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Abstract—In the current social environment, social crisis events
occur frequently with significant impacts. Group intention mining
through automatic technologies for managing social crises has
gained extensive attention. This paper presents an overview of
research on group intention mining in social crisis events, cover-
ing three areas: knowledge graph inference, intention attribution,
and risk management. Knowledge graph inference facilitates the
detection of group intention in crisis events. It is supported by
the construction of crisis knowledge graphs, which organize crisis
elements and inter-element relations into structured semantic
knowledge. The interpretable semantics in the crisis knowledge
graphs enables attribution of intention. Group intention mining
consists of intention detection and intention attribution, serving
the risk management of social crisis events. To gain insights
into the process of group intention mining in social crises, the
Covid-19 event is selected as a case study. Finally, the paper
proposes future research directions to solve the limitations of
existing intention mining methods in social crises.

Index Terms—Social Crisis Events, Intention Mining, Intention
Explanation, Risk Management

I. INTRODUCTION

Social crises are complicated and dynamic events that
threaten public safety and interest, influenced by various
interconnected factors. The Covid-19 pandemic serves as a
prime example of a global health crisis that has significantly
disrupted the everyday lives of individuals. Exploring the
formation and evolution of social crises is crucial to safeguard
public safety. However, in the complex international environ-
ment, social crisis management is challenging for all countries.

The process of managing social crises consists of three
stages: pre-crisis detection, real-time crisis response, and post-
crisis review, as illustrated in Fig. 1. To effectively manage a
crisis, it is crucial to mine the intention of groups involved,
as it provides valuable insights into their behavior in a given
situation. For example, tracking the public’s sentimental in-
tention during the Covid-19 pandemic can help restore social
development. The model of group intention mining in social
crisis events is defined as Imin

crisis = {Idet, Iatt}, where Idet is
intention detection, Iatt indicates intention attribution. How-
ever, intention mining during social crises is challenging due
to the unclear evolutionary trajectory and elusive precursors of
such events. On the one hand, the vast amount of knowledge
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in social crises is both extensive and sparse, resulting in a
semantic imbalance arising from long-tailed event information.
On the other hand, the semantics of words may evolve over
time, and new words or phrases keep emerging, making
it difficult to analyze crisis-related data. Additionally, using
unexplainable intention decision models in analyzing social
crisis events involving life safety poses a risk.

This paper aims to address the issues related to group
intention mining in social crises. It provides a comprehensive
overview of current research in three closely related areas:
knowledge graph inference, intention attribution, and risk
management for social crisis events. Section II covers knowl-
edge graph inference, which supports the identification of
group intention in crisis events. Section III discusses intention
attribution, which helps to determine the motivations and
goals of crisis actors. Group intention mining, encompassing
intention detection and attribution, plays a critical role in social
crisis risk management, as discussed in Section IV. Section V
presents a case study on Covid-19, demonstrating how the
integration of knowledge inference and intention attribution
can support risk management during a social crisis. Finally,
the paper proposes improvements to overcome the limitations
of existing research on intention mining in social crises.

II. KNOWLEDGE GRAPH CONSTRUCTION AND INFERENCE
FOR SOCIAL CRISIS EVENTS

The extensive and sparse nature of social crisis data poses a
challenge for effective knowledge representation. Knowledge
graph offers a viable solution for organizing and integrating
discrete semantic knowledge related to social crises. Using the
constructed crisis knowledge graph for knowledge inference
enables the detection of group intention.

Knowledge graph improves the agencies’ ability to deal
with crises in different areas. In counter-terrorism detec-
tion, to identify terrorist organizations, Bangerter et al. [1]
constructed a knowledge graph from the Global Terrorism
Database and trained graph neural network(GNN) by inductive
link prediction technique. Yang et al. [2] utilized the co-
occurrence matrix and relationship knowledge graph to sort
out the development tendency of various topics in counter-
terrorism intelligence. In public health domain, to identify
and explain misleading Covid-19 statements on social media,
Kou et al. [3] integrated the knowledge of both experts and
non-experts to construct a Covid-19 knowledge graph. In
environmental protection, Liu et al. [4] built a multi-source oil
spill detection knowledge graph using rule reasoning and GNN

DOI reference number: 10.18293/SEKE2023-067



Fig. 1: Flowchart of Social Crisis Management

to address information isolation in oil spill detection. Pingle
et al. [5] detected network threats by extracting semantic
triples in cyber data. In climate change domain, Chen et al.
[6] employed a knowledge graph-based meteorological risk
analysis framework to visualize the hierarchical relationship
between dangerous weather events and human activity events.

