
Dispatching and Scheduling Dependent Tasks Based
on Multi-agent Deep Reinforcement Learning

Shuaishuai Feng†, Xi Wu‡, Yongxin Zhao∗†§, and Yongjian Li§
† Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

‡ The University of Sydney, Australia
§ State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

Abstract—With the development of edge computing, a large
number of tasks can be offloaded to the edge server for
computing, among which the dispatching and scheduling of
dependent tasks has attracted extensive attention. The offloading
of dependent tasks mainly has the following problems: how to
select an appropriate edge server for dispatching, how to arrange
the scheduling order of edge servers to better schedule tasks,
and how to solve the task dependency problem. In this paper, we
proposal a dispatching and scheduling method DAMD, based on
reinforcement learning and multi-agent reinforcement learning,
to solve the above three problems. Specifically, as the first step
of DAMD, a reinforcement learning approach is designed to
estimate the network load and dynamically dispatch tasks to
the appropriate edge servers. Each edge server is regarded
as an agent by a multi-agent reinforcement learning method,
the second step of DAMD, which comprehensively considers
the dependency relationship between tasks and the scheduling
relationship between servers to achieve the efficiency and fairness
of task scheduling. Finally, the results show that our method
can better complete the task within the deadline and greatly
reduce the average response time according to the time sensitivity
requirement.

Index Terms—dependent task, deep reinforcement learning,
edge computing, multi-agent deep reinforcement learning

I. INTRODUCTION

With the development of the Internet of Things (IoT),
more and more applications can be processed on mobile
terminals [1]. Limited by their limited (computing, storage,
and bandwidth) capabilities, terminal devices may spend a lot
of time performing the required tasks, potentially resulting
in poor quality of service [2]. In order to obtain higher
service quality and computing resources, we can offload tasks
to remote cloud data centers, which have a large amount
of computing resources but are far away from users [3].
However, the long distance between the cloud and the user
also introduces significant communication latency, which is
unacceptable for time-sensitive applications/services [4]. In
this case, edge computing can play an important role [5]. In
edge computing, many edge servers with computing resources
are deployed close to users [6]. By offloading tasks from
terminal devices to edge servers, users can get edge services
with better quality of service (for example, lower latency and
higher precision) than in the cloud computing model. But
at the same time, resources on the edge server are limited

*Corresponding author: yxzhao@sei.ecnu.edu.cn
DOI reference number: 10.18293/SEKE2023-059

and cannot provide services for all tasks, especially when
there are a large number of tasks [7]. Therefore, the edge
communication system needs to solve two basic problems:
which edge server should be dispatched to accommodate the
task and what order each edge server should schedule the
task, namely task dispatching and scheduling problem [8].
In addition, task requests from the same user can usually
be divided into a group of independent or dependent tasks,
which are usually represented as a job. Among these dependent
tasks belonging to a job, there is a strict execution sequence,
and subsequent tasks need to wait for the completion of the
previous task [9]. It is also a very important problem how
to dispatch and schedule tasks under the guarantee of task
dependency.

In the dispatch phase, the traditional method is to dispatch
tasks to the nearest server [10], which may lead to unbalanced
task allocation and overload of the server. meng etal. proposed
to assign tasks to the edge server with the minimum average
response time [11], but did not consider the changes in network
conditions and server load. In the scheduling stage, traditional
methods, such as First-Come-First-Serve, do not consider the
time problem caused by the size of the task. zhong etal. pro-
posed a scheduling scheme based on reinforcement learning
[12], but it does not consider the dependence between tasks.
Sundar etal. considered dependent tasks [13], but they only
considered one type of dependent tasks and the application
was limited.

We propose a new task dispatching and scheduling method
DAMD that combines reinforcement learning and multi-agent
reinforcement learning. Specifically, we propose a dispatcher
based on deep reinforcement learning and a scheduler based on
multi-agent deep reinforcement learning. For the dispatcher,
we take the deep Q-learning (DQN) approach and use the
response time of the task as a reward to update the current
state of the edge network conditions and server load in real
time. This can effectively improve efficiency by selecting edge
servers with maximum rewards, avoiding network congestion
and server overload. For the scheduler, we adopt multi-agent
deep reinforcement learning technology to fully consider the
dependencies between tasks and the execution order of de-
pendent tasks in other servers. As a result, each edge server
can dynamically allocate resources based on the time-sensitive
requirements of each task. Therefore, our approach minimizes
the average task response time and maintains efficiency across

all tasks. The main contributions of this paper are:
1) We apply reinforcement learning and multi-agent rein-

forcement learning to the dispatch and scheduling of
dependent tasks, comprehensively considering the depen-
dency relationship between tasks and the cooperation
between edge servers. As far as we know, this is the first
time to solve the dispatch and scheduling of dependent
tasks in this scenario.

