
AFL2oop: Loop Coverage Guided Greybox Fuzz
Testing

Haochen Jin, Liwei Zheng, Zhanqi Cui*
Computer School, Beijing Information Science and Technology University, Beijing,China

Email:{jinhaochen0325, zlw, czq}@bistu.edu.cn

Abstract—Fuzz testing automatically generates and executes
test cases, to detect more defects by covering more logical and
state spaces of the program under test (PUT). However, it
becomes more difficult to adequately test the PUT with increasing
size and code complexity. Studies have shown that complex code
is more likely to contain defects, and the loop is one of the main
reasons for increased code complexity. Therefore, it is necessary
to thoroughly test the loops, but existing fuzzers cannot focus on
the loops of the PUT. To address this issue, we design a loop
interval coverage metric to measure the testing adequacy of the
loop. Additionally, we propose a greybox fuzz testing approach
named AFL2oop (AFL for Loop), which uses loop coverage as
guidance. First, we analyze the loops of the PUT and expand the
bitmap. Then, fuzz testing is guided by loop interval coverage
and branch coverage. A prototype tool is implemented based
on the proposed method, and experiments are carried out on
four real-world software programs, such as LibXml2, LibMing,
etc. The results show that AFL2oop achieves higher coverage,
triggers more crashes, and reproduces defects faster than AFL
and FairFuzz.

Index Terms—fuzz testing, coverage-based greybox fuzzing,
loop analysis, crash reproduction, defect detection.

I. INTRODUCTION

Software defects are faults, errors, or failures in software
[1], which can result in unexpected outcomes [2] and po-
tentially threaten people’s safety or property in severe cases
[3]. Software testing is used to detect potential defects in the
program under test (PUT), but manually designing and exe-
cuting test cases consumes much manpower and is inefficient.
Fuzz testing [4] detects software defects by automatically or
semi-automatically generating test inputs and monitoring the
runtime status of the PUT. Fuzz testing, which reduces manual
testing costs and improves testing efficiency, has become an
effective method for detecting defects in real-world software
[5]. Among them, greybox fuzz testing is not only more
scalable but also combines the advantages of whitebox and
blackbox fuzz testing [6], and has been widely studied in
recent years [7] [8]. Typically, fuzzers with higher coverage
can detect more defects in the PUT [6], because the coverage
is closely related to the defect detection rate. Therefore, many
greybox fuzzers try to increase the coverage of the logical and
state space of the PUT as much as possible within a limited
time.

As the size and code complexity of software increase, it
becomes more difficult to achieve adequate testing coverage

*Zhanqi Cui is the corresponding author.
DOI relerence number: 10.18293/SEKE2023-075

[9]. If limited resources are allocated equally to all the code,
fuzz testing will be inefficient and unable to detect hidden
defects in the PUT. Studies have shown that complex code is
more likely to contain defects [10]. Loops cause the number
of paths to increase exponentially in software, which is one
of the main reasons for code complexity to increase. After
using AFL (American Fuzzy Lop) 1 to test LibMing2 and
Libxml23 for 50 hours, we found that 17% and 50% of defects
are located in loops. Testing loops is essential but challenging
[11]. The number of loops increases with the code size and
complexity of software, which presents a significant challenge
for testing. Fuzzers may exhaust all testing resources before
achieving high coverage [12]. In addition, existing fuzzers treat
loops as simple branches, and existing coverage metrics are
too general to evaluate the testing coverage of loops. As a
result, it is difficult for fuzzers to adequately test loops in the
PUT.