When utilizing knowledge graphs for crisis management,
three steps must be taken, including knowledge extraction,
fusion, and inference. To overcome challenges encountered
during these stages, researchers have proposed several solu-
tions. In the knowledge extraction stage, to solve the entity
overlap problem during the triplet extraction, Wei et al. [7]
regarded the triplet extraction as a discrete classification prob-
lem, extracting entities first and then identifying entity relation.
Aiming at the long-term dependence problem of triples, Ye et
al. [8] proposed a generative model to generate entity-relation-
entity successively. Targeting the problem of missing part of
the contextual information for extracted triples, Geng et al. [9]
presented a convolutional recurrent neural network based on
attention mechanism to jointly uncover entities and relations.
In the knowledge fusion stage, Trisedya et al. [10] introduced
an entity alignment model based on attribute-embedded char-
acters and transitivity rule. Wu et al. [11] proposed a cross-
lingual entity matching model named CLEM, which integrates
multimodal information embedding matching entities based on
a multi-perspective spatial learning method. In the stage of
knowledge inference, given the incompleteness of knowledge
graph, Lei et al. [12] proposed knowledge graph completion
and reasoning based on symbolic methods and reinforcement
learning. Niu et al. [13] presented a coding and decoding
model based on GNN and high-dimensional structure weight.
Knowledge graph has been applied in domain knowledge
transfer, target recognition, and semantic tracing. The improve-
ment of knowledge graph construction approaches promotes
knowledge graph’s application in social crisis management.
Based on relevant research, the framework of knowledge
graph construction and inference in social crises is shown in
Fig. 2(a). Firstly, through the knowledge extraction, the triad of
crisis elements is obtained as KT = {eh, r, et}, where eh is a
header event element, et is a tail event element, and r denotes

the relation between the above two elements. Secondly, the
crisis knowledge graph CG is gained through the knowledge
fusion, which is expressed as CG = {E,R}, where E is the
set of crisis elements, R is the set of r. Finally, based on
the crisis graph and the target event data, the group intention
is derived by knowledge inference as Idet = f(CG,D),
where D is the target event data, f denotes the knowledge
inference function. Knowledge graph as a way of structured
representation have the ability to manage complex crisis data.

Current research on knowledge graph has made notable ad-
vancements in detecting intentions related to specific domains
of risk. However, challenges arise when attempting to apply
these approaches to cross-cutting social crises. These diffi-
culties stem from the complexity and semantic co-reference
of elements within crisis events. As a result, the constructed
social crisis knowledge graph is often semantically sparse,
failing to accurately capture the continuous scene semantics
involved in social crisis events.

III. INTENTION ATTRIBUTION AND EXPLANATION FOR
SOCIAL CRISIS EVENTS

In recent years, deep learning has been applied in various
public places to ensure public safety. However, the poor
interpretability of deep models impairs their reliability and
trustworthiness, especially in social crises involving the safety
of people’s lives and property. Therefore, it becomes imper-
ative to explain and attribute public intention of social crises
in a human-understandable way.

In different application domains, researchers have explored
the interpretability of deep models. In the medical field,
Assegie et al. [14] adopted LIME and SHAP to rank the
importance of features and explain the model’s output on
whether a patient is diabetic or not. To provide clinical doctors
with a clear understanding of the classification criteria utilized
by GNN in Alzheimer’s disease prediction, Anjomshoae et
al. [15] proposed a single node classification explanation
method. By scrutinizing the alterations in output arising from
decomposed input values, the extent of input values’ impact
on predictions can be gauged. In the finance domain, Pisoni
et al. [16] discussed how insurance companies provide cus-



Fig. 2: Framework of Risk Management, Knowledge Graph Inference, and Intention Attribution for Social Crisis Events

tomers with suggestions and explanations on the recommended
amount of insurance coverage. In the industrial area, Zhang et
al. [17] utilized SHAP to identify salient features in predicting
diagnostic faults in power transformers. In the environment
area, Cilli et al. [18] employed random forest model with
Shapley value to detect the driving factors that contribute to
the occurrence of fires. In the sports field, to analyze the trend
of NBA games, Wang et al. [19] applied random forest and
feedforward neural network to build a prediction model. Then,
they adopted the LIME model to explain the prediction.

