
Assuring Domain Software Quality through Workflow Testing and Specification

Melody L. Hammel, Lan Lin
Department of Computer Science, Ball State University, Muncie, IN 47306, USA

{mlhammel, llin4}@bsu.edu

Abstract

In this paper, we report our experience testing the Gener-
icModelAgent toolkit, a critical piece of the software devel-
oped for the NSF CyberWater project [1], to ensure that
the workflows work properly without error when deployed
to the user community. The many challenges we faced in-
clude a lack of developer-oriented specifications, a complex
framework, complicated and domain-specific functionality,
frequently changing requirements, domain developers’ un-
familiarity with TDD best practices, and poor model-view
separation in a legacy software used to construct visual
workflows. We present a generalized testing strategy for ap-
proaching different modules in this toolkit, in an effort to
understand every input, its relation to the main functional-
ity of the module, and every output. We then built unit and
integration test cases from bottom up to enable systematic
and thorough exercises of all usage scenarios identified of
every module as well as their integration. Our testing dis-
covered problems in the toolkit with suggested fixes that no
one was aware of before. It also led to the creation of rewrit-
ten specifications for each module, as a by-product, that are
precise and developer- and tester- (rather than user-) ori-
ented. Our specifications, test plan, test cases and results
became reusable assets for future development, testing and
maintenance of the toolkit.

1. Introduction

CyberWater is a project in development funded by the
National Science Foundation (NSF) and designed to reduce
user time and effort required for hydrologic modeling stud-
ies. According to CUAHSI [1], CyberWater allows hy-
drologists with little to no coding knowledge to integrate
their models into the system and begin running simulations,
allowing fundamental discoveries to be made more fre-
quently, more easily and with less effort than before. Data
flow is automated and easy access to High-Performance
Computing (HPC) is provided, allowing more efficient ex-
ecution and study of hydrologic data models and simula-

tions, significantly increasing the accessibility of open-data
workflows and lowering the learning curve and barrier to
entry [1]. The development team consists of developers
from a wide array of backgrounds, but not all of them are
familiar with software engineering best practices.

One crucial component of their delivered software is the
GenericModelAgent toolkit [4], which is a collection of
modules within the CyberWater framework on top of Vis-
Trails [2]. VisTrails is a GUI-based software for building
scientific workflows using blocks called modules, which
connect to each other to pass outputs to another module’s
inputs. These are called output ports and input ports respec-
tively. It is typically used for data visualization and running
simulations. An example workflow is shown in Figure 1.

Figure 1. An example workflow in VisTrails us-
ing the GenericModelAgent Toolkit

GenericModelAgent’s purpose is to allow easy integra-
tion of hydrologic simulation models that users already have
into the CyberWater workflow without having to write any
new code, with the directory structure auto-generated based
on common user-derived models’ requirements [4]. The
modules in the toolkit we were testing have rather complex
functionality; however, there was a lack of specification to
explain it, an inter-connected and inter-reliant structure and
the intention to be used by the end-user in VisTrails in a

DOI reference number: 10.18293/SEKE2023-063



combined workflow. Thus, they have functionality within
each that relies on the proper functionality of the previous
module in the chain, requiring a top-down approach to un-
derstand them – knowing what the previous module in the
workflow does is almost always integral to understanding
the functionality of the next. Though we faced this and
plenty of other challenges in attempting to test these mod-
ules to ensure the quality of the final product, we were able
to overcome said challenges and produce work products that
became reusable testing assets, such as reworked specifica-
tions, fixed bugs, thorough unit and integration tests and test
documentation, as well as insight as to how this could have
been done better and made easier in the future.

2. Challenges of Testing

The GenericModelAgent toolkit is a critical compo-
nent of the CyberWater framework software, providing ma-
jor functionality of the advocated open-data open-model
framework, and thus needs to be thoroughly tested and as-
sured to be of good quality. When we were asked to test
these modules, there were a few heuristic test cases written
by the developer, but they are not documented, saved in the
repository, automated, nor part of the CI/CD process.

