboration
efficiency of virtual teams working on OSS projects is a
more significant challenge [11].

In OSS communities, the same group of developers can
be found having participated in several projects. If these
developers have built social connections and cooperate
with each other directly, they form an independent team.
Compared with project teams that only focus on the tasks
of the specific project, members of an independent team
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are more likely to share common interests and develop
long-lasting cooperative relationships.

It can be assumed that independent teams have higher
productivity so as to they can contribute significantly to
the OSS projects. There are several reasons for it. Firstly,
the social connections between team members are benefi-
cial to their collaboration. Secondly, they have lower start-
up costs. Corbitt et al. [12] studied the amount of time
spent at each of the four classic team development stages
(forming, storming, norming and performing for virtual
teams), which is 30%, 18%, 17%, and 35%, respectively.
This indicates that stable and long-lasting teams are more
efficient than temporary teams because the formation cost
of a virtual team is considerably large.

As an empirical study, we identified independent teams
based on the data from GitHub and compared their
contribution rates with other contributors (the approach
to identify independent teams will be introduced later)
The contribution data provided by GitHub REST APIs
is adopted to measure members’ contribution rates. We
normalized the data by dividing them by the average con-
tribution of all contributors in each repository. Then a stu-
dent’s t-test is applied to compare the contribution rates
of independent team members and other contributors. The
conclusion is the contribution rate of independent team
member is expected to be 2.57-2.60 times higher than the
average with 95% confidence.

This observation motivates us to recommend indepen-
dent teams to OSS projects. Currently, few insights are
available on recommending development teams to open-
source projects. The contributions of this paper are as
follows:

1) We provide an approach to identify independent
teams in OSS communities.

2) We design GAT-team, a graph attention network
based algorithm to recommend independent teams to
OSS projects efficiently.

3) We perform extensive experiments on the real-world
dataset and prove that GAT-team is significantly
better than other models.

The paper is organized as follows. Section 2 reviews
the related work. Section 3 presents an approach to
discover independent teams in OSS communities. Section 4
introduces GAT-team, a team recommendation approach



for OSS projects. Experiments are reported in Section 5.
Finally, we conclude the paper in Section 6.

II. Related Work
A. Teamwork in Open Source Software Projects

Researchers are interested in enhancing the efficiency
of teamwork for OSS development. For example, in [13],
the influence of developers’ different involvements is in-
vestigated. Grottke et al. study the relationships between
team factors and the efficiency of failure processing [14].
In [8], the mechanism of conflict management is proposed.

It is well known that relationship building and group co-
hesion are very important for virtual teams to be effective
in accomplishing tasks. Research shows that developers
are more likely to join projects that are initiated by
those with whom they have socially connected in the
past. In addition, social networks are the most common
approach for finding cooperative groups [15]. McDonald
found two social networks in an organization [16]. One is
called the work group graph (WGG) which reflects shared
work contexts. The other is based on the successive pile
sort (SPS) which reflects workplace sociability. These two
approaches to construct social networks are both adopted
in our research. Moreover, Bird et al. [17] prove that the
organizational structure in OSS projects can be reflected
by the social connections among project participants.
We therefore detect teams based on the resulting social
networks. Our research is dedicated to recommending
stable and context-independent developer teams.

B. Member Recommendation for Open Source Software
Projects

Developers can be recommended to a project based on
their expertise or past experience [2]. Many past research
studies have focused on recommendation problems on
GitHub [3]–[5]. A common approach is leveraging the in-
teraction data between the developer and projects and the
similarity data between projects to find projects similar to
the ones on which the developer has already participated.
In the work by Xu et al., it extracts TF-IDF features from
the projects’ text files to compute the similarity between
projects. After this, the Create, Fork, and Star actions
of the developers are mined, weights to these actions are
assigned, and the interaction matrix between developers
and projects is obtained [3]. Other works try to solve
the problem with neural network models. For example,
Zhou et al. point out that due to the severe sparsity
of recommendation problems on GitHub, the tradition
collaborative filtering cannot achieve satisfying results.
From this observation, they propose the Hierarchical
Collaborative Embedding Model, which compensates for
the data sparsity by constructing a knowledge network
among projects [4].

In this study, we will recommend independent teams
rather than individual members because members of

independent teams are more productive than individual
members.

C. Group Recommendation
Team recommendation is also related to the group

recommendation problem. The difference is group recom-
mendation approaches try to recommend items to a group
while team recommendation approaches try to recommend
teams to a project. However, they share a similarity in that
potential connections between a group (or a team) and an
item (or a project) are predicted.