2) We abstract the edge server and task information, and
consider the load and distance of the edge server, which
has a good application in real life.

The rest of this paper is structured as follows. In Section II,
we introduced relevant scenes and the proposal of problems.
In Section III, we introduced system modeling and algorithm
process in detail. In Section IV, we compared and analyzed
the results. Finally, we summarize this thesis in Section V.

II. PROBLEM DEFINITION AND SYSTEM MODELING

A. Problem Definition

In this section, we introduce the basic assumptions and
question formulation.

End Devices
Edge

Servers
Task

Queues
Access
Point

Fig. 1. An example of a scenario

As shown in Figure 1,we consider a target network with
edge servers, different edge nodes provide different computing
power. For each edge server, there may be multiple applica-
tions configured. In this network, users send jobs from their
terminal devices to the access points (AP), which then dispatch
the jobs to the edge server of the target edge network. When
the jobs arrives at the edge server, it waits in the task queue
for processing. The jobs generated by users can be dispatched
to different edge servers for calculation. A job contains one or
more dependent tasks. For dependent tasks, subsequent tasks
must wait for the previous tasks to complete, and a task can
only be dispatched to one edge server. In this process, we
only consider the dispatching of jobs from AP to server and
the scheduling within the server.

The problem can be expressed as follows: at a certain
time, a group of dependent tasks are dispatched to edge
servers in multiple networks. Given edge server information
and dependent task information, each task is dispatched a edge
server and the scheduling within the edge server, so that the
tasks can be completed before the deadline as far as possible.

B. System Modeling

For the dispatching and scheduling of dependent tasks, we
mainly consider the information of edge servers and tasks. The
main components are described as follows:

Edge server : a group of server nodes N =
{N1, N2, . . . , Nm} is deployed in a specific area, and each
node has the following characteristics:
• Ni.CPU : indicates the computing capacity of the server,

that is, the CPU.
• Ni.bd: indicates the bandwidth of the server.
• Ni.size: indicates the memory size of the server.
• Ni.size(t): indicates the remaining memory of the server
• Ni.task(t) : indicates the task running on the Ni server

at time t.
• Ni.wait(t) : indicates the waiting queue on the Ni server

at time t.
Jobs: a set of tasks that accomplish a specific goal, with de-

pendencies between tasks, is a Directed acyclic graph (DAG).
Through DAG, we can obtain the dependency relationships
between tasks

Task: the smallest, indivisible task in a job. A task must be
completed on one server.
• Ti.size: indicates the size of the task
• Ti.start: indicates the arrival time of the task
• Ti.deadline: indicates the end time of the task
• Ti.pretasks: indicates the set of previous tasks of the

task, which means, the task can work only after the
previous tasks of the task are completed.

To minimize task response time, we divide task delay into
two parts: external delay and internal delay.

We divide the external delay D of a task into three parts.
• D1: indicates the time for the task to arrive from the AP

to the edge server.
• D2: indicates the time when the edge server returns to

the AP after the task is scheduled.
• D3: indicates the time when the calculation result of the

previous task of the task is returned from an edge server.
If the task is on the same edge server as the previous
task, the time is 0.

Since the bandwidth of AP is generally large, for an
arbitrary time t, we assume that the link bandwidth of the task
from AP to the edge server is determined by the bandwidth of
the edge server, that is, the link bandwidth of the task to the
edge server is the bandwidth of the edge server. In addition,
there is a propagation delay k between AP and the edge server.
Propagation delay k is related to the distance from the AP to
the edge server. Then D1 = k + Ti.size/Ni.bd.

When the task is returned by the edge server after schedul-
ing, we assume that the data volume of the scheduling result
is small. In this process, only the propagation delay is consid-
ered, that is, D2 = k.