However, with GenericModelAgent already deployed in
users’ hands and limited testing to be found, test cases had
to be designed quickly and efficiently to reveal any hidden
bugs in the software. Our job was to thoroughly test this
toolkit, writing and automating both unit and integration
tests in order to ensure the proper functionality of all the
modules in this toolkit and integrate CI/CD into the work-
flow. In doing so, we have learned much about the design
of this toolkit and have helped to improve it, both in code
quality and in catching hidden bugs.

As the toolkit is already in use, any change made to the
code will have an almost immediate effect. Unit testing is
integral, in this scenario, to ensure that no broken or less-
than-quality code makes its way into a part of the toolkit
that end-users will have. Even beyond that fact, however,
the toolkit is built as an extension of VisTrails [2], legacy
software which is written in an older, deprecated version of
Python (version 2.7), and lacks model-view separation in
some areas, making testing without using the GUI some-
what difficult [5].

There were a few challenges that we faced at the begin-
ning of testing:

1. Lack of developer/tester-oriented specifications for
the modules and their functionality

With a lack of both developer-oriented specifications
and knowledge in the field of water science, for which
this software is being developed, much of the testing

process for each module involved attempting to under-
stand what it was we were testing for. We needed to
delve deep into the outputs of the module as compared
to the inputs. This led us to find that the data and in-
puts of the modules were much more complicated than
we had previously thought.

2. A large, complex, inter-woven framework upon
which these modules are built

This toolkit was designed heavily around the MSM
package [6], legacy software and a predecessor upon
which the CyberWater framework was built and which
has a winding, interconnected set of modules and func-
tionalities upon which GenericModelAgent was based.
That means fully understanding GenericModelAgent
requires also fully understanding MSM – though this
was not within the scope of our testing.

3. Connections between modules and the complica-
tion of their functionality

Similar to MSM, this toolkit involves a set of mod-
ules which are closely related to each other, given that
their purpose is to be used in tandem in a workflow
in VisTrails. Thus, they all assume functionality of
each other, where a later module in the workflow will
presume that the previous module has done something
special – editing one module’s functionality could po-
tentially require changing all the modules’ functional-
ities. The functionality in itself is complicated as well,
given that it spans across modules – the high level idea
is hidden unless one understands the domain speci-
ficity of the intended use of this toolkit.

4. Extremely domain-specific functionality

The functionality of these modules is very domain-
specific. Most of the functionality that does not re-
volve around setting up a directory structure involves
processing hydrological data, with all the data being
passed around in structures referred to as datasets.
Given that data processing is unavoidable and the spec-
ifications we received didn’t go deep into the data, un-
derstanding the structure of it and what each point of
it meant was integral to testing these modules, as we
needed to create consistent test data for the modules to
work with.

5. Frequently changing functionality in the midst of
testing

Since this toolkit is both actively in development and
deployed and in use by end-users, we also found
that the functionality was changing, even if slightly,
throughout the course of our testing of these modules
– even in subtle ways, such as changing the way the



output data is formatted, required us to rework our test
cases around the new intended functionality. With a
lack of specification as to what the output of these
modules was really supposed to look like, the new,
updated functionality was stated as a fact and our test
cases and design had to be adapted to the new version
of the modules.

6. Lack of development using TDD, and what testing
that did exist was heuristic and not thorough

The things we know as software engineers to be best
practices such as Test-Driven Development (TDD) [3]
and proper Git flow would have made the whole pro-
cess smoother – tests would have been developed for
the modules as the modules themselves were devel-
oped, essentially creating a specification for them-
selves. Testing that did exist was primarily heuristic.
The developers were unfamiliar with unit testing, and
often misunderstood what it was that we needed to per-
form black-box unit testing. Similarly, proper Git flow
was rarely used, and the rapidly-changing functional-
ity was made more difficult to keep track of.

7. Lack of model-view separation in VisTrails’s mod-
ule design

VisTrails is legacy software. Its design of the modules
lacks proper model-view separation, making testing in
the back-end difficult – similarly, the GenericMode-
lAgent toolkit is primarily visual software, designed
around processing data to be visualized by the MSM
package. Thus, we were tasked with automating unit
testing in the back-end for software designed to be a
visual workflow – our test design had to be general-
ized to extend to any type of workflow, allowing us to
ensure the quality of both our methods and of the soft-
ware under test.