To address this issue, we design a loop interval coverage
metric that divides the number of loop iterations into intervals
to measure the coverage of the loop. Moreover, we propose
an approach that uses loop coverage to guide greybox fuzz
testing, which is called AFL2oop (AFL for Loop). First, it
analyzes the loop in PUT and extends the bitmap to collect the
runtime coverage information. Then, it uses the loop interval
coverage and branch coverage to guide the fuzz testing.
Based on AFL2oop, we have implemented a prototype tool
and conducted experiments on four widely used real-world
software. The experimental results show that AFL2oop not
only cover 2.9% and 1.8% more loop intervals than AFL
and FairFuzz, but also triggers 33 and 67 more crashes than
AFL and FairFuzz. In addition, AFL2oop costs 4578 and 6089
seconds less than AFL and FairFuzz to trigger six defects,
respectively.

In summary, this paper makes the following contributions:

• A loop interval coverage metric is designed to evaluate
the coverage of the loops in the PUT. Based on the loop
interval coverage metric, a loop coverage guided graybox
fuzz testing approach is proposed.

• A prototype tool is implemented based on AFL2oop and
experiments are conducted to compare with AFL and

1 AFL. https://lcamtuf.coredump.cx/afl/
2 LibMing. https://github.com/libming/libming
3 Libxml2. https://gitlab.gnome.org/GNOME/libxml2



FairFuzz on four real-world software in terms of code
coverage, defect detection and crash reproduction.

II. LOOP COVERAGE GUIDED GREYBOX FUZZ TESTING

AFL2oop consists of two phases: pre-processing and fuzz
testing, as shown in Fig. 1. In the pre-processing phase, the
PUT’s basic blocks are analyzed, the bitmap and source code
are instrumented. In fuzz testing, test cases are generated
and executed, coverage is analyzed through basic blocks and
loop coverage analysis. Interesting test cases are filtered and
inserted into the test case queue. When the targets for coverage
and number of crash triggers are reached, the testing is
terminated and a report is generated.

Fig. 1: Overview of AFL2oop.

A. Loop interval coverage metric

Current coverage metrics for fuzz testing mainly measure
the coverage of edges, branches, and lines of code in the PUT,
but the coverage of loops is usually treated as a subset of
branch coverage. This oversimplification limits the accuracy
and effectiveness of existing coverage metrics in evaluating
the quality and adequacy of fuzz testing results.

The branch condition of a loop determines the execution of
statements contained in the loop body. If the condition is true,
the statements are executed. Otherwise, the program will skip
the loop body and continue with the statement next to the loop.
However, using traditional coverage metrics that treat loops as
branches and only record whether they are executed or not, as
is commonly used in existing fuzz testing methods, ignores
the variations due to different loop iteration counts. Instead,
focusing on each individual iteration of the loop would be
too resource-intensive. For example, in Listing. 1, when the
loop iterates from 11 to 19 times, the same part of the loop is
executed. Additionally, all the branch statements of the loop
are executed if the loop iterates more than 20 times. However,
a large number of loop iterations can cause an explosion of
the solution space, leading to significant overhead in tracking
loop coverage. To address this issue, a threshold should be
set as the upper limit for counting iteration times during loop
coverage analysis.

For this reason, we propose a new metric for loop interval
coverage, called LoopCoverk, which uses k as the loop inter-
val to evaluate loop coverage. In equation (1), Lmax represents
the maximum number of loop iterations counted for measuring

Listing. 1: A code fragment of a loop

1: for (int i = 0; i < n; i ++) {
2: if (i == 5)
3: //. . .
4: if (i == 10){
5: //. . .
6: if (n < 15)
7: //. . .
8: }
9: if (i == 20)
10: //. . .
11: }

loop coverage measurement. R = {R1, R2, . . . , Rn, . . . , Rm}
(1 6 n 6 m) is a set of loops, where Rn represents
the n-th loop in the PUT. The set Rn is further defined as
Rn = {r1,n, r2,n, . . . , ri,n, . . .} (1 6 i 6 Lmax

k ), where ri,n
indicates the coverage of the i-th loop interval. If a test case
executes Rn l times, (i− 1) · k < l 6 i · k, then the i-th loop
interval of Rn is considered as covered, and ri,n is set to 1,
otherwise it is set to 0.

