
DOI reference number: 10.18293/SEKE2023-066

Widget Hierarchy Graph Guided Crash
Reproduction Method for Android Applications

Gaoyi Lin, Zhihua Zhang, Zhanqi Cui∗
Computer School, Beijing Information Science and Technology University, Beijing, China

Email: {lingaoyi1998, zhang zh, czq}@bistu.edu.cn

Abstract—To improve the efficiency of fixing bugs, mobile
application developers must reproduce bugs reported by testers
or users as quickly as possible. Automated testing tools can help
but are not designed for reproducing bug reports. To improve the
efficiency of reproducing crashes, we propose a widget hierarchy
graph guided crash reproduction method for Android apps. It
builds a widget hierarchy graph, locates suspicious widgets using
bug reports and project files, calculates widget fitness, and guides
automated testing to reproduce crashes quickly. To evaluate the
effectiveness of the proposed method, experiments are conducted
on real Android application bug reports and compared with the
automated testing tools APE and PUMA. Experimental results
show that our method successfully reproduces six bug reports that
cause Android app crashes. In addition, compared with APE and
PUMA, the average time for our method to reproduce crashes
decreased by 51.94% and 71.47%.

Index Terms—reproduce crashes, bug reports, Android appli-
cations, widget hierarchy graph

I. INTRODUCTION

As of Dec 2022, Android accounted for 72.37% of the mo-
bile operating system market [1]. With its growing popularity,
Android applications have proliferated. Developers face fierce
competition and must release new versions of applications
quickly, making thorough testing difficult. This results in bugs
in released versions, increasing testing and maintenance costs
and challenging app robustness and reliability.

Bugs in mobile applications result in user loss [2], so
developers must quickly respond and fix them, especially ap-
plication crashes that directly affect usability [3]. Reproducing
crashes may require complex operations and can be inefficient
when done manually. Automated testing tools can trigger some
crashes but lack pertinence and efficiency. Software projects
use bug tracking systems (such as Bugzilla1, GitHub Issue
Tracker2, etc.) to manage testing and accelerate bug fixing.
When reporting bugs, users and testers usually provide appli-
cation versions, system versions, bug screenshots, stack traces,
widget information, etc. Reviewing bug reports is an important
way to find and reproduce crashes. By using information
from bug reports, a developer can refine the search scope
and allocates more testing resources to the locations related
to the bug reports to improve crash reproduction efficiency.
However, existing automated testing tools rarely pay attention
to bug reports.

∗Zhanqi Cui is the corresponding author.
1Bugzilla. https://bugzilla.mozilla.org/describekeywords.cgi
2GitHub Issue Tracker. https://github.com

Fig. 1: The Framework of Widget Hierarchy Graph Guided Crash Reproduc-
tion Method for Android Applications.

It is possible to increase the efficiency of reproducing a
crash by using the bug report information effectively and
concentrating more testing resources on suspicious widgets.
Therefore, we propose a widget hierarchy graph guided crash
reproduction method for Android applications. By automati-
cally analyzing the project file of the application under test, it
creates a widget hierarchy graph, which is used in combination
with the bug report to generate test scripts for reproducing
crashes. To evaluate the effectiveness of our method, we im-
plement the prototype tool based on this method and conduct
experiments on 6 bug reports of 5 Android applications. We
compare it with advanced automated testing tools APE [4] and
PUMA [5]. The experimental results show that our method and
APE both reproduced the application crashes mentioned in the
6 bug reports, while PUMA only reproduced 5. Compared with
PUMA and APE, our method saves 71.47%, 51.94% time to
reproduce the crashes in average, respectively.

This paper makes following contributions.
• proposes a widget hierarchy graph guided crash repro-

duction method for Android applications, to improve
the efficiency of reproducing crashes by using widget
hierarchy graphs;

• experiments are carried on a set of real applications to
evaluate the effectiveness of the proposed method.