For dependent tasks, each task needs to wait for the result
of the previous task. If the previous task of the task is not
completed when it comes to the task scheduling, the task needs
to wait for the transmission of the result before scheduling.

Access
Point

Evaluation
Network

Choose Action Edge Server
Information And
Task Information

Reward

Action Policy

Radom
Action

Agent

Reply
Buffer

Environment Agents

Edge Server I

Edge Server J

Edge Server K

Action Policy

Evaluation
Network

Choose Action
And Radom

Action

Reward

Reply Buffer I

Reply Buffer J

Reply Buffer K

Save (S,A,R,S’)

MDQNDQN

Optimizer

Evaluation
Network

Evaluation
Network

Target
Network

TrainUpdate

Optimizer

Evaluation
Network

Train

Evaluation
Network

Target
Network

Update

Fig. 2. Dependent task dispatching and scheduling algorithm

Due to the small amount of data processing results, D3 = k;
If all previous tasks have been completed when the task is
scheduled, and the transmission time of previous task results
is included in the waiting time of this task, then D3 = 0.

Internal delay is mainly divided into two parts, task wait
time and task processing time. When a task reaches the edge
server, it will be placed in a waiting queue. When it comes
to task scheduling, since the task is a dependent task, it is
necessary to judge whether all the previous tasks of the task
have been completed. The waiting time of the task is the
completion time of the previous task in the queue minus the
arrival time of the task. The processing time of the task is
Ti.size/Ni.CPU . The storage resources of each edge server
are limited. Therefore, the memory of the edge server must
be determined before dispatched a task to the edge server.
Dispatched can be performed only when the task size is
smaller than the remaining memory of the server.

III. DISPATCHING AND SCHEDULING ALGORITHM

A. Algorithm Framework

Our algorithm is mainly divided into two steps. First, we use
reinforcement learning algorithm to dispatch tasks from AP to
edge server. In this step, we do not consider the dependency
between tasks, and select appropriate edge server for each task
to dispatch. The action set is the edge server, which selects
the action by evaluate network and gives the reward according
to the response time of the task. The shorter the task response
time, the smaller the load on the edge server. After one action
is completed, the data is stored in the experience pool and
periodically updated with the data in the experience pool.

Then, multi-agent reinforcement learning is used to realize
internal scheduling of edge servers. We regard each edge
server as an agent and set an experience pool for each edge

server. Each edge server selects one task for scheduling at
a time and judges whether the previous task of the task is
completed before scheduling. The total action set is the tasks
selected by each edge server. All edge servers select a task and
give a reward. After total action is completed, the data is stored
in their own experience pool, and the parameters are updated
regularly with the data in the experience pool. In this way,
the influence of other server scheduling and the dependency
between tasks are fully taken into account.The algorithm flow
is shown in Figure 2.

B. Task Dispatching Method

A typical reinforcement learning model consists of states,
actions, strategies and rewards. Agents learn by interacting
with the environment, make actions and get corresponding
rewards.
State: The agent interacts with the environment to obtain
the current state and make corresponding decisions at the
same time. When a task arrives, the agent will obtain various
information of the current edge server.
Action: For any task arrived, the agent finds a suitable edge
server to dispatch by observing the environment. Therefore,
the scope of the action is the set of all edge servers, defined
as:

at ∈ {n1, n2, . . . , nm} = a (1)

Policy: Task dispatching policy reflects the mapping relation-
ship between state and action. In DQN, we use neural network
to generate action.
Reward: After observing the environmental state at time t, the
agent makes corresponding actions by strategy, and gets the
corresponding reward at time t+1, here we define the reward
as e−T , T is the response time of the task, which reflects the

load on the edge server, and the shorter the response time, the
less the load.

DQN designed two networks, the evaluation network and
the target network, both of which initially had the same
structure and parameter configuration. One is used to predict
Q estimate (MainNet), one is used to predict Q reality (target),
the targetQ of Q reality is calculated as:

targetQ = r + γ ∗Qmax (s′, a′, θ) (2)

The loss is estimated by targetQ and Q, and the loss function
generally adopts the mean square error loss:

LOSS(θ) = E[(targetQ−Q(s, a, θ))2
]

(3)

Initialize MainNet and target, update the MainNet parame-
ters according to the loss function, and target is fixed. After
several iterations, all the MainNet parameters are copied to
the target network, and so on. The targetQ is fixed in a period
of time, which makes the algorithm update more stable.

