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Abstract—Nowadays, chronic wounds have become an increas-
ingly heavy healthcare burden. Therefore, wound classification is
the most crucial task in wound diagnosis, which directly affects
whether the treatment plan is optimal. This paper proposes a
self-attention embedded residual network, or SARNet for short,
which takes wound images as input and categorizes them into
six types, i.e., burn wounds, surgical wounds, venous lower
limb ulcers, pressure ulcers, diabetic foot ulcers, and normal
skin. The classification accuracy of SARNet satisfactorily exceeds
80% mainly because its residual structure enhances the feature
representation, and its built-in self-attention mechanism enables
the global reference.
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I. INTRODUCTION

A chronic wound is defined as a breach in skin continuity
that fails to achieve an anatomically and functionally intact
state through an orderly and timely sequence of repair pro-
cesses [1]. Traditionally, a patient’s wounds are manually ana-
lyzed, identified, and documented by the clinicians. However,
the number of patients with chronic wounds is tremendous.
Thus, performing large-scale wound classification by human
means results in a massive medicare burden. Fortunately, with
the rapid development of artificial intelligence (AI), we can
now use computer vision technologies to classify wounds from
only images.

Machine learning plays a vital role in computer vision
with the aim of extracting critical information from im-
ages [3]. In the healthcare realm, it is frequently used to
improve the quality and recognize the crucial features of
medical imaging. However, conventional machine learning
has certain limitations. For example, it requires that human
experts remove unnecessary features before training, which is
a time-consuming and laborious mission unsuitable for large-
scale projects. Therefore, as an alternative, deep learning has
received increasing attention [4]. By identifying and learning
meaningful features from the totality of features by itself, deep
learning can solve more complex problems with little human
intervention.

Currently, most deep learning algorithms for chronic wound
assessment are towards a binary classification, i.e., normal
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skin or physically harmed [5]. However, the sad fact is that
such algorithms are useless in a real-world clinical diagnosis.
Another sad fact is that the rest can barely provide a satisfac-
tory classification in a multiclass fashion [6]. Thereby, we put
forward a novel deep neural network that shows outstanding
performance in the multiclass classification of chronic wounds.
Based on the research achievement, we have successfully
commercialized the proposed AI model and helped hundreds
of patients to date.

II. RELATED WORK

In this paper, we only consider the most typical categories
of chronic wounds [7]:

• Burn wounds (BW): Nearly 11 million people worldwide
annually are severely burned, which requires long-time
medical treatment.

• Surgical wounds (SW): Annually, roughly 4.5% of people
worldwide undergo surgery that inflicts a wound.

• Venous lower limb ulcers (VLU): About 0.15% to 0.3%
of people worldwide have a VLU.

• Pressure ulcers (PU): Each year, nearly 2.5 million people
are suffered from PU.

• Diabetic foot ulcers (DFU): Approximately 34% of
diabetic patients are threatened by DFU during their
lifetimes, whilst more than 50% of patients with DFU
become infected.

Most existing algorithms of wound classification aim to
differentiate a wound from normal skin, among which the
DFU diagnosis constitutes the majority. Because severe DFU
usually leads to limb amputation, identifying DFU is in great
demand so that treatment can come in time. Veredas et al. [8]
proposed a hybrid system for automatic region segmentation
and tissue recognition in an uncontrolled environment, which
can detect the wound using color and texture features extracted
by a multilayer neural network. Wannous et al. [9] implement
color and texture region descriptors to perform a 3D-wound as-
sessment. Wang et al. [10] used a cascaded two-level classifier
to determine the boundaries of DFU. As image-based machine
learning becomes even more sophisticated, more and more
end-to-end models are adopted for better wound diagnosis.

However, the binary chronic wound classification is still
considered ineffective in the real world. Hence, the multiclass



classification of chronic wounds has received increasing at-
tention over the past several years. For example, Abubakar et
al. [11] proposed a machine learning approach to distinguish
BW or PU from normal skin, in which the image features
are extracted by deep architecture, e.g., VGG-face, ResNet-
101 or ResNet-152, and fed to an SVM classifier. Rostami et
al. [6] put forward an integrated end-to-end DCNN classifier
to divide the wound into multiple categories, including SW,
DFU, and VLU. A total of 538 images of the natural wound
are used in the experiment, which results in mean classification
accuracy values of 94.28% for binary classification and 87.7%
for ternary classification. Sarp et al. [12] performed a quater-
nary wound classification using a classifier model generated
through interpretable artificial intelligence (XIA) and transfer
learning, leading to an F1 mean score of 0.76.