Despite all the challenges, we accomplished what we set
out to do. We developed a systematic approach to testing
every individual module in this toolkit, documented our so-
lution and produced meaningful results to aid in the devel-
opment as well as to improve the quality moving forward,
which we elaborate in the next section.

3. Our Solution to the Testing Problem

The GenericModelAgent toolkit, as shown in Figure 2,
consists of five modules:

• MainGenerator

• AreaWiseParamGenerator

• InitialStateFileGenerator

Figure 2. The modules in the GenericModelA-
gent toolkit

• ForcingDataFileGenerator

• RunModuleAgent

The workflow is designed around the concept of running a
user’s “model.” Typically, this represents a compiled, exe-
cutable file either downloaded or written by the user, which
is designed to take in some input data and output new data
into files with identical structure to the input files. The goal
of GenericModelAgent is to simplify the process of setting
up the environment needed to run the model, allowing the
user to get their model up and running quickly and without
having to write any glue code. The model is easily inte-
grated using the MSM package to visually represent the data
output by the model’s simulation [4].

When beginning testing of this toolkit, we had already
tested the first module in the workflow, MainGenerator,
so we already had a decent idea of how testing of the rest of
the workflow would go. MainGenerator, however, was
a comparatively simple module – we consider it in greater
detail in [5]. “Generator” modules typically have simpler
but limited functionality, revolving around setting up the di-
rectory structure. A “Generator” module’s output WD Path
will be used as the input to all other modules’ inputs of the
same name, providing the working directory of all the func-
tionality in the workflow.

One by-product of our testing was the production of pre-
cise specifications, both in the form of an overview using
one or more visual diagrams displaying the overall function-
ality and inputs/outputs of the module as well as detailed
written developer documentation, as shown in Figure 3. In
essence, it serves as a guide for future specifications to be
written and a good reference for what to test when writ-
ing unit tests for these modules. These specifications were
developer-focused and low-level, to enable black-box test-
ing without exposing any implementation details.

We developed a strategy that we applied to all the mod-
ules in the toolkit in order to understand the environment in
which they work and their functionality. We first began by
carefully considering every input and output that the mod-
ule can receive and generate – this extends beyond just in-
put and output ports and to other things that the module



Figure 3. A snippet from our rewritten
AreaWiseParamGenerator specification

can receive: directory structure, files in a location it expects
them to be, a previous module’s execution as inputs; and
resulting directory structure, generated files, copied files as
outputs. We then examined how each one of these inputs
and outputs relates to the overall behavior (both intended
and implemented) of the module, asking deeper questions
such as how does this input affect the output? What is done
with any given input that allows this output and behavior to
be observed? How changes in inputs bring about different
outputs?

3.1. AreaWiseParamGenerator and
InitialStateFileGenerator

These are two more “Generator” modules in the toolkit
and, as “Generator” modules, both are similar in func-
tion to MainGenerator – designed around setting up
the environment for the user model to run. We designed
tests for success and failure of each individual function,
with various types of edge cases, such as file system
permissions and an improper directory structure. Keep-
ing consistent test data, such as making sure file names
and folder names are always the same, helped drasti-
cally in making the tests cohesive. The “Generator” mod-
ules (InitialStateFileGenerator, as an example,
shown in Figure 4) only have one output port, designed to
connect them together in a VisTrails workflow. The outputs
of the modules boil down to two main things: a directory
structure and raised errors.

Since VisTrails modules are based around their
compute() methods, our testing strategy was to define
constant test data for things not being tested, call the
compute() method and assert that the directory structure

Figure 4. The inputs, outputs, and functional-
ity of InitialStateFileGenerator

looked how we expected it to after the compute()method
finished. With each test, we varied only the input to the one
port or aspect of behavior, shown in Table 1. We considered
every scenario that could go wrong and grouped tests based
on input and output ports.

3.2. ForcingDataFileGenerator and
RunModuleAgent

These two are a spike in complication, both in function
and in testing: they start to integrate with the MSM pack-
age, involving small amounts of data processing. Thus, we
needed to understand the data, the outputs and what inputs
should cause what outputs. This was increasingly difficult
with the lack of developer documentation and specification.
This pushed most of our focus onto understanding the in-
puts and outputs.