II. WIDGET HIERARCHY GRAPH GUIDED CRASH
REPRODUCTION METHOD FOR ANDROID APPLICATIONS

Fig. 1 shows the framework of the widget hierarchy graph
guided crash reproduction method for Android applications.
It consists of three components: (1) Build Widget Hierarchy
Graph, (2) Calculate Fitness of Widgets, (3) Generate Test
Script. These components are discussed in the following
sections.



A. Build Widget Hierarchy Graph

We use a widget hierarchy graph to describe the relation-
ships between widgets in an Android application. A widget
hierarchy graph can be defined as follows.

Definition 1. (Widget Hierarchy Graph). A widget hier-
archy graph of Android application A is a 5-tuple G =
(V,C, J,W, P ), where:

• V = {v1, v2, . . . , vi, . . .} is the set of nodes in the graph,
and the node vi ∈ V is a function in A;

• C = {c1,2, c3,4, . . . , ck,l, . . .} and J = {j1,2, j3,4, . . . ,
jm,n, . . .} are the sets of two kinds of edges in the graph,
the edge ck,l ∈ C is a function call in A, and the edge
jm,n ∈ J is a interface jump in A;

• W is the set of widgets in A;
• P is the set of interfaces in A, and each interface consists

of several widgets.

For the function vi ∈ V , Wi = Annotation(vi) ⊆ W is
the set of widgets related to the function vi, indicating that the
function vi will be called when operating any widget in Wi, if
Annotation(vi) = ∅, means that the function vi has no related
widgets. For the function call ck,l ∈ C, Caller(ck,l) = vk ∈
V , Callee(ck,l) = vl ∈ V , indicating that the function vk in
A can call the function vl. For the interface jump jm,n ∈ J ,
From(jm,n) = pm ∈ P , To(jm,n) = pn ∈ P , indicating that
the interface pm in A can jump to the interface pn, where the
starting point of the jump is pm and the ending point of the
jump is pn. Trigger(jm,n) = wm

v ∈ pm, indicating that the
widget wm

v in the interface pm is the widget that triggers the
interface jump to pn.

To build the widget hierarchy graph, we analyze the APK
file of the application under test for function calls. For the
Android applications A, the set of functions V and the set of
function calls C can be obtained directly from the function
call. FlowDroid3 is used to get function calls. To simplify the
analysis of Android applications, FlowDroid generates dummy
methods that represent the order of implicit invocations of
lifecycle callback methods and GUI callback methods in
applications.

After getting the set of functions V and the set of function
calls C, we analyze the project file of the application under test
in combination with function calls to obtain interface jumps
and the relationships between widgets and functions. First,
get the set of widgets W directly from the project file of the
application under test. Then, analyze the project file to obtain
the method related to the set of widgets W (when operating
one widget, if the widget automatically calls one method, it is
said that the widget is related to the method). For the function
vi ∈ V , Wi = Annotation(vi) ∈ W , that is, the function vi
and the widgets in Wi are related to each other. Next, traverse
the set of functions V , if the function vu is a dummy function,
obtain the set of widgets Wu = Annotaion(vu) ⊆ W related
to the functions called by vu, and add the interface pu where
Wu is located to the interface set P . Finally, if the interface

3FlowDroid. https://github.com/secure-software-engineering/FlowDroid

pm can jump to the interface pn, add the interface jump jm,n

to J , where From(jm,n) = pm, To(jm,n) = pn.

B. Calculate Fitness of Widgets

Our method guides the automated testing by using the
fitness of each widget. The fitness of widgets can be obtained
through widget hierarchy graph and suspicious widgets. To get
the set of suspicious widgets Wsusp, it uses the information of
widgets or exception trace stack contained in the bug report
to find the widgets related to the bug report from the project
file of the application under test.
Algorithm 1 Calculate Fitness of Widgets for Application

Input Set of suspicious widgets Wsusp, widget hierarchy graph G =
(V,C, J,W, P )

Output Fitness F
1: F ← ∅
2: Plocate ← FindPageOfSuspWidget(Wsusp, G)
3: for each page pn ∈ Plocate do
4: for each widget wn

u ∈ pn do
5: F .add(wn

u , CalFitWithFormula1(wn
u , Wsusp))