A traditional approach for the group recommendation
problem is to use a predefined consensus function to
aggregate the recommendation results for each member
into the results for the group. Gartrell et al. use this
tradition approach by combining the social connections
between users into the consensus function, which achieves
increased performance [18]. Recently, many works use the
attention mechanism in group recommendation problems.
The MoSAN model designed by Vinh Tran et al. assigns a
child attention network for each member in the group and
learns the preference of the members using the attention
mechanism [19]. The work by Cao et al. combines neu-
ral collaborative filtering and the attention mechanism.
The social connections between group members are also
exploited to improve the performance [20]. Their work
proves that the attention mechanism is superior to the
several traditional consensus functions used in group
recommendation such as Least Misery and Maximum
Satisfaction.

III. Independent Teams in OSS Communities: Definition
and Detection Approach

An independent team is a virtual team in OSS com-
munities that has worked on more than one project and
their members are socially connected. Developers on OSS
platforms can have different types of social connections
such as following each other, contributing to the same OSS
project, and discussing in issue resolution processes. How-
ever, these connections are context-dependent and they
do not necessarily indicate mutual connections between
developers. For example, following can be uni-directional.
Contributors under the same repository do not necessarily
know each other, even if they have has jointly participated
into the resolution process of the same issue. At the same
time, developers can contact with each other beyond open
source platforms, such as in google group or through
emails. These communication channels may provide direct
proofs that they are socially connected. Unfortunately, to
obtain this data is not easy and has privacy issues.

Fortunately, there are other cooperation mechanisms
provided by the open source platforms that can be directly
adopted as an evidence, for example, mention action on
GitHub. When you mention @ a GitHub username in the
context of an issue or pull request, that person is notified
and subscribed to future updates. When two developers



have mentioned each other, we can assume they have
set up social connections. Therefore, our model relies on
mention to detect social connections.

We can identify independent teams from OSS com-
munities according to the definition. As the first step,
we construct a developer social network (DSN). In this
network: (1) Each node represents a developer. (2) For
any two nodes, there is an edge linking them if and only
if: a) the two developers have contacted with each other in
some ways; b) the two developers have jointly contributed
to multiple projects.

After constructing the DSN, we use community de-
tection algorithms to detect teams with strong intra-
connections and weak inter-connections in the network.
Since a developer can belong to multiple independent
teams, we choose the Order Statistics Local Optimization
Method (OSLOM) to detect independent teams that are
represented by overlapping communities [21].

The information used in the recommendation of in-
dependent teams includes: (1) Interest vectors of inde-
pendent teams and developers; feature vectors of project
repositories. (2) Project repositories to which each team or
developer contributes to and their contribution values in
each of the project repositories. (3) Teams to which each
developer belongs, contribution rate and structural infor-
mation (degree in the team sub-network of the DSN) of
each member in each of the teams. (4) Social connections
among developers (the DSN).

The feature vectors of project repositories include nu-
meric features (size, forks, watchers and subscribers) and
non-numeric features (language, topics).The interest vec-
tor of a developer is an aggregation of the feature vectors
of all the project repositories on which the developer has
worked. The contribution value of an independent team in
a hosting project repository is the sum of the contribution
values of all its members. The contribution rate of a team
member is represented by the percentage of contributions
the member made to the hosting project repositories of
the team. The structural information of a team member is
represented by its degree in the corresponding sub-network
of the whole DSN.

IV. GAT-team: A GAT-based Team Recommendation
Model

A. Model Design
Since the participation and collaboration of developers

in OSS communities can be directly modeled as a graph,
we try to make use of the graph neural network (GNN)
to support team recommendation. Graph attention (GAT)
network introduces attention mechanisms to the propaga-
tion step, which compute the hidden representations of
each node in the graph, by attending over its neighbors,
following a self-attention strategy. GAT is efficient because
the operation is parallelizable across node-neighbor pairs.
In addition, it can be applied to graph nodes having
different degrees [22]. In order to thoroughly mine the

Fig. 1. The GAT-based Team Recommendation Model: GAT-team

relational information in OSS communities to support
team recommendation, we designed a GAT-based team
recommendation model (GAT-team). The architecture of
the model is shown in Fig. 1.

The input features (Repo Embedding, Core Developer
Embedding, Neighbor Developer Embedding and Team
Embedding) consist of numeric features and Word2Vec
embedding. For the three graph attention layers in the
model, the input graphs are connections between the
project repository and core developers, connections be-
tween core developers and their immediate neighbors, and
connections between developers and teams.