To increase trust in deep models across diverse domains,
it is crucial to continuously enhance intention attribution
techniques. Automated approaches like dependency graphs,
feature engineering, and alternative models have been devel-
oped for intention explanation. Semantic barriers exist between
different modal data, targeted attribution algorithms have been
proposed to verify diverse data attributes. For image data,
various visual interpretation methods have been introduced,
including LIME, GRAD-CAM, and RISE. The SIDU method
[20], addressed salient region localization by creating pixel
similarity difference and uniqueness masks extracted from the
last convolutional layer of the convolutional neural network.
For textual data, to tackle the problem of interpretable informa-
tion retrieval, Chen et al. [21] introduced structured knowledge
graph that record interpretable relationships between entities
into various steps of the retrieval process. For speech data, to

predict and explain the sentiment in speech, Zhang et al. [22]
proposed the RexNet model and the XAI perceptual processing
framework inspired by the perceptual process of cognitive psy-
chology, in which contrast salience, counterfactual synthesis,
and contrast cue interpretation are treated as interpretation
methods. Of course, there are also many interpretable tactics
for multimodal data. To help non-expert end users understand
the decision-making process of intelligent agents, Muñoz et al.
[23] utilized a success probability-based approach to construct
a humanoid explanation that visually displays the state of the
autonomous robot after taking an action. To explain the driv-
ing route of autonomous vehicles in complex environments,
Zhang et al. [24] propose a Multimodal Trajectory Prediction
Transformer model to retrieve the influencing factors of the
prediction. Based on related research, the research framework
for group intention explanation is shown in Fig. 2(b). For ex-
ample, based on the interpretable crisis community knowledge
graph, the interpretation of group intention Idet is gained as
Iatt = g(CG, Idet), where g is the knowledge graph-based
attribution method. The enhancement of attribution techniques
has facilitated their utilization in various vertical domains.

Existing intention attribution methods are effective in pro-
viding understandable explanations. However, the presence of
fuzzy crisis elements and the complex mechanisms of action
among these elements present a notable obstacle in identifying
the factors that determine group intention and behavior.



IV. RISK MANAGEMENT FOR SOCIAL CRISIS EVENTS

Social crisis data involves numerous risk elements, with
intricate interdependencies among them. Intelligent technolo-
gies equipped with robust data analysis capabilities exhibit
superior efficacy in identifying and mitigating social crises
compared to human operators. These technologies leverage
advanced techniques such as machine learning, data mining,
and natural language processing to analyze vast amounts of
data, identifying patterns and insights that might otherwise be
missed by humans.

Organizations responsible for crisis management rely on a
combination of management theory and intelligent technol-
ogy to detect and respond to social crises. Mcgowran et al.
[25] utilized a disaster risk detection method and portfolio
theory to analyze the overall response approach. Wei et al.
[26] developed an intelligence model for social crisis early
warning based on the intelligence production chain. Liu et
al. [27] fused information collection, epidemic monitoring,
and risk assessment theories of epidemic risk to enhance
the public health emergency response system’s capacity. Yan
[28] proposed the establishment of an efficient mechanism
for sharing crisis response information among international
actors to address abrupt environmental crises across various
regions. Simpson et al. [29] identified forms of interactions
that generate risks and subsequently integrated corresponding
response strategies into a climate change risk framework to
enhance decision-making.

In response to the increasing demand for risk management,
there has been a growing interest in the development of
automatic technologies. Researchers have proposed numerous
data analysis methods to tackle crisis events. Zhu et al.
[30] utilized K-means to construct an anti-crime information
system to predict potential crime hazards. Deng et al. [31]
developed a spatiotemporal hotspot-factor model to study the
temporal and spatial locations of unusual crime events. Guo
et al. [32] used video reconstruction to locate security threats.
Zhong et al. [33] developed a security risk assessment system
for sporting events using neural networks. Li et al. [34]
studied public risk perception and emotion expression during
the Covid-19 pandemic to assist in managing public health
risks. To normatively organize various multi-source heteroge-
neous mass event information, Ren et al. [35] extracted event
elements from mass event data based on the BiLSTM-CRF
model, constructed a mass event knowledge graph reflecting
the correlations among the event elements. Based on the
comprehensive related research, the framework of social crisis
risk management is shown in Fig. 2(c). In this framework,
data analysis methods such as knowledge graph are applied to
encode crisis data and decode group intention. At the same
time, interpretable semantic information in the knowledge
graph provides support for risk intention attribution.

Previous research has shown success in solving crisis events
within specific fields through various methods. However, social
crisis events are complex, encompassing diverse domains.
Current methods lack the ability to comprehensively incorpo-

rate complex event element clues and multi-source semantic
knowledge, leading to a one-sided and incomplete treatment
of social crisis-related information processing.