6: while first cycle or pstart ̸= ∅ do
7: pstart ← FindStartingPageOfJump(Plocate, G)
8: if Pstart ̸= ∅ then
9: for each page pm ∈ Pstart do

10: for each widget wm
v ∈ pm do

11: F .add(wm
v , CalFitWithFormula2(wm

v , G))
12: Plocate = Pstart

13: return F

Algorithm 1 describes the process of calculating the fitness
of widgets. The input is the set of suspicious widgets Wsusp

and the widget hierarchy graph G = (V,C, J,W, P ), the
output F is the fitness values of widgets. After initializing
the set F (line 1), we traverse all the interfaces in the widget
hierarchy graph, find the interfaces to which all suspicious
widgets belong, and record the set of interfaces Plocate that
contains suspicious widgets (line 2). Lines 3 to 5 traverse the
widgets in each interface in Plocate, calculate the fitness of
these widgets, and save the results in F . Next, we continuously
searches the set of starting points of interface jumps and
calculates the fitness of widgets in the starting points (lines
6-12), until the set is empty. In each cycle, we first traverses
all interface jumps in the widget hierarchy graph, finds the
interfaces which take any interface in the set of interfaces
built in the previous iteration as the ending points of interface
jumps, and save the found interfaces as the set pstart (line 7).
If pstart is not empty, traverse the widgets in each interface of
pstart, and then take the interfaces in pstart as ending points of
the jumps to proceed next iteration after calculating the fitness
of the widgets (lines 9-11); if pstart is empty, indicating that
there is no interface that is the starting point of an interface
belonged to the pstart set, the algorithm ends the iteration and
exports F which saves the fitness values of widgets (line 13).

For the interface pn ∈ Plocate which the suspicious widget
belongs to (line 2), we uses the formula (1) to calculate the
fitness of each widget in pn (line 5). To make the suspicious
widget in pn more likely to be covered during the testing, for
the widget wn

u ∈ pn, if wn
u ∈ Wsusp, then its fitness is K×N ;

if wn
u /∈ Wsusp, then its fitness is N . Among them, N is a

non-zero constant, and K is a constant greater than 1.



Fit(wm
v ) =

{∑
wn

u∈pn
Fit(wn

u) if Trigger(jm,n) = wm
v and wm

v ∈ pm

N if Trigger(jm,n) ̸= wm
v and wm

v ∈ pm
(2)

Fit(wn
u) =

{
K ×N if wn

u ∈ Wsusp and wn
u ∈ pn

N if wn
u /∈ Wsusp and wn

u ∈ pn
(1)

For the interface pm ∈ Pstart (line 7), there are pn ∈ Plocate

and jm,n ∈ J , that From(jm,n) = pm and To(jm,n) = pn.
We uses the formula (2) to calculate the fitness of widgets
in pm. Widgets that can trigger interface jumps may lead the
testing to the interface that triggers the application crash. In
order to make such widgets more likely to be covered during
testing, for the wm

v ∈ pm, if wm
v is the widget in pm that can

trigger the interface jump to pn, its fitness is the sum of the
fitness of all widgets in pn, that is

∑
wn

u∈pn
Fit(wn

u), if wm
v

in pm is not the widget that can trigger the interface jump, its
fitness is N .

C. Generate Test Script

When the calculation of fitness for widgets is completed,
automated testing can be guided with the fitness to repro-
duce the crashes more quickly. During testing, our method
continuously selects and operates widgets in current interface
of the application based on the fitness of widgets within
a specified time limit. Specifically, we use formula (3) to
calculate the fitness of any widget wt

y within the current
interface. In formula (3), Fit(wt

y) is the fitness of the widget
wt

y in current interface pt, and
∑

wt
z∈pt

Fit(wt
z) is the sum

of the fitness of all widgets in pt. For the widget wt
y ∈ pt,

the probability of being selected to be operated is the ratio
of its fitness to the sum of the fitness of all widgets in pt.
After selecting and operating a widget in current interface
according to the probability, the operation is recorded in the
test script. Our method ends the testing when the maximum
test time is reached or the application crash is successfully
reproduced, and outputs the test script. To determine whether
the application crash has been successfully reproduced, the
method compares the log with the stack trace in the bug report.

