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Abstract—Fortran language has been widely used to solve
computation-intensive tasks in science and engineering. Due to
the emergence of multi-core architecture, the pursuit of Fortran
parallelism has become an important goal in the field of scientific
computing. Because of insufficient computing resources and poor
scalability of multi-core architecture, the Fortran program after
multi-core parallel still cannot adapt to the explosive growth of
data. It is a meaningful work to automatically map parallelizable
Fortran code to Spark platform. A Fortran code automatic
refactoring and unloading scheme for Spark cluster is proposed
in this paper, which is an extension of OpenMP unloading model.
The refactoring is automatically completed by the compiler
during the compilation process, and the unloading work is
automatically completed by calling the unloading function library
during the program running process. The experimental results
show that the scheme can automatically map Fortran code
running on the local computer to the Spark cluster, and improve
the execution efficiency of the original business.
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L. INTRODUCTION

There are many researches on parallelization of Fortran
language, most of which are based on multi-core CPU. The use
of co-processors or accelerators is also a widely studied parallel
method. CPU and accelerators constitute a heterogeneous
accelerated computing system. Compared with the traditional
system based on single-machine multi-core CPU, its key
advantage is the high performance power consumption ratio
achieved by accelerators, which will gradually replace the
previous model in many aspects and become the mainstream of
the development of parallel technology in the future.

MapReduce has many efficient implementations[1][2], all
of which provide application programming interfaces for
developers. Although the specific syntax of different APIs is
slightly different, they all require developers to encapsulate the
logic of computing tasks into map functions and reduce
functions. Developers only need to pay attention to the writing
of these two functions. The combination of large data center
cluster and MapReduce cloud computing programming model
provides an opportunity for the cluster to become an
accelerator of local programs. Finally, the program
performance can be improved through the powerful parallel
computing capability of the cluster.
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This paper studies MapReduce refactoring of parallel-
cycling code in Fortran programs, and proposes an automatic
refactoring and unloading scheme of Fortran code for Spark
cluster, which makes the cluster become the accelerator of local
Fortran programs. The refactoring work is automatically
completed by the compiler during the compilation process, and
the unloading work is automatically completed by calling the
unloading function library during the program running process.

II. RELATED WORK

Fortran language is the best choice for parallel
computing[3]. The pursuit of Fortran parallelism has always
been one of the important goals in scientific computing. Early
developed Fortran parallel programming interfaces include
HPF[4] and CoArray Fortran[5]. In recent years, the widely
popular parallel programming interfaces are OpenMP[6] and
OpenACC[7] based on instruction programming. Several
kernel-based programming interfaces, such as CUDA and
OpenCL are also available for Fortran parallelization. In order
to further improve the development efficiency of parallelization
and reduce the errors easily introduced in the refactoring
process of manual parallelization, some researchers have
proposed algorithms and tools to realize automatic
parallelization refactoring[8]. Tinetti F G proposed a
parallelization algorithm to convert legacy Fortran serial code
into OpenMP parallel code. The algorithm uses advanced
algebraic models to describe code conversion and optimization
rules, and uses rewriting rule techniques to automatically apply
rules in source code. Advanced algebraic models simplify
understanding of legacy programs and their transformations,
and can support transformations at different levels of
abstraction[9]. Other tools automate parallelization by
modifying the output of a compilation system or programming
framework. AtzeniS et al. modified the object code generation
mechanism of the Flang compilation front end to generate
CUDA code for the NVPTX CPU-based back end and
automatically unloading the computing tasks to the GPU
accelerator. The computing advantage of GPU massively
parallel architecture is effectively utilized[10].