Unfortunately, existing wound classification methods are
generally unreliable. For example, SVM is frequently used to
extract wound features [13]. Despite the experimental results
that show accuracy improvement, they are barely convincing
due to the small size of the evaluation set. Moreover, such
experiments usually require specific lighting conditions (shad-
ing), markers, and skin colors. Otherwise, the model performs
inadequately. Some other models show a stark contrast be-
tween binary and multi-class classifications, e.g., the accuracy
drops rapidly from 97% to 72% [6]. For all these reasons,
in this paper, we present SARNet, a self-attention embedded
residual network using multi-branch topology, to classify the
most common six types of chronic wounds precisely.

III. OUR WORK

Currently, most research on chronic wound classification
refers to a single type of wound, whereas the rest achieves low
accuracy involving multiple types. We hereby present a self-
attention embedded residual network, or SARNet for short,
which is structured using a multi-branch topology. Notably,
the branches adopt different convolution kernels, respectively,
in order to obtain different receptive fields, thus thoroughly
extracting features at various depths.
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Fig. 1. An overview of SARNet.

As shown in Figure 1, the input of SARNet is a three-
channel image of a chronic wound with a size of 224×224.

Such an image is dealt with several parallel convolutional
layers and a self-attention layer. Each parallel convolutional
layer consists of a branch using 3×3 convolutional kernel,
another one using 1×1 kernel, and the third in the form
of an identity layer that keeps the output unchanged before
and after the transformation. Downsampling is performed by
convolution with stride two at the beginning of the first layer.
The self-attention layer is placed between the fourth and fifth
layers, which brings the advantage of maintaining excellent
performance on fine-grained pixel-level tasks. The final stage
is a fully connected layer resulting in a senary classification
of wounds, viz. BW, SW, VLU, PU, DFU and normal skin.

A. Multi-branch Convolutional Neural Network

After VGG achieved a top-1 accuracy of over 70% on
ImageNet classification [14], many innovations have emerged
in making the network more complex to achieve high per-
formance. For example, ResNet proposed a simplified dual-
branch architecture that implicitly integrated many shallower
models with the aim of training a multi-branch model to
avoid the vanishing gradients problem [15]. Although complex
neural architectures can generate networks with higher perfor-
mance, the cost of computing resources or workforce becomes
enormous. Moreover, some models are too sophisticated to be
trained using ordinary GPUs, let alone the usage in practice. In
spite of the inconvenience of implementation, complex models
may reduce the parallelism and hence slow down the inference
[16].

Our model is constructed on the basis of a simple VGG
architecture. Since the wound surface usually appears as
circular or irregular shapes, we adapt the multi-branch struc-
ture originally proposed in RepVGG [15] to enhance the
representation of the network model. Each branch applies
a specific receptive field and captures more relevant image
features accordingly. Apparently, the residual branches are
the key to SARNet architecture, which divides the training
process into three paths. Each path contains downsampling
and BatchNorm (BN) layers. The role of the BN layer is to
normalize the data, which stabilizes the distribution of input
data and thus accelerates the overall learning speed of the
model.

The formulas used in the convolutional and BN layers are
expressed as follows:

Conv(x) =
∑
i

wixi + b (1)

BN(x) = γ × (x−mean)√
var

+ β (2)

where w is the weight of the convolutional kernel, x is the
input, b is the bias, β and γ are the learnable parameters,
mean is the mean value and

√
var is the variance. Equation

3 is obtained by substituting Eq. 1 into Eq. 2, which shows
the convolutional layer with bias vectors obtained by fusing
the BN with the previous convolutional layer. Using a multi-
branch convolutional neural network with a parallel structure



can improve the accuracy of the model during training and
avoid the problem of vanishing gradients.

BN(Conv(x)) =
γ ×W (x)√

var
+

γ × (b−mean)√
var

+ β (3)

B. Polarized Self-attentive Mechanism

Since convolution can only use local rather than global
information to calculate the target pixel, this may introduce
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Fig. 2. The structure of PSA module.

some bias. Suppose we treat each pixel in the feature map as a
random variable and calculate the pairwise covariance between
all pixels, i.e., the similarity between two random variables.
In that case, we can enhance or weaken the value of each
predicted pixel based on its similarity with other pixels in the
image. Since the wound figure may appear at any position in
the image (some wound figures may occupy a small proportion
of the image with much irrelevant background), adding an
attention mechanism between the fourth and fifth convolution
layers can achieve global reference in the model training and
prediction process, thereby enhancing the model classification
performance.