B. Loop instrumentation and bitmap extension

Instrumentation involves inserting probes into the PUT
without affecting its functionality. These probes collect run-
time information during test case execution, which are used
by the fuzzers to guide test case generation. For instance,
AFL uses instrumentation to track edge coverage by inserting
probes into basic blocks during compilation and dynamically
computing coverage information of connected edges during
test runs. This allows AFL to accumulate edge coverage
information during testing.

The loop coverage information is used by AFL2oop to guide
its fuzz testing process. However, storing this information
directly on the original shared bitmap of AFL can result in
conflicts and errors. To address this issue, we implement an
expansion of the shared bitmap from 64KB to 128KB, which
was named bit loop map. Subsequently, the loops of the
PUT are analyzed, and the instrumentation method of AFL
is extended to collect the execution information generated by
the test cases.

The procedure for analyzing and instrumenting loops in the
PUT is outlined in Algorithm 1. The input of the algorithm is a
set of functions (F ). The algorithm begins by initializing three
data structures: loopMap, f loop and f branch (lines 1-3).
These data are used to record information about the loops, the
precursor loops and the precursor branches, respectively. The
algorithm then iterates over the basic blocks in F (lines 4-17).
If a basic block BB under analyzed is located within a loop
(line 5) and it has not been recorded in bit loop map the
probe code is inserted into BB via Instrumentation(BB)
(line 7). Subsequently, the algorithm searches for the loops
and branches to which BB belongs in f loop and f branch,
otherwise using null instead (lines 8-9). Next, the types of
each basic blocks (loop, branch and normal) need to be
identified. The type of each basic block, along with the
loop and branch to which it belongs is stored in loopMap,
the loop and branch basic blocks are stored in f loop and



LoopCoverk(R) =

∑m
n=1(k ·Rn)/Lmax

m
=

∑m
n=1(k ·

∑Lmax/k
i=1 ri,n)/Lmax

m
(1)

Algorithm 1. Analyze and instrument the PUT for loop coverage
Input: F = the set of functions in the PUT.
Output: the PUT instrumented and basic block information of the loops
is stored in loopMap.
1: loopMap = Hash()
2: f loop = Stack()
3: f branch = Stack()
4: for BB in F :
5: if isInLoop(BB):
6: if !bit loop map.full() and !loopMap.find(BB):
7: Instrumentation(BB)
8: BBfLoop = f loop.findfLoop(BB)
9: BBfbranch = f branch.findfBranch(BB)
10: if isLoopHeader(BB) and !LoopMap.find(BB):
11: loopMap.add(BB,“loop”,BBfLoop,BBfbranch)
12: f loop.push(BB)
13: else if (isIf(BB) or isSwitch(BB)) and BB.childNum > 1:
14: loopMap.add(BB,“branch”,BBfLoop,BBfbranch)
15: f branch.push(BB)
16: else:
17: loopMap.add(BB,“normal”,BBfLoop,BBfbranch)
18: loopMap.save()

f branch (lines 10-17). Finally, loopMap is stored in a file
for subsequent analysis to guide fuzz testing (line 18).

C. Loop coverage guided greybox fuzz testing

The process of determining the interesting test cases ac-
cording to their loop coverage of the PUT is outlined in
Algorithm 2. The inputs of the algorithm include the coverage
information of the loop interval and the basic blocks of loops
(testSetCover), the result of the loop analysis performed
during the pre-processing phase (loopMap), the loop interval
(k), and the maximum number of loop iterations (Lmax). First,
the algorithm traverses all BBs in loopMap (line 1). Then,
if the type of BB is loop, the algorithm analyzes its coverage
by using the number of loop iterations (BB.bbCover, from
bit loop map) with the limitation of Lmax, and k is also
used to calculate the loop interval coverage of a test case (lines
2-7). If the loop interval in the testSetCover has not been
covered by another test case, current test case is considered to
be interesting, and the algorithm returns true. If the type of BB
is branch, identifying whether the branch has been covered by
the test case need to examine all the successor basic blocks of
the branch (lines 8-12). If the branch has not been covered in
the testSetCover, the test case is considered to be interesting,
and the algorithm returns true. Finally, if the test case fails to
cover any new loop interval or branch, the algorithm returns
false (line 13). During fuzz testing, test cases that cover new
edges are considered interesting and added to a queue, which
is a circular linked list. The selected test case is executed one
at a time and interesting test cases are added to the end of the
queue. AFL2oop’s test case queue takes both loop interval and
branch coverage into consideration, in addition to performance
metrics.