Existing research has built converters for several SQL
declarative languages and integrated MapReduce to support
these languages, include Pig Latin/Pig[11-12], SCOPE[13-14],
HadoopDBJ15], Hive[16], YSart[17], and Jqal[18]. At present,
some scholars have proposed some methods and tools for



refactoring programming language into MapReduce code. Li B
proposed a tool J2M (Java-to-MapReduce) that translates Java
into MapReduce[19]. This tool is similar to the implementation
of an editor, but only compiles target loops with special
identification. The object code is generated by extracting some
of the necessary information from the source code and
combining it with a pre-defined MapReduce template, leaving
the rest of the source code unchanged. In order to realize code
refactoring for memory cloud computing platform, Li B
proposed a translator J2S(Java-to-Spark) that generates
MapReduce jobs for Spark platform, which can translate three
types of Java source code: for-loop, task, mixed loop and
task[20]. Ahmad M B S proposed a conversion tool Casper,
which can convert serial Java programs into Spark-MapReduce
jobs[21]. In recent years, there are also researches on Fortran
language refactoring of MapReduce. Wottrich R proposed
OpenMR, a programming model that refactors Fortran, C and
C++ source code into MapReduce code[22]. This programming
model maps loop iterations to working nodes in a Hadoop
cluster based on OpenMP parallel compilation instructions
customized in the source code. The compiler can generate map
functions and reduce functions required by Hadoop at compile
time. While this approach is supported by a set of proof-of-
concept, code generation is done manually and there is no
comprehensive assessment of the performance overhead of the
programming model.

Through the comparison and analysis of relevant research
status, it can be found that there are still some problems in the
current research. First of all, most existing researches on
MapReduce programming model refactoring focus on the
transformation from SQL-like queries to MapReduce. The
research of refactoring from high-level programming language
to MapReduce, most of which focus on object-oriented
language such as Java. Secondly, existing research projects
require manual participation, and there are still deficiencies in
automation. In addition, although the research methods of
multi-core parallel refactoring of Fortran programs have been
relatively mature in the academia and industry, the refactoring
methods of MapReduce programming model are still
insufficient, and Fortran programs cannot effectively utilize the
powerful parallel computing capability of clusters. The
research methods of multi-core parallel refactoring of Fortran
programs have been relatively mature, but the refactoring
methods of MapReduce programming model are still
insufficient. Fortran programs cannot effectively utilize the
powerful parallel computing capability of clusters. Fortran, an
important language in the field of parallelism, a comprehensive
refactoring method is needed to effectively utilize the
computing power of clusters. Therefore, this paper studies the
refactoring and unloading of Fortran program to MapReduce
model.

III. DESIGN OF REFACTORING AND UNLOADING SCHEME

In this paper, a refactoring and unloading scheme of Fortran
code is designed based on OpenMP unloading model of
LLVM compilation system. It is oriented to Fortran source
code embedded with OpenMP offload instruction and OpenMP
parallel loop instruction, aiming to realize circular
parallelization of Fortran code in distributed environment. In
this scheme, Spark cluster is selected as the target device

because it features fast execution, low computing latency, and
high data interaction. According to the analysis of OpenMP
unloading model, the data flow diagram of this scheme is
shown in the figure 1.
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Figure 1.  Data flow diagram

First, the OpenMP target instruction and parallel do
instruction are inserted into the Fortran serial source code to
guide refactoring and unloading. The source code needs to be
correct and only handles Fortran programs that run properly on
the CPU, not other types of code. The program embedded with
the OpenMP instruction is then read by Flang[23], the Fortran
front-end compiler of the LLVM compilation system, which
constructs an Abstract Syntax Tree (AST) based on the syntax
information of the program. After the whole abstract syntax
tree is constructed, the static analysis method of traversing
abstract syntax tree is selected for semantic analysis. The AST
Consumer and RecursiveASTVistor interfaces provided by
Flang are used to access the abstract syntax tree, and depth-first
traversal is performed on the abstract syntax tree. During the
traversal, semantic analysis is completed, including the address
stored in the variable, the scope of the variable, the name of the
variable, the type of the variable and information about the
loop. The OpenMP target node of the abstract syntax tree
contains all information about the unloading data and the loop
to be refactored. The information in the OpenMP target node is
saved in the defined data structure to provide information
support for the subsequent automatic refactoring and unloading
module.