In order to run automated unit tests in the back-end for
workflows built in VisTrails, we utilized object-method re-
placement, (used in the testing of MainGenerator [5]).
To apply it to testing the modules here, we had to revamp
the get input method to handle “compound input ports.”

The MSM package uses a structure called
DaoDataSet. These are objects in Python which,
at their core, represent JSON files with additional methods
to operate on the data contained within. These JSON files
have a deeply nested structure, shown in Figure 5, with
many keys and values required for the DaoDataSet con-
structor to function. In order to test these modules which
use these datasets, we needed to know the structure of these
datasets, to create test data that will result in predictable
outputs in testing. It took much experimentation and effort



Table 1. Test design for AreaWiseParamGenerator and InitialStateFileGenerator. Scenarios
marked with asterisk (*) are merged into other test cases in practice.

AreaWiseParamGenerator InitialStateFileGenerator

Param Folder Name

Folder exists with write permission*

Init State Folder Name

Folder exists with write permission*
No name provided No name provided
Folder doesn’t exist Folder doesn’t exist

Folder exists w/o write permission Folder exists w/o write permission
Previous folder contents removed

WD Path

No path provided

WD Path

No path provided
Path doesn’t exist Path doesn’t exist
Path exists w/o write permission Path exists w/o write permission
Path exists with write permission* Path exists with write permission*

File In XX

No file provided

File In X

No file provided
File doesn’t exist File doesn’t exist
File exists w/o read permission File exists w/o read permission
File exists with read permission File exists with read permission

Ready signal (Out) True Ready signal (Out) True
False False

as little was well-defined.
In most instances, test case design for

ForcingDataFileGenerator had to revolve
around crafting various test datasets as inputs with varying
structures of data that would cause different testable
behavior and asserting that it behaved in an expected way.
We considered every possible varying output of the module
and chose specific structures out of the wide variety of
datasets to ensure correct output was produced for the given
scenario.

RunModuleAgent’s functionality, shown in Figure 6,
is based around the concept of a “model.” This is assumed
to be a program which can be run from the command-line
with arguments, which generates files of a specific name
and format to be read by RunModuleAgent and placed
into a dataset. We wrote a script to run the module in our
tests that had predictable outputs and wasn’t computation-
ally intensive.

3.3. The Test Model

The test model developed for testing these modules is
written in C, to be compiled at run-time by a system()
call in the Python script that runs the tests and to be called
by RunModuleAgent. It is programmed with multi-
ple different outputs that it can generate to test the differ-
ent responses of RunModuleAgent and the workflow,
which can be specified by the argument with which the
model is run. For example, if the model is run with
multiple columns as an argument, the file it generates
will have multiple columns – however, if its argument is
alternate separator, the file it generates will be de-
limited by commas instead of tabs. The model generates an
output file in different formats depending on the argument it
is run with. This model, since compiled at runtime, is also
customizable, and any of its parts can be switched in and

out or ignored with ease, due to the use of arguments – sim-
ply add an extra else case with a string comparison to the
code. A snippet of the model’s code is shown in Figure 7.

3.4. Integration

After unit testing all of the modules thoroughly and in-
dividually, integration testing was an indispensable step in
ensuring the functionality and code quality of this toolkit.
Previously, we had only tested these modules in isolation,
making sure they produce the outputs we expect given spe-
cific inputs, but integration testing allows us to test them in
a similar environment to the one they will be used in: pro-
viding each other inputs through one another’s outputs.

Using Python’s Unittest library, we tested an integration
of these modules, using one module’s output as the input
to another module, simulating how it would be done with
connectors in the VisTrails GUI, shown in Figure 8.

We used the test model from earlier, extending it to
account for every module’s outputs. This then generates
an output file with specific information in it depending on
which modules failed, if any, and this file is read by the
Python tests, interpreted and the user is notified of any fail-
ures and the exact module that was the culprit. For exam-
ple, consider ForcingDataFileGenerator generates
a file with incorrect content compared to what we would ex-
pect based on the dataset provided. The test model will read
the file, compare it against the expected output and generate
its own file, appending "fdfg" to the output. The code is
shown in Figure 7.