Algorithm 2. Test case selection
Input: testSetCover, loopMap, k, and Lmax.
Output: test case is interesting or not.
1: for BB in loopMap:
2: if BB.type is loop:
3: BB.bbCover = min(BB.bbCover , Lmax)
4: interval = floor(BB.bbCover / k)
5: if !testSetCover.cover(interval,BB):
6: testSetCover.setLoopCover(interval,BB)
7: return true
8: if BB.type is branch:
9: for child in BB:
10: if !child.bbCover = 0 and !testSetCover.cover(0,BB):
11: testSetCover.setBranchCover(0,BB)
12: return true
13: return false

TABLE I: Statistics of the studied benchmarks

Projects Version Line of
code

Count of
loops

Count of
Branches

LibMing2 0.4.8 238110 838 2822
LibXml23 2.9.10 907769 1986 66764

mJS4 2.20.0 73381 145 3834
lrzip5 0.651 38308 690 5964
Total - 1257568 3659 79384

III. EXPERIMENTS AND EVALUATIONS

A. EXPERIMENTAL DESIGN

1) Subjects & Benchmarks:
Subjects. A loop coverage guided greybox fuzzer is im-

plemented based on AFL2oop. Two existing greybox fuzzers,
AFL and FairFuzz, are selected as subjects for comparison.
AFL is an open-source greybox fuzzer that uses code coverage
feedback to guide fuzz testing, while FairFuzz automatically
adjusts input mutation to test rare parts of the PUT, achieving
high coverage without sacrificing efficiency.

Benchmarks. The experiment uses four projects as bench-
marks: LibXml2, mJS, LibMing, and lrzip, which cover var-
ious formats such as XML, JavaScript, Flash, and zip. These
projects range in size from 3.8K to 90K lines of code and are
commonly used in fuzzing research [13] [14]. The benchmarks
and initial seeds are also used in a previous study. The total
size of the five projects is 1.25 million LoC, containing 3659
loops and 79384 branches. The benchmark information is
presented in TABLE I.

2) Evaluation Setups:
In experiments, we use three coverage, including branch

coverage (BCOV), line coverage (LCOV) and LoopCoverk
to evaluate the coverage of the PUT by testing with different
fuzzers. Additionally, we use the number of crash triggers and
crash reproduction time to assess the ability of the fuzzers in
detecting defects. BCOV measures the coverage of branches,
while LCOV measures the coverage of lines of code in the

4 mJS. https://github.com/cesanta/mjs
5 lrzip. https://github.com/ckolivas/lrzip



TABLE II: LoopCover5 of AFL2oop, FairFuzz and AFL.

Programs Fuzzers LoopCover5(%)

LibMing
AFL2oop 96.9
FairFuzz 96.3

AFL 94.9

Libxml2
AFL2oop 77.9
FairFuzz 74.9

AFL 73.6

mJS
AFL2oop 80.9
FairFuzz 78.6

AFL 78.2

lrzip
AFL2oop 62.1
FairFuzz 60.8

AFL 59.4

PUT. BCOV and LCOV are also widely used in other fuzz
testing studies [3] [15]. The metric LoopCoverk, introduced
in this paper is used to evaluate the coverage of the loop
in the PUT, and Lmax is set to 100 in the experiment.
To collect loop execution information, an additional function
is introduced into AFL and FairFuzz [5] without disrupting
their core functionality. The experimental environments are as
follows: 64-bit Ubuntu 18.04, with AMD Ryzen7 5800X @3.8
GHz CPU, and 64 GB RAM.