A. Refactoring Scheme Design

For map function refactoring, firstly build the map
function's parameters. The first argument is "index", which
indicates the lower index limit of the loop in the map function.
The second argument is "bound", which indicates the upper
bound of the loop index in the map function; The third and
subsequent parameters are variables associated with the map
instruction, including the map to clause and map from clause.
Parameter values are assigned by the Spark driver node. The
body of the map function is then built. First the scheme need to
extract the loop body in parallel do exactly as it is, and then
body link the loop into a new loop that is a child of the original
loop with an index upper bound on the first parameter "index"
and a lower bound on the second parameter "bound".

For the refactoring of reduce function, first build the
parameters of reduce function. The function parameters are the
variables in the two reduction clauses, namely a0 and al. The
parameter values are the partial calculation results of the



variable a returned by the map function, passed by the driver
node. Then build the body of the function. The body performs
the operator specified in the reduction clause for both
arguments and assigns the result to the second argument.

This paper uses a Fortran compiler for code refactoring, so
the resulting map and reduce functions are machine code for
the Fortran language. To enable Fortran functions to be
executed in the Spark cluster environment, this paper uses Java
Native Interface (JNI) to encapsulate map functions and reduce
functions. This needs to be converted to JNI native functions
according to JNI naming conventions. The Spark cluster also
needs to generate a Spark application that describes cluster jobs
to trigger cluster jobs. Based on the analysis of Spark execution
mode, this paper designs the Spark job application template.
During refactoring, the specified information is inserted into
the template to generate Spark job applications for computing
tasks.

B.  Unloading Scheme Design

The automatic unloading module relies on the flexible
implementation of the OpenMP unloading model.

The data processing part mainly deals with the associated
variables of map instruction. The OpenMP unloading model is
used to process data mapping of variables associated with map
instruction. Meanwhile, in order to reduce the overhead of
moving data across the Internet, this paper extends the use of
map instruction clause and implements distributed data
partitioning. Based on the Spark cluster architecture, this paper
designs an unloading function library that can directly interact
with the Spark cluster and has the unloading function in the
function interface provided by the OpenMP unloading model.
Relying on the OpenMP unloading model, the compiler
replaces the area of code associated with the target directive
with a call to the unloading library. Then run the program to
realize the automatic unloading of calculation tasks.

IV. IMPLEMENTATION OF REFACTORING AND
UNLOADING SCHEME

Based on the detailed design in Chapter III, this chapter
details the implementation of the refactoring and unloading
solution to support the refactoring and unloading process. This
paper is implemented in the LLVM compilation system.
The following introduces the overall implementation method.

To achieve the extensibility of the OpenMP unloading
model, the LLVM compilation system breaks the
implementation of the model into different components,
including a compiler that generates object code, an unloading
wrapper library that is independent of the target device, and an
unloading plugin that is specific to the target device. This paper
extends the LLVM compiler to generate object code for the
Spark cluster and the libomptarget runtime unloading library,
where the unloading plugin is implemented to unloading
computing tasks into the cluster. The implementation name of
the defined scheme is FCloud (Fortran-Cloud), which is
composed of LLVM compiler, unloading wrapper library, and
cluster plugin. The overall implementation is shown in the
figure 2.
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Figure 2. Overall realization of scheme

The LLVM compiler implements the analysis and
compilation of the input source program, during which three
types of code are generated. The first is the map and reduce
functions running on the cluster, which are contained in
JNI _region. The second is the code that runs on the mainframe,
which is contained in program main, embedded in the same
binary in ELF format. The third code is the Spark job
application code compiled into a JAR file. When a job is
submitted to the cluster, the driver node runs the Spark job
application and distributes cyclic tasks among working nodes.
Then the working node runs the map and reduce functions
written in Fortran language through the JNI interface.