Pb(wt
y) =

Fit(wt
y)∑

wt
z∈pt

Fit(wt
z)

(3)

III. EXPERIMENTS AND EVALUATIONS

A. Experimental Design

Our method aims to use the information in the bug report to
improve the efficiency of crash reproduction, so how effective
and efficient is CrPDroid compared to other automated testing
tools? We compare our method with PUMA and APE for crash
reproduction. APE and PUMA are both model-based Android
application testing tools. We measures effectiveness by the
number and time costs to reproduce the crash described in
the bug report within a limited time. The other settings of the
experiment are as follows:

1) Experimental Settings: In the experiments, we follow the
experimental settings of Zhao et al. [6] and limit the testing
time of each experiment to 2 hours. To get more accurate time
of reproducing crashes, each testing tool is set to run 10 times
on each experimental subject. The average of the results will
be recorded as the final time. In addition, after conducting
small-scale experiments on our method, we set its parameter
K to 45.

2) Experimental Subjects: The experimental subjects are
obtained from Q-testing [7]. We analyze the above 50 applica-
tions in Q-testing. First, search for “Crash” on the bug-tracking
systems of the 50 applications, and collect 27 bug reports.
Then, manually verify and reproduce the crashes described in
the bug reports, and remove the bug reports due to failure to
build APK, environmental problems and unreproducible. As
shown in TABLE I, six bug reports are obtained from five
applications.

3) Implementation and Environment: Based on the pro-
posed method, a prototype tool is implemented on the basis of
PUMA framework to evaluate the effectiveness. The develop-
ment and executing environment of the tool is 16GB memory,
6-core 3.3GHz CPU, Ubuntu20.04, Android SDK (4.3-8.0),
JDK1.8.0.

B. Experimental Results

Fig. 2 shows the result of reproducing crashes by our
method and automated testing tools PUMA, APE. Our method
and APE can reproduce all crashes, but APE takes longer
than our method. PUMA can reproduce five crashes, except
for the crash in BetterBatteryStats. For these five crashes, our
method and PUMA take same time to reproduce the crash
in RadioBeacon (Bug1), while, our method takes less time to
reproduce the other four crashes. Our method saves 71.47%
time to reproduce crashes than PUMA in average. The reason
is that the model-based exploration strategy of PUMA, which
doesn’t consider suspicious widgets during exploration, is less
efficient in reproducing crashes. With further analysis of the
crash in BetterBatteryStats which cannot be reproduces by
PUMA, we found that PUMA triggered an exception during
backtracking the application, which cause PUMA terminated
and fail to reproduce the crash.

As shown in the experimental result, our method success-
fully reproduces the crashes in the bug reports, and outper-
forms PUMA and APE in terms of time costs.

C. Validity Analysis

1) External Validity: External validity threats arise from the
representativeness of the selected evaluation subjects and bug
reports on the one hand and the generality of our method on
the other. To ensure the representativeness of the evaluation
subjects and bug reports, the Android applications selected in
the experiment are widely used in related testing works [7] [8],
and the source codes are all open source on GitHub or F-Droid.



Fig. 2: The Comparison between our prototype tool, APE and PUMA
on Crash Reproduction.

TABLE I: Basic Information of the Experimental Subjects.

Experimental Subjects Link of Bug Reports

Tomdroid https://bugs.launchpad.net/tomdroid/
+bug/1482559

RadioBeacon(Bug1) https://github.com/openbmap/radioc
ells-scanner-android/issues/239

RadioBeacon(Bug2) https://github.com/openbmap/radioce
lls-scanner-android/issues/173

APhotoManager https://github.com/k3b/APhotoMan
ager/issues/175

BetterBatteryStats https://github.com/asksven/BetterB
atteryStats/issues/871

AnyMemo https://github.com/helloworld1/An
yMemo/issues/502

Bug reports are obtained from the respective bug tracking
system or comment section of the application. To improve the
generality of our method, we implement the method based on
PUMA. PUMA has been validated on 3600 apps in Google
Play [5] and is used as the base framework in the related works
of Liu et al. [9].