The Python test code will then, upon raising an
AssertionError that the output is not what was
expected, read said file, as it is now aware an error
has taken place and parse the content based on the in-
cluded text in the file, see that "fdfg" is included and
raise the caught AssertionError again with an er-



Figure 5. A snippet of the nested structure of
the DaoDataSet JSON

ror message explaining to the end-user what went wrong:
ForcingDataFileGenerator improperly generated
its file. The code for this is shown in Figure 9.

The integration testing ensures that all of the modules
can “talk” to each other in ways that each module is ex-
pecting and successfully execute a workflow all working in
tandem. This provides us an extra layer of confidence of the
modules in their expected environment of use.

4. Testing Results

In this section, we report the major results we obtained
through testing.

4.1. Test Cases and Discovered Errors

Table 2 shows the number of test cases we wrote and ran
for each module in the toolkit, how many of them were suc-
cessful and how many failed. These test cases allowed us
to discover certain bugs that were present with all the mod-
ules. The developers were not aware of these bugs without
systematic unit and integration testing described here.

Figure 6. The inputs, outputs, and functional-
ity of RunModuleAgent

Figure 7. The case for integration testing,
where the model reads the files and com-
pares them against expected outputs

Figure 8. The module outputs used as inputs
in integration testing

The most common errors that we found in the modules
were ones that resulted from edge cases of the module us-
age, shown in Table 3. These primarily resulted from in-
stances where a module would fail and the rest of the work-



Figure 9. The Python code that reads the file
and informs the user of the error

Table 2. Test cases and results
Module Total Failed Passed

MainGenerator 13 0 13
AreaWiseParamGenerator 13 2 11

InitialStateFileGenerator 15 4 11
ForcingDataFileGenerator 37 5 32

RunModuleAgent 30 2 28

flow would continue, regardless, until the last module in-
formed the user of the problem because the model it was
trying to run would fail. Our test cases revealed flaws in er-
ror handling for nearly every module and, with code fixes,
informed the user in a helpful way.

Our test cases allowed meaningful improvements to be
made to the modules that will provide a better user expe-
rience to end-users of the software. Improved error han-
dling will better inform the user about errors encountered
in the modules (rather than cryptic Python errors). Our
improved error handling in these modules allows them to
better achieve their goal of simplifying the integration of a
model into the CyberWater framework, thus improving the
quality and usability of the final product.

4.2. Specifications as By-Products

A substantial, though often ignored, benefit of consider-
ing unit testing during the development of a project is the
creation of good developer specifications. Specifications
are an artifact that continues to be useful and evolves from
iteration to iteration of the project. Good specifications can
clear up, early in development, what features are to be in the
software, and from a black-box tester’s point of view, what
the inputs and outputs are, how it will likely be used, all
of its parameters, et cetera. Once a unit test written based
off of these specifications fails, the developer immediately
knows what part of the system failed, what part of the spec-

ification it violates, and what the output should look like,
which can potentially kick-start bug fixing as less time is
spent searching for what is causing the unintended behav-
ior. For more complex aspects of these modules, the specifi-
cations included usage examples and, as a part of the speci-
fications for each module, we also produced a diagram of its
input ports and output ports with brief descriptions of their
functionalities, as shown in Figures 4, 6, and 10. We devel-
oped these specifications to be, in essence, good examples
of what would have been ideal to receive at the beginning of
the project. They are by-products as well as reusable testing
assets for future evolving iterations.

Figure 10. The inputs, outputs and function-
ality of ForcingDataFileGenerator

4.3. Improved Error Handling

The primary problems we found with the modules that
we were able to discover and fix were lackluster or non-
existent error handling. In most instances, the modules were
programmed with many assumptions as to the users’ knowl-
edge of the toolkit at play. It wasn’t considered that a user
could provide inputs in a different way; the system was un-
equipped to handle inputs of various structures.

Our testing was able to catch a problem with the “Ready”
signal (an output) of every module, which tells the next
module in the chain whether its function completed suc-
cessfully. This was implemented as a way to connect the
modules together in a VisTrails workflow, to ensure that the
functionality happened in order. In some instances, the or-
der of the code was written such that the exception would be
raised before the signal could be set, but in some other in-
stances, the signal was not considered when raising an error
at all, and the signal could never be set to False.