3) Research Questions:
To evaluate the performance of AFL2oop, the following two

research questions are addressed in the experiment:
• RQ1. How does AFL2oop compare to other fuzzers in

terms of code coverage?
• RQ2. How effective is AFL2oop in detecting defects

compared to other fuzzers?

B. Experimental Results and Discussions

1) RQ1. How does AFL2oop compare to other fuzzers in
terms of code coverage:

To evaluate the performance of AFL2oop, we carry out an
experiment to compare it with FairFuzz and AFL.

The results of the evaluation of the performance in terms of
BCOV and LCOV are shown in Fig. 2 and Fig. 3, respectively.
The results indicate that the BCOV and LCOV of the four
PUTs increase over time when using different fuzzers. Among
the fuzzers, AFL2oop achieve the highest BCOV and LCOV
when testing Libxml2, LibMing and lrzip, but the BCOV and
LCOV of testing mJS by AFL2oop are slightly lower than
FairFuzz. Specifically, AFL2oop’s BCOV and LCOV are 0.8-
4.3% and 0.1-0.8% greater than FairFuzz and AFL, respec-
tively. However, FairFuzz achieves the greatest BCOV and
LCOV when testing mJS. The results indicate that AFL2oop
can cover more branches and more lines of code in the PUTs
by using loop coverage guided greybox fuzz testing.

In addition to evaluate the performance of AFL2oop with
BCOV and LCOV, we also compare its performance to AFL
and FairFuzz with respect to LoopCover5. The results of
this comparison are shown in TABLE II. Overall, AFL2oop
achieves the highest LoopCover5 among the four PUTs, with
an average increase of 2.9% compare to AFL and 1.8%
compare to FairFuzz. For example, in the case of Libxml2,
AFL2oop achieves 77.9% LoopCover5, which is 3.0% and

5.3% greater than FairFuzz and AFL, respectively. This is
due to the fact that AFL2oop uses loop coverage guided
greybox fuzz testing, test cases that cover new loop intervals
are selected and inserted into the test case queue.

Answer for RQ1. The results indicate that AFL2oop
improves the performance of fuzz testing in terms of
BCOV, LCOV and LoopCover5 by utilizing loop coverage
guided greybox fuzz testing. On average, AFL2oop achieve
1.4% higher BCOV, 0.5% higher LCOV, and 2.9% higher
LoopCover5 compare to AFL. In comparison with FairFuzz,
AFL2oop achieve 0.5% higher BCOV, 0.1% higher LCOV, and
1.8% higher LoopCover5.

2) RQ2. How effective is AFL2oop in detecting defects
compared to other fuzzers:

TABLE III gives the results of comparing the defects detec-
tion ability of AFL, FairFuzz and AFL2oop. The experiment
count the number of unique crashes triggered by the three
fuzzers for the four PUTs. The results show that AFL2oop
outperforme both AFL and FairFuzz in terms of the number of
unique crashes triggered. AFL2oop triggers 483 unique crashes
for the four PUTs, which is 33 more than AFL and 67 more
than FairFuzz. AFL2oop also triggers more unique crashes
than AFL and FairFuzz for each individual PUT.

Additionally, we analyze the total number of defects de-
tected by the three fuzzers in the four PUTs as well as the
defects located in loops. Our analysis reveal that 29 defects are
detected by the four PUTs, with 4 (17%) and 2 (50%) defects
of LibMing and Libxml2 are located in loops, respectively.
TABLE IV shows the time required for AFL, FairFuzz, and
AFL2oop to reproduce the six defects. AFL2oop is able to
reproduce four out of six defects in the shortest time, with
a total time cost of 11557 seconds. AFL and FairFuzz can
only reproduce one crash each in the shortest time, with total
time costs of 16135 and 17646 seconds, respectively. For
example, AFL2oop reproduces the defect decompile.c:2015:37
of LibMing in 2629 seconds, which is 487 seconds faster than
AFL, while FairFuzz is unable to detect and reproduce this
crash. AFL2oop also reproduce the defect valid.c:772:30 of
Libxml2 in only 621 seconds, which is 2435 seconds and 564
seconds faster than AFL and FairFuzz, respectively.