Algorithm 1 Task Dispatching Algorithm Based On Deep Q-
learning
Input: Task information and edge server information
Output: The edge server to which the task is dispatched

1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights θ
3: Initialize target action-value function Q with weights

θ− = θ
4: for episode i = 1 to N do
5: Initialize sequence s1 = {x1} and preprocessed se-

quence ϕ1 = ϕ (s1)
6: for each step t do
7: With probability ε select a random action at
8: otherwise select at = argmaxa Q (ϕ (st) , a; θ)
9: Take action at and observe reward rt and next state

xt+1

10: Set st+1 = st, at, xt+1 and preprocess ϕt+1 =
ϕ (st+1)

11: Store transition (st, at, rt, st+1) in D
12: Sample random minibatch of transitions

(ϕj , aj , rj , ϕj+1) from D
13: Set yj = rj if episode terminates at step j+1
14: Set yj = rj + γmaxa′ Q̂ (ϕj+1, a

′; θ−)
15: Perform a gradient descent step on (yj −Q(ϕj , aj ;

θ)2 with respect to the network parameters θ
16: Every C steps reset Q̂ = Q
17: end for
18: end for

C. Task Scheduling Method

When tasks are scheduled within the server, the scheduling
sequence within one server may affect other servers due to the
dependency between tasks. Therefore, we consider using the
Multi-agent DQN (MDQN) to schedule tasks within the server.
We create a task queue for each server, and each server gets a
reward after selecting a task from the task queue to schedule.

Algorithm 2 Task Scheduling Algorithm Based On MDQN
Input: Task queue and edge server information
Output: Scheduling tasks within the server

1: Initialize replay memory D to capacity N
2: Initialize the evaluation network we and the target network

with random parameter wt

3: Update action policy
4: for episode i = 1 to N do
5: Initializes the server queue information
6: for each step t do
7: for each server M do
8: Choose action A according to action policy and

Q (S,A,we)
9: Take action A, observe R and S′

10: Store e = (S,A,R, S′)
11: Sample random pair of e from memory
12: Calculate target y = R+ βmaxQ (S′, A′, wt)
13: Train parameter we with a gradient descent step

(y −Q (S,A,we))
2

14: if update =true then
15: wt ← we

16: end if
17: S ← S′

18: end for
19: Update server queue information
20: end for
21: end for

State value function: The state value function is the ex-
pectation of the action value function about the action, and
the action performed by the agent depends on the strategy
function, so the state value function Vi of the agent also
depends on the strategy of all the agents. For a single agent,
its state space is the state information of a single server and
the actions of other agents. The total state space is the state
space of all agents.
Reward: Different relationships between multiple agents will
result in different rewards given by the environment. If there is
a cooperative relationship between multiple agents, the agents
receive the same reward from the environment. If multiple
agents are in a competitive relationship, positive reward for one
agent from the environment will lead to negative reward for
another agent. In the task scheduling environment, we regard
multiple agents as cooperative relationships, and give a unified
reward after all servers select a task for scheduling.
Action value function: For each server, its action is to
select a task from the task queue to schedule. We create an
experience pool for each agent, and store these experiences in
an experience pool during the early stages of training, when
the agent interacts with the environment to make an action.
The experience contains S, R, A, and S ’information.

At the same time, we set up a target network with the same
structure as the evaluation network for training, because a
single network design will make the algorithm fall into the
feedback loop between the target and the estimated Q value

and become unstable. Therefore, a target network is used to
avoid estimates getting out of control. The parameters of the
evaluation network were updated at each training step, and
the evaluation network was used to estimate the Q value of
the action. The parameters of the target network are relatively
stable. After several steps, the target network updates the
parameters to the same as the evaluation network.

IV. EXPERIMENTAL RESULTS

In this section, we will evaluate the performance of the
proposed approach by generating simulated environment in-
formation and data information compared to the baseline
approach.

A. Experimental Environments

We use data sets generated by the network, which include
information such as arrival time, processing time, data size,
etc. At the same time, there is a dependency relationship
between tasks. We randomly generate the dependency graph
between tasks, and use the network to generate simulated edge
server information, including the memory size and CPU of the
edge server.