V. CASE STUDY AND ANALYSIS: THE COVID-19 EVENT

The Covid-19 event is treated as a case to mine sen-
timental intention of group in social health crisis events.
Specifically, the public opinion knowledge graphs are con-
structed to organize the sentiment information in the crisis
event, and the potential group sentimental intention is detected
through knowledge inference. The identified sentiment is fur-
ther explained through the distribution of feature words within
corresponding knowledge graphs of different communities.
The implementation process of the Covid-19 event consists
of three parts: data source, public opinion knowledge graph
construction, and group intention analysis.

a) Data source: The data of the Covid-19 incident
was obtained by crawling official news media reports from
January to July 2020 and from April to August 2021. After
preprocessing, a total of 26,192 news samples were collected.

b) Public opinion knowledge graph construction of the
Covid-19 event: Firstly, the adjectival words in the corpus
reflecting sentiment are extracted using Jieba1. Secondly,
Word2Vec2 is used to train the public opinion word vectors.
For a public opinion word x, its word vector tpow ∈ Rdim is

tpow = Wemwpow (1)

where dim is vector dimension, Wem is embedding matrix,
and wpow denotes the one-hot vector of x. Cosine similarity
method is employed to compute inter-word similarity. For two
public opinion word vectors tpow1 and tpow2 , their similarity
is shown below,

sim(tpow1 , tpow2) =

∑dim
i=1 tipow1

tipow2√∑dim
i=1 tipow1

√∑dim
i=1 tipow2

(2)

Finally, based on the word vectors and inter-word similar-
ity, the public opinion knowledge graphs are obtained using
Gephi3. Fig. 3 displays several month-level graphs, each with
representative opinion words shown underneath. These opinion
words serve as explanation Iatt for group intention.

c) Group intention analysis of the Covid-19 event:
Firstly, Sentiment score of public opinion words being positive
or negative is calculated utilizing a Bayesian model:

P (pos|x) = P (x|pos) · P (pos)

P (x|pos) · P (pos) + P (x|neg) · P (neg)
(3)

when P (pos|x) > 0.5, the word is positive, otherwise it is
negative. Then, the positive and negative sentiment intensity
for that month was gained based on the frequency of positive
or negative words in the month-level corpus data:

spos =
count(pos)

count(pos) + count(neg)
(4)

1https://pypi.org/project/jieba
2https://pypi.python.org/pypi/word2vec
3https://gephi.org



Fig. 3: Sentiment depression intention(2020.1-2020.7)

Fig. 4: Sentiment optimism intention(2020.7-2021.6) Fig. 5: Sentiment fallback intention(2021.6-2021.8)

Fig. 6: Sentiment intensity of the Covid-19 event

sneg = 1− spos (5)

where count(pos), count(neg) are the word frequencies of
positive and negative words respectively, spos, sneg are the
sentiment intensity of positive and negative feelings respec-
tively. Finally, the sentiment intensity of the Covid-19 event
is represented in Fig. 6. It can be observed that group intention
Idet is classified into three categories: sentiment depression,
sentiment optimism, and sentiment fallback intention. The
corresponding opinion knowledge graphs for each of these
categories are presented in Fig. 3, Fig. 4, Fig. 5, respectively.

Sentiment depression intention(2020.1-2020.7): Covid-19
outbreak caused an increase in pneumonia cases and global
fear. Rapid response of the government controlled overall
public opinion. Sentiment optimism intention(2020.7-2021.6):
effective epidemic prevention measures and good deeds led

to peak in positive sentiment intensity. Sentiment fallback
intention(2021.6-2021.8): negative sentiment increased due to
mutant strain and economic downturn, but still remained below
the level of positive sentiment.

In general, through collaborative efforts between govern-
mental authorities and media outlets, the public’s outlook on
the coronavirus has progressively improved, resulting in a
proactive resumption of their daily routines.

VI. CONCLUSION AND FUTURE RESEARCH

Group intention mining is a crucial aspect of managing
social crises effectively. This paper presents a comprehen-
sive overview of current research on group intention mining,
including knowledge graph inference, intention attribution,
and risk management. However, current methods still exhibit
limitations that require further investigation in the future.

To address the challenge of managing the all-round and
multifaceted risk information in social crisis events, crisis
knowledge graphs can be constructed based on distributed
representation. This involves treating noun semantic clusters
as entities and verb semantic clusters as relations, resulting
in a crisis knowledge graph that utilizes adaptive synonymous
semantic expressions.

To tackle the challenge of identifying comprehensive group
intention in social crises with diverse and obscure elements,
event information and crisis knowledge graphs are fused
to mine potential group intention. Different encoders en-
code event descriptions, background knowledge, and common
sense, followed by an attention-based intention decoder for
intention extraction.

To solve the difficulty of tracing the evidence for deter-
mining group intention due to the complex action mechanism



between crisis elements, the attribution and reflection of group
intention are realized based on explainable methods such as
knowledge graph. The reverse optimization process of model
is designed to maximize the current intention, and reflection
method is utilized for intention re-determination.

Social crises endanger the overall well-being and common
interests of the entire society. This paper utilizes interpretable
knowledge graph and intention mining techniques to analyze
the process of group intention mining in social crisis man-
agement. It is hoped that our research provides constructive
insights for social crisis management agencies.
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