Answer for RQ2. The experimental results show that
AFL2oop outperforms AFL and FairFuzz in terms of both the
number of crashes triggered in the PUT and the time spent to
reproducing crashes caused by defects in the loops. AFL2oop
trigger 483 crashes in the four PUTs, which is 33 more
than AFL and 67 more than FairFuzz. In addition, AFL2oop
spent 39.6% and 68.2% less time than AFL and FairFuzz to
reproduce the crashes caused by the defects located in the
loops.

IV. DISCUSSIONS

A. Effects of loop interval

The results presented in Section III. indicate that AFL2oop
not only improves testing coverage but also detect more
defects of the PUTs. The loop interval (k) is a crucial
parameter of AFL2oop. To assess the impact of k on AFL2oop,



Fig. 2: BCOV(%) of AFL2oop, FairFuzz and AFL.

Fig. 3: LCOV(%) of AFL2oop, FairFuzz and AFL.

TABLE III: The number of unique crashes triggered by AFL,
FairFuzz and AFL2oop.

Programs AFL FairFuzz AFL2oop

LibMing 349 319 360(+11)
Libxml2 100 87 118(+18)

mJS 1 10 5(-5)
lrzip 0 0 0(0)

TABLE IV: The time required for AFL, FairFuzz and
AFL2oop to reproduce the crashes of defects in the loops (in
seconds).

Programs Defects trigger crashes AFL FairFuzz AFL2oop

LibMing

outputscript.c:1440:17 2150 3098 1595(-555)
decompile.c:2015:37 3116 T/O 2629(-487)
decompile.c:1843:74 2722 3958 3044(+322)
decompile.c:1843:64 3522 2385 2733(+348)

Libxml2 valid.c:772:30 3056 1185 621(-564)
valid.c:729:30 1569 1762 935(-624)

experiments were conducted with k is set to 50, 20, 10, 5,
and 1, respectively. The results show that despite the values
of k are varied, both BCOV and LCOV of the four PUTs
are increased with increasing of testing time. Among them,
Libxml2, LibMing, and lrzip achieved the highest BCOV and
LCOV when k = 5. The BCOV (k = 5) of mJS is slightly
lower than k = 100, but the LCOV (k = 5) still exceeded that
of all other k values.

As a result, loop interval for AFL2oop is set as k = 5 in the
experiments, as it leads to a higher coverage of branches and
lines of both code compared to other values of k. Specifically,
setting k = 1 generates numerous invalid test cases, while
using excessively large intervals like k = 50 or k = 20 may
miss interesting test cases and decrease coverage.

B. Threats to validity

Internal validity. The threats to internal validity mainly lies
in the implementation of the studied fuzzers in our evaluation.
To ensure accuracy, AFL was used as the basis for code

instrumentation, bitmap extension, and fuzz testing. Moreover,
the study used the same initial seed test cases as other studies
to mitigate internal validity threats [13] [14]. The experiments
were repeated five times and averaged to reduce the impact of
randomly mutated test cases.

External validity. The threats to external validity mainly lie
in the subjects and benchmarks. To ensure external validity,
representative fuzzers AFL and FairFuzz [5] are used in the
study, as they have been widely used and studied [13] [16].
Four widely-used programs of varying sizes and formats are
used as benchmarks, including Flash, XML, JS, and zip. These
benchmarks have been used in previous studies [13] [14] [17],
ensuring that the results can be generalized to a wide range
of software.