B. Baseline Method Comparison

In order to better evaluate the performance of the method
and reflect the efficiency and fairness of the method in
task dispatching and scheduling, we conducted comparative
experiments with the following three baseline algorithms.

First is dispatching method baseline, this section is the
method used by the task to get from the access point (AP)
to the edge server. In order to show the performance of our
dispatching method, we compare it with the three baseline
dispatching methods.

1) Nearest: Dispatch the task to the nearest edge server.
2) Random: Dispatch tasks randomly to an edge server.
3) Least load: Dispatch tasks to edge servers with minimal

load, here we use the waiting time of the task to represent,
the longer the waiting time of the task, the greater the load of
the edge server.

Then is scheduling method baseline,this section describes
the method used to schedule tasks internally at the edge server,
which we compare with the following three methods.

1) First-Come-First-Serve: Arrange tasks according to the
order in which they arrive. Early tasks are scheduled first and
final tasks later.

2) Shortest-Job-First:Schedule tasks based on the comple-
tion time, the shorter the completion time, the earlier the task
is scheduled.

3) Shortest-Deadline-First: Tasks are scheduled based on
their deadline time. The earlier the deadline time, the more
urgent the task is, and the earlier the task is scheduled.

Since tasks are scheduled in two parts, from the AP to the
edge server and scheduled in the edge server, we combine
a pair of dispatching and scheduling baselines to compare
dispatching and scheduling performance. These are the Nearest
+ First-Come-First-Serve (NF), Random + Shortest-Job-First
(RS) and Least load + Shortest-Deadline-First: (LS)

C. Evaluation Result

In this part, we will compare our method with the baseline
method in the simulation environment, and verify the superi-
ority of our method over the baseline method by comparing
the response time of tasks and the deadline missing rate of
tasks under the same environment.

1) The impact of the number of tasks.
We randomly generated the edge server information and the

dependent task information to conduct the experiment, and
the dependent task was dispatched and scheduled by these
methods. By comparing the response time of the task and
the deadline missing rate of the task, the performance of our
method was compared with that of the baseline method.The
result is shown in Figure 3, the vertical axis are average
response time and deadline missing rate, the horizontal axis is
number of tasks.

(a) (b)

Fig. 3. The effect of different task numbers on average response time and
deadline missing rate

When a task is dispatched by an AP to an edge server,
the nearest edge server receives an extremely large number
of tasks as only the task is dispatched to the nearest edge
server, resulting in a very high average task response time
and deadline missing rate. Our approach determines which
edge servers to dispatch tasks to based on network conditions
and the load on the edge servers, which results in good
performance.

When a task is scheduled within an edge server, First-Come-
First-Serve first schedules the task that arrives at the edge
server first, which will cause the later task to wait longer,
and if the later task is the previous task of the task in other
edge servers, it will cause the dependent task in other edge
servers to wait for a long time. The basic idea of Shortest-Job-
First is to give higher priority to smaller tasks, which results
in longer waits for larger tasks that arrive first, and does not
take into account the impact of dependent tasks in other edge
servers. Shortest-Deadline-First also does not take into account
dependencies between tasks, and does not take into account the
effects of dependencies on other edge servers, which makes it
less effective.

2) The impact of task density
Task arrival density represents the number of tasks arriving

at the edge server per unit time, and the larger the number, the
higher task arrival density. We measured the performance of
the different approaches in terms of average task response time
and deadline missing rate. Our method and Least Load can

dispatch tasks to edge servers with lower load, and thus better
handle higher task arrival densities. Moreover, our method
can take into account the dependencies between tasks and the
effects of other server scheduling tasks, so the performance is
the best.The result is shown in Figure 4, the vertical axis are
average response time and deadline missing rate, the horizontal
axis is task density.

(a) (b)

Fig. 4. The effect of different task arrival density on average response time
and deadline missing rate

3) The impact of the number of edge servers
We compare the performance of the different approaches

with a different number of edge servers. We can see that when
the number of servers is small, the deadline missing rate of
tasks is very high. This is because the task is only dispatched
to a few servers, which results in server overload. However, as
the number of servers increases, the load of server decreases
and the deadline missing rate decreases. Among all methods,
our method has the best performance in terms of average task
response time and deadline missing rate.The result is shown
in Figure 5, the vertical axis are average response time and
deadline missing rate, the horizontal axis is number of edge
servers.