Similarly, modules that created folders inside of
WD Path would, rather than raise an error if the
folder didn’t exist, indicating that something had gone
wrong in the execution of MainGenerator, cre-
ate the folder and continue execution as if nothing
was wrong. This lack of error handling extended



Table 3. Software bugs revealed by testing
Module Failed Test Case Revealed Bug

AreaWiseParamGenerator Ready signal outputs False when error occurs Signal could never be set to False
Non-existent WD Path input Folder was created instead of exception raised

InitialStateFileGenerator

Ready signal outputs False when error occurs Signal could never be set to False
Non-existent WD Path input Folder was created instead of exception raised
Non-existent file input User not informed of errorNo input files provided

ForcingDataFileGenerator

Ready signal outputs False when error occurs Signal could never be set to False
Non-existent WD Path input Folder was created instead of exception raised
Mask File not formatted correctly Exception not raised
Input non-formatted date string Exception not raised
Non-default separator input Separator remained default value

RunModuleAgent Ready signal with False input stops execution Input was not properly validated
Non-existent WD Path input Folder was created instead of exception raised

to ForcingDataFileGenerator, where the dataset
structure was very specific – despite this, the error han-
dling for parsing the datasets was unhelpful, raising cryptic
JSON errors about extracting keys that didn’t exist. This
was caught by our testing and improvements were made to
the error handling to better inform the user of malformed
datasets.

Lastly, when RunModuleAgent was provided a non-
tab-delimited CSV file, it would fail to correctly parse
columns, as it assumed the separator would always be a tab
character, despite the input port designed to change the sep-
arator within the input file. The issue with the “Ready” sig-
nal also extended into this module – as it was designed to
be the last module in the workflow, it takes in inputs corre-
sponding to the signals of all the previous modules.

The test cases that we produced as a result of our work
on this toolkit and the errors that they allowed us to detect in
the modules’ functionality will continue to provide value to
the development of the GenericModelAgent toolkit moving
forward. Our testing work has undoubtedly improved the
quality of the toolkit in field use. Our test design strategy
can be applied to testing other toolkits of comparable com-
plex design and prove useful to scientists writing domain
software.

5. Conclusion

Testing, without doubt, remains one of the most impor-
tant and effective means to assure the quality of software,
although in development for domain science the benefit of
testing is easily overlooked, especially given the lack of ex-
pertise and experience. We report here our experience test-
ing the GenericModelAgent toolkit, a critical compo-
nent of the CyberWater framework, from scratch, applying
unit and integration testing and back-end model-view sep-
aration in a CI/CD workflow. Our strategy in approaching
workflow testing in the back-end, thorough test case design
from functional requirements that addresses all the usage

scenarios with edge cases, has led to a comprehensive test-
ing documentation for this toolkit as well as bug fixes that
no one on the development team would have discovered oth-
erwise. Beyond improving the quality of the final product
to be released, we also produced useful specifications of the
modules under test that will benefit future iterations of de-
velopment. The importance of such developer- or tester-
oriented specifications cannot be overstated.

6. Acknowledgments

This work was generously funded by the National
Science Foundation (NSF) under Grants 1835602 and
2209834. Any opinions, findings, conclusions, or recom-
mendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of NSF. Spe-
cial thanks to Ranran Chen and Dr. Yao Liang at IUPUI for
their helpful assistance in understanding the toolkit and the
modules within it.

References

[1] CyberWater. https://www.cuahsi.org/
projects/cyberwater/.

[2] VisTrails. https://vistrails.org.
[3] K. Beck. Test Driven Development: By Example. Addison-

Wesley Professional, 2003.
[4] R. Chen, D. Luna, Y. Cao, Y. Liang, and X. Liang. Open data

and model integration through generic model agent toolkit in
CyberWater framework. Environmental Modelling and Soft-
ware, 152:105384, 2022.

[5] L. Connelly, M. Hammel, B. Eger, and L. Lin. Automated
unit testing of hydrologic modeling software with CI/CD and
Jenkins. In Proceedings of the 34th International Conference
on Software Engineering and Knowledge Engineering, pages
225–230, 2022.

[6] D. Salas, X. Liang, M. Navarro, Y. Liang, and D. Luna. An
open-data open-model framework for hydrological models’
integration, evaluation and application. Environmental Mod-
elling and Software, 126:104622, 2020.