The unloading wrapper library component was designed by
Jacob, in the LLVM compilation system to achieve the
scalability of OpenMP unloading.The main tasks were to
detect the available target devices, create the device data
environment, perform the correct unloading function according
to the device type, etc. When an unloading area "target" is
synthesized, the LLVM compiler generates a set of calls to the
unloading wrapper library, regardless of the target device.

Cluster unloading plugin is a component specific to the
target device in the libomptarget runtime unloading library.
Currently, there are GPUs for GPU and DSPs for DSP.
The cluster plugin implemented in this paper can directly
interact with the cluster according to the architecture of the
cluster, and provide services such as data transmission and
triggering the cluster to execute jobs. Because the cluster
device is not set up on the local computer, it cannot be
automatically detected. Users need to provide identification or
authentication information to allow the current application to
connect to the cloud service implementation for unloading. The
cluster plugin reads the configuration file at runtime to set up
the cluster device correctly. Therefore, you need to deploy the
cluster and set up the configuration file before running the
application. The implementation of LLVM compiler
component corresponding information collection module and
code refactoring module, unloading packaging library and
cluster plugin corresponding unloading module.



V.  EXPERIMENTS

A. Experimental Environment and Test Procedure

The local computer is a laptop with 8 GB of memory. The
target cluster consists of a private Spark cluster with a driver
node and 16 working nodes. Use the libssh API to implement
SSH/SFTP communication between the local computer and the
target cluster. Table I describes the configuration parameters of
each node in the cluster.

TABLE 1. SPARK CLUSTER CONFIGURATION

Configuration name Configuration description

Operating system Ubuntul4.04
CPU processor AMD Opteron(TM) Processor 2376 CPU @ 2.3GHz
Memory 16GB
Spark version 2.3.1
JDK version 1.8.0 171
Kernel number 8

In this paper, PolyBench/Fortran suite[24] is used as the
benchmark test assembly, from which programs that support
the OpenMP target structure and use the typical do loop
implementation are selected: SYRK, Mat-mul, 2MM, 3MM,
Collinear-list. All data sets used in the experiment are
composed of randomly generated single precision numbers,

and the matrix used is expanded to 16000 x 16000 (about 1GB).

Taking the Mat-mul serial program as an example, the
refactoring and unloading process based on FCloud is as
follows: First, write the Spark cluster configuration file, and
then insert instructions in the Mat-mul serial source code
according to the standard description mode defined by
OPenMP. During code compilation, FCloud completes Spark-
MapReduce refactoring of parallel cyclic code and generates
calls to unloading library functions. By running logs to learn
about the unloading process and Spark job execution. After the
running is complete, the log displays the execution time and
other information.

B.  Feasibility Analysis

This section verifies whether FCloud can complete the
refactoring and unloading by comparing the running results of
FCloud and the original serial program. First, use FCloud to
test five applications. Table II shows the number of loops
contained in the program, the number of nested loops in the
program, and the corresponding completion results.

TABLE II. EVALUATION PROGRAMS AND RESULTS
Loop Number of Whether it can be compiled and
Program R

nesting level cycles run normally
SYRK 2 1 Yes
Mat-mul 3 1 Yes
2MM 3 2 Yes
3MM 3 3 Yes
Collinear-list 4 3 Yes

This paper compares the execution results of this scheme
and the original serial program in the same data set to verify
whether the external behavior of the program has changed, and
then to verify whether this scheme has effectively completed
the refactoring and unloading. It is mainly to check whether the
serial program execution results are consistent with the
program execution results of this scheme through traversal, and
the verification results are consistent.

C. Performance Analysis

To test the performance of this scheme, this paper compares
the clustered distributed parallelism of FCloud with the
parallelization method popular in Fortran, OpenMP single-
machine multithreaded parallelism. The main way is to
compare the run speed of the two programs with that of the
serial program. Run speed is the most important indicator to
test the performance of the parallel scheme.