In this paper, we use the polarized self-attentive (PSA)
mechanism, which is realized as a combination of two
branches. One performs a channel-wise self-attention mecha-
nism, while the other is spatial-wise. Eventually, the results

of the two branches are fused to generate the output of
the structure, as demonstrated in Figure 2. To reduce the
information loss caused by dimension reduction, PSA uses
the polarized filtering mechanism, which maintains the size of
[H,W ] in the spatial dimension and uses the size of C/2 in
the channel dimension. In addition, a non-linear function that
regresses the output distribution at a fine granularity is used to
enhance the information. In other words, the Softmax function
is used to increase the attention range on the smallest tensor
in the attention module, and then the Sigmoid function is used
for dynamic mapping. Equations 4 and 5 calculate the weight
of the channel branch and spatial branch, respectively.

Ach(X) = FSG[Wz|θ1((σ1(Wv(X))× FSM (θ2(Wq(X)))))] (4)

Asp(X) = FSG[σ3(FSM (σ1(FGP (Wq(X))))× θ2(Wv(X)))] (5)

As a result, the fusion of the channel and spatial branches
can be calculated as follows:

PSAs(x) = Zsp(Zch)

= Asp(Ach(X)⊙ch X)⊙sp Ach(X)⊙ch X
(6)

IV. EXPERIMENT

A. Dataset

The dataset used in this paper is from the Kaggle big
data competition platform. It contains 1777 wound images,
including six categories: 323 images of BW, 209 images of
SW, 447 images of VLU, 373 images of PU, 325 images of
DFU, and 100 images of normal skin. These data are divided
into a training set and a test set in a 7:3 ratio.

B. Data Preprocessing

All wound images are preprocessed via two steps. The first
step is to augment the data by horizontal flipping, rotation,
and random cropping, whereas the second is to process the
wound images using mixup data enhancement [17]. Mixup is
a data augmentation principle independent of data and a form
of neighborhood risk minimization. It uses modeling between
different categories to achieve data augmentation. First, two
samples are randomly selected from the training samples for
simple random weighted summation, and the labels of the sam-
ples are also correspondingly weighted and summed. Then,
the predicted result and the label after weighted summation
are used to calculate the loss and update the parameters in
reverse differentiation. Mixup extends the training distribution
by combining prior knowledge that linear interpolating feature
vectors should lead to linear interpolation of relevant labels.
In addition, the mixup method can reduce the considerable
memory loss and sample sensitivity in the network and can
reduce the memory of incorrect labels.

C. Experimental Results

To thoroughly investigate the classification performance, we
use accuracy, precision, recall and F1-score to evaluate our
SARNet.

We achieved an accuracy of 80.87% in the senary classifi-
cation of the chronic wound using the SARNet. Heretofore,
the highest record of senary classification is 75.64%, which is
achieved by a VGG16 network using the AZH dataset [5].



So, We improved the accuracy by 5.23%. In addition, we
also performed six quinary classifications on this dataset. The
accuracy results are illustrated in Table I. It is worth noting
that B, S, V, P, D, and N are the abbreviations of BW, SW,
VLU, PU, DFU, and normal skin, respectively.

TABLE I
ACCURACY OF MULTI-CLASS CLASSIFICATIONS OF CHRONIC WOUNDS

Num of Classes Classes Test Accuracy

5 classes

BDNPS 84.24%
BDNPV 82.78%
BDNSV 83.45%
BDPSV 77.94%
BNPSV 83.99%
DNPSV 84.71%

6 classes BDNPSV 80.87%

In addition, we compared the effects of mixup and attention
mechanism on the senary classification, as shown in TableII,
which provides ample evidence of their importance.

TABLE II
THE IMPACT OF MIXUP AND ATTENTION MECHANISM ON ACCURACY

Classifier Test Accuracy

SARNet without mixup and attention 69.34%
SARNet without mixup 77.24%

SARNet without attention 71.92%
SARNet 80.87%

(a) accuracy (b) precision

(c) recall (d) F1-score

Fig. 3. The performance of SARNet.

To further demonstrate the effectiveness of this network
model for six classifications in the chronic wound image
dataset, we calculated the model’s accuracy, precision, recall,

and F1-score, as shown in Figure 3. It can be seen that the
precision, recall, and F1-score are also around 80% for all
wound images, except for normal skin.

V. CONCLUSION

A high-performance classifier is urgently needed to classify
wounds with less financial and time costs. This paper presents
SARNet, which is constructed based on a multi-branch topol-
ogy that enables various convolutional kernels referring to
receptive fields at different levels of granularity for thorough
feature extraction. Additionally, SARNet is introduced by a
polarized self-attentive mechanism to capture long-distance
dependencies for better global reference. The experiment
shows SARNet outperforms all other existing approaches.
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