Multi-head graph attention layers are used as basic units
of GAT-team. In every multi-head graph attention layer,
multiple parallel graph attention operations are computed
on the input graph and the input embedding.

The outputs of the parallel graph attention units are
aggregated and fed into the output attention unit to com-
pute the final output embedding. For multi-head graph
attention layers, common aggregation methods include av-
eraging and concatenation. Our model uses concatenation.
Finally, the output embedding of the multi-head graph
attention layer is computed.

B. Propagation Mechanism
The first multi-head graph attention layer is responsible

for the weight propagation between project repositories
and core developers. The input graph contains the con-
nections between the project repository and its core
developers. It is necessary to mention that because a self-
connection is attached to each node on the repository-
developer graph, we compute self-attention for all the
neighbor developers for the sake of consistency between
the output embedding of core developers and neighbor
developers. The second multi-head graph attention layer is
responsible for the weight propagation between developers.
The input graph is the DSN, which models the social
connections between developers. And the output of inter-
developer propagation is computed. The third multi-
head graph attention layer is responsible for the weight
propagation between developers and teams. The input
graph is the connections between developers and teams.
The output is the developer-team propagation.



C. Output Layer
The final module of the model consists of a feed forward

network and a Sigmoid activation. The output of the
model is computed by Equation (1):

r̂RT = σ(AffP
∗
T + bff ) (1)

where Aff and bff are the learnable parameters of the
model. We choose the binary cross entropy-loss as the loss
function of GAT-team.

V. Experiments
A. Data Set

Our experiment is based on the data set of all the
issue comment events on GitHub from 01/01/2015 to
06/30/2020. We also collect the information of 312,934
repositories and 1,384,736 users. The DSN is constructed
according to the definition. The network has 719,202 nodes
and 1,121,778 edges in total. A total number of 22,875
independent teams are found in the network.

B. Metrics
The discounted cumulative gain (DCG) measures the

quality of the results in a ranked list, where items in
that list are graded in some way. The grading is a
relevance judgment for each result. DCG accumulated at
a particular rank position p is defined in Equation (2):

DCGp =

p∑
i=1

2reli − 1

log2(i+ 1)
(2)

where reli is the relevance score of ith element.
By computing the DCG value of the optimal recommen-

dation result, one gets the ideal discounted cumulative
gain (IDCG) of a single query. Normalized Discounted
Cumulative Gain (nDCG) is computed by dividing the
DCG by the IDCG. The higher the nDCG, the better
ranked list.

C. Comparison Approaches
We developed a series of algorithms to compare them

with GAT-team. Moreover, we select a group recommen-
dation approach SoAGREE [20] for comparison.

1) Interest-Vector-Based Recommendation: An intu-
itive approach is to compute the similarity between the
feature vectors of the teams and the project repositories.
Since the connections between developers and teams are
known, group recommendation techniques can be em-
ployed to improve the performance.

Interest Matching: For each team in the dataset, we
calculate their suitability to project repositories using the
following approach. For an interest vector of a team (VT )
and a feature vector of a project repository (VR): (1) For
numeric features, calculate the Euclidean distance between
the two vectors. (2) For non-numeric features A and B,
calculate their Jaccard distance. (3) Calculate the distance
between the two vectors by using the two aforementioned

distances. (4) Take the reciprocal of the distance to get
the similarity of the two vectors.

For each project repository, we sort the candidate teams
in descending order of their suitability, and then take the
first-k teams as the recommendation result.

Group Aggregation: In group recommendation prob-
lems, the interest of the team is an aggregate of interests
of all members. Using the known information in the
dataset, we designed the following aggregation methods:
(1) Interest Aggregation: Aggregate the interest vectors
of the members into the interest vector of the team.
Calculate the similarity between the team’s interest vector
and the project repository’s feature vector. (2) Mean
Aggregation: After calculating the suitability of all the
members, take the mean value as the suitability of the
team. (3) Least Misery: After calculating the suitability
of all the members, take the minimum as the suitability
of the team. (4) Maximum Satisfaction: After calculating
the suitability of all members, take the maximum as the
suitability of the team. (5) Expertise-Based Aggregation:
Take a weighted sum as the suitability of the team.
We adopted two strategies to weight each member, i.e.,
weight assignment based on contribution rate and weight
assignment based on members’ degree in the team social
network.