(a) (b)

Fig. 5. The effect of different edge server numbers on average response time
and deadline missing rate

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a method DAMD combining
DQN and MDQN for dispatching and scheduling dependent
tasks. It can estimate the network condition and server load,
and make reasonable arrangements according to the timeliness
requirements of tasks. At the same time, it considers the de-
pendency between tasks comprehensively, and make different
servers cooperate with each other. We conducted evaluation
experiments on simulated environments, and the result shows

that the proposed method can make optimal actions through
continuous learning from experience, so it performs well
in dispatching and scheduling of dependent tasks. However,
the algorithm can still be improved. Considering that the
dependent task can be represented as a DAG graph, perhaps
the introduction of graph neural network can improve the
efficiency, simultaneously considering the competition and
cooperation methods of multi-agent reinforcement learning.
We will continue to carry out research and make contributions
to the dispatching and scheduling of dependent tasks.

VI. ACKNOWLEDGEMENT

This work is supported by National Key Research and
Development Program (2019YFB2102600), National Natural
Science Foundation of China (NSFC 62272165), the “Digital
Silk Road” Shanghai International Joint Lab of Trustworthy
Intelligent Software (Grant No. 22510750100), and Shanghai
Trusted Industry Internet Software Collaborative Innovation
Center.

REFERENCES

[1] J. Pan and J. McElhannon, “Future edge cloud and edge computing for
internet of things applications,” IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 439–449, 2018.

[2] Y. Song, S. S. Yau, R. Yu, X. Zhang, and G. Xue, “An approach to qos-
based task distribution in edge computing networks for iot applications,”
in 2017 IEEE International Conference on Edge Computing (EDGE),
2017, pp. 32–39.

[3] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[4] K. Boos, D. Chu, and E. Cuervo, “Flashback: Immersive virtual reality
on mobile devices via rendering memoization,” in Proceedings of the
14th Annual International Conference on Mobile Systems, Applications,
and Services, 2016, p. 291–304.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, 2012, p. 13–16.

[6] C. Martı́n Fernández, M. Dı́az Rodrı́guez, and B. Rubio Muñoz, “An
edge computing architecture in the internet of things,” in 2018 IEEE 21st
International Symposium on Real-Time Distributed Computing (ISORC),
2018, pp. 99–102.

[7] H. Tang, H. Wu, Y. Zhao, and R. Li, “Joint computation offloading
and resource allocation under task-overflowed situations in mobile-edge
computing,” IEEE Transactions on Network and Service Management,
vol. 19, no. 2, pp. 1539–1553, 2022.

[8] H. Yuan, G. Tang, X. Li, D. Guo, L. Luo, and X. Luo, “Online
dispatching and fair scheduling of edge computing tasks: A learning-
based approach,” IEEE Internet of Things Journal, vol. 8, no. 19, pp.
14 985–14 998, 2021.

[9] L. Liu, R. Zhong, W. Zhang, Y. Liu, J. Zhang, L. Zhang, and
M. Gruteser, “Cutting the cord: Designing a high-quality untethered vr
system with low latency remote rendering,” in Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and
Services, 2018, p. 68–80.

[10] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks,” IEEE
Transactions on Cloud Computing, vol. 5, no. 4, pp. 725–737, 2017.

[11] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, “Dedas: Online
task dispatching and scheduling with bandwidth constraint in edge
computing,” in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, 2019, pp. 2287–2295.

[12] J. H. Zhong, D. L. Cui, Z. P. Peng, Q. R. Li, and J. G. He, “Multi
workflow fair scheduling scheme research based on reinforcement
learning,” Procedia Computer Science, vol. 154, pp. 117–123, 2019.

[13] S. Sundar and B. Liang, “Offloading dependent tasks with communica-
tion delay and deadline constraint,” in IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, 2018, pp. 37–45.

	Introduction
	Problem Definition and System Modeling
	Problem Definition
	System Modeling

	Dispatching and Scheduling Algorithm
	Algorithm Framework
	Task Dispatching Method
	Task Scheduling Method

	Experimental Results
	Experimental Environments
	Baseline Method Comparison
	Evaluation Result

	Conclusion and Future Work
	Acknowledgement
	References