Since a single machine only has a maximum of 8§ cores,
single-machine multithreaded OpenMP experiments were only
tested on 2, 4, 6 and 8 threads. As shown in the running results
of OpenMP in Figure 3 (a), the acceleration of other programs
is close to linear except that Collinear-list program accelerates
1.5 times on 8 inner cores. Figure 3 (b) shows that the overall
speed-up of all tested programs on FCloud tends to increase
with the number of cores, with 3MM programs getting up to 58
times speed-up at 128 cores. At the same time, it can be seen
that even the Collinear-list program, which performs the worst
in single-machine multithreaded OpenMP, can achieve 12.5
times speed-up with 128 cores.

Through the above analysis, it can be concluded that this
scheme can effectively improve the operation efficiency of the
program. Compared with multithreaded OpenMP technology
whose parallel capability is limited by the number of single
cores, although the acceleration achieved in this scheme is not
linear, it will increase with the increase of the number of cores.
As the number of cores increases, the 3MM program with the
maximum computational complexity gains the largest
execution acceleration compared with other tasks with lower
computational complexity, indicating that the program with
more complex computation can gain greater acceleration
through this scheme as the number of cores increases.
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Figure 3. Execution acceleration of multithreaded OpenMP and FCloud

D.  Performance Overhead Analysis

The results of the experiment show that the acceleration of
FCloud does not increase linearly with the increase of the
number of cores, and in the case of 8 cores, the running
acceleration is lower than that of single-machine multithreaded
OpenMP technology, which is caused by the performance
overhead generated by FCloud when running the program. This
section mainly analysis its performance overhead to verify
whether the scheme has a good performance power
consumption ratio.

Figure 4 shows the running time of FCloud and
multithreaded OpenMP on a single node.
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Figure 4. The running time of FCloud and multithreaded OpenMP

As the number of cores increases, the computation time of
FCloud decreases, while the communication time and Spark
spending remain roughly the same. Comparing the run time of
FCloud on 8 cores to the run time of single-machine
multithreaded OpenMP also shows a smaller performance
overhead. When computing time alone is considered, FCloud
has 4.3% more overhead than multithreaded OpenMP, which
proves how efficient JNI is at running native functions. When
the overhead of Spark clusters is added, FCloud is 6.7% more
expensive than multithreaded OpenMP, demonstrating the
Spark platform's superior parallelism performance even in the
driver node-worker node execution architecture. When the
communication overhead between the local computer and the
cluster is added, the total running time of the FCloud is 7.6%



higher than that of the single multithreaded OpenMP, which
indicates that the overhead of transferring data between the
local computer and the Spark cluster is limited in the small
number of clusters, even without great computing power.

Based on the above analysis, it can be concluded that the
overhead of data transmission and Spark scheduling is stable
and limited. Compared with the significantly reduced
computing time, the overhead caused by the performance is
small, and the scheme has a good performance-power ratio,
which further proves the effectiveness of the scheme.

Experimental results show that this scheme can complete
the parallel refactoring and unloading of Fortran programs, and
has good performance when dealing with large data sets and
complex computing applications. Meanwhile, the overhead of
scheduling and data transmission within Spark is limited, and
JNI runs local functions efficiently, which proves that this
solution has a good performance power ratio.

VI. CONCLUSION

In this paper, a Fortran code automatic refactoring and
unloading scheme for Spark cluster is proposed. A parallel
refactoring method is proposed based on the parallel mode of
MapReduce programming model. The OpenMP unloading
model is used to automatically uninstall the computing tasks on
the local computer to the Spark cluster. The experimental
results show that the scheme is feasible, effective and has good
performance and power consumption ratio. The application of
the refactoring and unloading scheme proposed in this paper

can help to improve the efficiency of specific Fortran programs.

For future work, it would be interesting to cover more Fortran
code and reduce performance costs.
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