2) Internal Validity: The internal validity threat mainly
comes from the accuracy of the constructed widget hierarchy
graph and the correctness of the exploration of the application
under test. To improve the accuracy of the widget hierarchy
graph, we use the static analysis tool FlowDroid to analyze and
obtain function calls from the APK file. FlowDroid is widely
used for data flow analysis of Android applications and Java
programs. PUMA framework is used to ensure the exploration
of applications under test is accurate for our method. PUMA
has been widely used in analyzing program attributes (such
as application state, widget information, etc.) [5]. Moreover,
we check and test the implementation code for constructing
widget hierarchy graphs and calculating fitness of widgets to
minimize the risk of validity.

IV. RELATED WORK

Currently, many works focused on GUI testing and the
importance of bug reports in the quality assurance of Android
applications.

Monkey [10] is the most commonly used random strategy
based automated testing tool, which generates a pseudo-
random stream of GUI events by randomly interacting with
screen coordinates. The random strategy used by Monkey

performs well on some benchmark applications. FUSION [11]
assists users in automatically generating operation steps for
reproducing bug reports by dynamically analyzing GUI events
of Android applications. With FUSION, users can create more
comprehensive and accurate bug reports, and developers can
get operable information from bug reports, which could help
reproduce and fix Android application bugs.

V. CONCLUSION

In this paper, we present a widget hierarchy graph guided
crash reproduction method for Android apps. It creates a
widget hierarchy graph by analyzing the project file and uses
it with bug reports to generate test scripts for reproducing
crashes. Experimental results show our method outperforms
PUMA and APE in time costs. In the future, we plan to
use information retrieval-based bug localization to improve the
efficiency of reproducing crashes.

AKNOWLEDGEMENT

This work was supported in part by the Jiangsu Provincial
Frontier Leading Technology Fundamental Research Project
(BK20202001), the National Natural Science Foundation of
China (No. 61702041), and the Beijing Information Sci-
ence and Technology University ”Qin-Xin Talent” Cultivation
Project (No. QXTCP C201906).

REFERENCES

[1] StatCounter, “Mobile operating system market share worldwide,” https:
//gs.statcounter.com/os-market-share/mobile/worldwide/2022, 2023.

[2] APPLAUSE, “88% of people will abandon an app because of bugs,”
https://www.applause.com/blog/app-abandonment-bug-testing, 2017.

[3] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and
D. Poshyvanyk, “Automatically discovering, reporting and reproducing
android application crashes,” in 2016 IEEE international conference on
software testing, verification and validation (icst). IEEE, 2016, pp.
33–44.

[4] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su, “Practical gui testing of android applications via model abstraction
and refinement,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 269–280.

[5] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
Programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th annual international conference on
Mobile systems, applications, and services, 2014, pp. 204–217.

[6] Y. Zhao, T. Yu, T. Su, Y. Liu, W. Zheng, J. Zhang, and W. G. Halfond,
“Recdroid: automatically reproducing android application crashes from
bug reports,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 128–139.

[7] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement
learning based curiosity-driven testing of android applications,” in
Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2020, pp. 153–164.

[8] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gen-
eration for android: Are we there yet?(e),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2015, pp. 429–440.

[9] B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient privilege de-
escalation for ad libraries in mobile apps,” in Proceedings of the 13th
annual international conference on mobile systems, applications, and
services, 2015, pp. 89–103.

[10] Android Developers, “Ui/application exerciser monkey,” https://
developer.android.com/studio/test/monkey, 2021.

[11] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshy-
vanyk, “Auto-completing bug reports for android applications,” in Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 673–686.