Construct validity. The threat to construct validity mainly
lies in the metrics used in the experiments. Metrics such as
branch coverage (BCOV), line of code coverage (LCOV),
number of crashes triggered, time to reproduce crashes caused
by defects located in the loop, and loop iteration interval cover-
age are used to evaluate the performance of fuzz testing tools.
afl-cov6 is used to obtain branch and line of code coverage,
while the number of defect triggers and time to reproduce
defects are evaluated using AFL ucrash and AddressSanitizer7.
Loop iteration interval coverage is also proposed in the paper
to evaluate the testing coverage of loop structures.

V. RELATED WORK

Greybox fuzz testing, an integration of blackbox and white-
box fuzz testing, has gained significant attention as a practical
and effective software testing method [18]. Greybox fuzzers
use an evolutionary algorithm to generate new inputs and
traverse paths in the program under test, guided by feedback
information obtained from its execution. This approach can

6 afl-cov. http://cipherdyne.com/afl-cov/
7 AddressSanitizer. https://github.com/google/sanitizers

/wiki/AddressSanitizer



be further categorized into coverage-guided and target-guided
methods, depending on the approach used to guide the fuzzing
process.

AFL and UnTracer [19] are coverage-based fuzz testing
tools that collect execution information during testing to
generate test cases based on coverage variants. UnTracer im-
proves the coverage detection algorithm to enhance efficiency.
Coverage-guided methods provide comprehensive coverage of
the program within a specified test time frame, but may waste
test resources on unimportant code.

AFLGo [14] and FairFuzz [5] are target-oriented fuzz
testing tools that aim to cover target code blocks or functions.
AFLGo calculates distance to the target block and adjusts the
test case generation strategy, while FairFuzz prioritizes the
exploration of less-visited parts of the program under test and
adjusts the byte-level variation method.

Loop structures in code can lead to increased complexity
and latent defects [20], but previous work in fuzz testing has
not fully addressed the testing of these structures. Studies take
loop complexity as an important component of complexity
metrics in defect prediction models [21], and symbolic ex-
ecution analyzed loop structures through techniques such as
loop unwinding, invariant inference, and summarization [22].
However, machine learning-based defect prediction models
still require manual confirmation and can result in a high false
alarm rate, while symbolic execution methods can have limited
scalability.

The proposed grey-box fuzz testing approach, AFL2oop,
focuses on the loop structure of the program under test as its
target. It designs a loop interval coverage metric and derives
its fuzz test by taking the coverage of the loop interval of the
test case into consideration, ensuring adequate coverage of
the loop structure while improving performance testing loop
structure by dividing the loop into intervals.

VI. CONCLUSIONS
In this paper, we design the loop interval coverage metric

as to measure the testing coverage of the loops in the PUT by
fuzzers. Furthermore, we introduce AFL2oop, which uses loop
interval coverage metric to guide greybox fuzz testing. Based
on the proposed approach, a prototype tool was implemented
and compared with AFL and FairFuzz. The results show that
AFL2oop can cover more lines of code, branches, and loop
intervals of the PUT. Furthermore, the number of crashes
trigged and the efficiency of reproducing defects are also
outperforms the other two fuzzers. In the future, we plan to
encapsulate AFL2oop as a plug-in to be integrated with other
commonly used fuzzers to improve the testing efficiency and
coverage of loops.

AKNOWLEDGEMENT

This work was supported in part by the Jiangsu Provincial
Frontier Leading Technology Fundamental Research Project
(BK20202001), the National Natural Science Foundation of
China (No. 61702041), and the Beijing Information Sci-
ence and Technology University “Qin-Xin Talent” Cultivation
Project (No. QXTCP C201906).

REFERENCES

[1] P. Tripathy and K. Naik, Software testing and quality assurance: theory
and practice. John Wiley & Sons, 2011.

[2] M. McDonald, R. Musson, and R. Smith, The practical guide to defect
prevention. Microsoft Press, 2007.