The recommendation algorithms designed based on
the aforementioned aggregation methods are referred
to as sim_interest, sim_mean, sim_lm, sim_ms,
sim_exp_contri, and sim_exp_degree respectively in the
experiments.

2) Core-Developer-Based Social Recommendation: So-
cial connections between team members are essential
information in team recommendation problems. From
the aforementioned observations, we designed the Core-
Developer-Based Social Recommendation algorithm: (1)
For each repository, obtain a list of its core developers.
(2) For each candidate team, obtain a list of its members.
Count the number of social connections between team
members and core developers of the repository. Take this
number as the strength of the connection between the
team and the repository. (3) Sort the candidate teams in
the descending order of their connection strength with the
repository. Take the first-k teams in the sequence as the
recommendation results.

The core-developer-based social recommendation is re-
ferred to as Social in the experiments.

3) SoAGREE: We also compared GAT-Team with
the recommendation model based on social connections
and graph attention networks: Social-Enhanced Attentive
Group Recommendation (SoAGREE) [20]. We used the
implementation shared by the authors and adjusted the
hyperparameters to fit the dataset used in this study.

D. Ablation Study
In order to verify the architecture of GAT-Team, we

employed the ablation study method. We designed the



following two alternations of the original model to verify
the validity of the three-layer structure:
(1) ALT1: Combine the Repo-Developer layer and the

Inter-Developer layer. The data inputs to the new
GAT layer are Repo Embedding and Developer Em-
bedding. The input graph to the new GAT layer is a
combination of the Repo-Developer graph and Inter-
Developer graph.

(2) Combine the Repo-Developer layer, the Inter-
Developer layer, and the Team-Developer layer. The
data inputted to the new GAT layer are Repo Embed-
ding, Developer Embedding, and Team Embedding.
The graph inputted to the new GAT layer is a combi-
nation of the Repo-Developer graph, Inter-Developer
graph, and Developer-Team graph.

The two alternatives are referred to as GAT-team_alt1
and GAT-team_alt2 in the experiments.

In summary, we implemented 11 different recommenda-
tion algorithms in total (Interest_team, Interest_mean,
Interest_lm, Interest_ms, Interest_exp_contri, Inter-
est_exp_degree, Social, GAT-team, GAT-team_alt1,
GAT-team_alt2, SoAGREE). We tested all the algorithms
on the test set and used nDCG as the evaluation metric.

E. Experiment Results
The results of the experiments are shown in Fig.2.

Figures 2(a) through 2(k) show the distribution of nDCG
values achieved by all the algorithms when the value of k
is 30. Fig. 2(l) and Table I show the relationship between
the average nDCG value achieved by the algorithms and
the value of k. Table II shows the training errors and test
errors of GAT-team, GAT-team_alt1, GAT-team_alt2,
and SoAGREE.

As one can see from the experimental results, the GAT-
team and the Core-Developer-Based Social Recommenda-
tion algorithm designed in our study achieve significantly
better performance than other algorithms. For GAT-based
models, the original architecture performs better than the
two alternative architectures. While the performance of
GAT-team is better than Social, GAT-team_alt2 is sig-
nificantly out-performed by Social. Although SoAGREE
achieves better performance than interest-vector-based
recommendation algorithms, it is outperformed by the
other algorithms by a large margin.

The success of GAT-team mainly lies in two aspects.
Firstly, it effectively utilizes the information in a compre-
hensively way. Secondly, it thoroughly exploits the social
connections with weight propagation and graph attention
operations on the developer social network.

The SoAGREE model proposed by Cao et al. achieves
outstanding performance on the MaFengWo dataset and
CAMRa2011 [20], but it does not perform well in the
experiments in our study. The reason is SoAGREE learns
group embeddings only by aggregating the embeddings of
users while neglecting more comprehensive information in
OSS projects.

VI. Conclusion
This study focuses on how to recommend independent

teams to OSS projects. For the first time, we suggest
that independent teams can be high quality developer
candidates for OSS projects. We designed and imple-
mented a GAT-based recommendation model and com-
pared it with the Interest-Vector-Based Recommendation
algorithm, Core-Developer-Based Social Recommendation
algorithm and SoAGREE, a recommendation model which
works well on traveling information websites and movie
rating websites. Our GAT-based model and the Core-
Developer-Based Social Recommendation both achieve
satisfying performance in the experiments, out-performing
SoAGREE by a large margin. Additionally, we conducted
an ablation study on the GAT-based model and verified
the validity of our architecture.
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