[3] F. Gao, Y. Wang, L. Situ, and L. Wang, “Deep learning-based hybrid
fuzz testing.” International Journal of Software & Informatics, vol. 11,
no. 3, 2021.

[4] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Communications of the ACM, vol. 33, no. 12,
pp. 32–44, 1990.

[5] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, 2018, pp. 475–485.

[6] P. Wang, X. Zhou, K. Lu, T. Yue, and Y. Liu, “Sok: The progress,
challenges, and perspectives of directed greybox fuzzing,” Challenges,
and Perspectives of Directed Greybox Fuzzing, 2020.

[7] L. Zhao, Y. Duan, H. Yin, and J. Xuan, “Send hardest problems my way:
Probabilistic path prioritization for hybrid fuzzing.” in NDSS, 2019.

[8] Z. Liu, Y. Xiang, J. Shi, P. Gao, H. Wang, X. Xiao, B. Wen, and
Y.-C. Hu, “Hyperservice: Interoperability and programmability across
heterogeneous blockchains,” in Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, 2019, pp. 549–
566.

[9] X. Xiao, T. Xie, N. Tillmann, and J. De Halleux, “Precise identification
of problems for structural test generation,” in Proceedings of the 33rd
International Conference on Software Engineering, 2011, pp. 611–620.

[10] Z. Li, X.-Y. Jing, and X. Zhu, “Progress on approaches to software
defect prediction,” Iet Software, vol. 12, no. 3, pp. 161–175, 2018.

[11] T. Xie, L. Zhang, X. Xiao, Y.-F. Xiong, and D. Hao, “Cooperative
software testing and analysis: Advances and challenges,” Journal of
Computer Science and Technology, vol. 29, no. 4, pp. 713–723, 2014.

[12] X. Xiao, S. Li, T. Xie, and N. Tillmann, “Characteristic studies of
loop problems for structural test generation via symbolic execution,” in
2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2013, pp. 246–256.

[13] J.-M. Zhang, Z.-Q. Cui, X. Chen, H.-H. Wu, L.-W. Zheng, and J.-B. Liu,
“Deltafuzz: Historical version information guided fuzz testing,” Journal
of Computer Science and Technology, vol. 37, no. 1, pp. 29–49, 2022.

[14] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 2329–2344.

[15] Y. Li, S. Ji, Y. Chen, S. Liang, W.-H. Lee, Y. Chen, C. Lyu, C. Wu,
R. Beyah, P. Cheng et al., “Unifuzz: A holistic and pragmatic metrics-
driven platform for evaluating fuzzers.” in USENIX Security Symposium,
2021, pp. 2777–2794.

[16] M. Wu, L. Jiang, J. Xiang, Y. Huang, H. Cui, L. Zhang, and Y. Zhang,
“One fuzzing strategy to rule them all,” in Proceedings of the 44th
International Conference on Software Engineering, 2022, pp. 1634–
1645.

[17] X. Gao, G. J. Duck, and A. Roychoudhury, “Scalable fuzzing of program
binaries with e9afl,” in 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2021, pp. 1247–
1251.

[18] P. Chen, J. Liu, and H. Chen, “Matryoshka: fuzzing deeply nested
branches,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 499–513.

[19] S. Nagy and M. Hicks, “Full-speed fuzzing: Reducing fuzzing overhead
through coverage-guided tracing,” in 2019 IEEE Symposium on Security
and Privacy (SP). IEEE, 2019, pp. 787–802.

[20] X. Xiao, S. Li, T. Xie, and N. Tillmann, “Characteristic studies of
loop problems for structural test generation via symbolic execution,” in
2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2013, pp. 246–256.

[21] Z. Li, X.-Y. Jing, and X. Zhu, “Progress on approaches to software
defect prediction,” Iet Software, vol. 12, no. 3, pp. 161–175, 2018.

[22] X. Xiaofei, “Static loop analysis and its applications,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2016, pp. 1130–1132.


