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Abstract—Identifying influential spreaders is a hot topic in
complex network research. While centrality-based algorithms are
easy to implement, they often have lower accuracy. Topology-
based algorithms are effective for identifying network center
influential spreaders but may not perform well in identifying
peripheral influential spreaders. To address these problems, we
propose a Neighborhood Structure Centrality (NSC) algorithm,
which utilizes structural embedding and clustering to collect vari-
ous network structural information and calculates node influence
based on both node and neighborhood structural information.
We compare the NSC algorithm with twelve baseline algorithms
on six public datasets and four synthetic network datasets and
demonstrate its higher accuracy.

Index Terms—complex network, influential spreaders identifi-
cation, network structure.

I. INTRODUCTION

At present, researchers have conducted extensive studies on
evaluating node influence, which can be mainly divided into
two categories according to application scenarios: identifying
influential spreaders and influence maximization. This paper
focuses on identifying influential spreaders. We evaluated the
influence of nodes by analyzing network structure and node
characteristics, and ranked nodes according to their influ-
ence values, considering the top-ranked nodes as influential
spreaders. In recent years, identifying influential spreaders has
received extensive attention [1, 2]. The following provides an
overview of the current state of research on algorithms for
identifying influential spreaders.

In general, identifying influential spreaders algorithms can
be roughly divided into two categories, including centrality-
based algorithm and topology-based algorithm. Centrality-
based algorithm also includes local centrality-based algorithms
(LCAs) [3, 4], global centrality-based algorithms (GCAs) [5,
6], and semi-global centrality-based algorithms (SCAs) [7–
9]. In general, centrality-based algorithms solely considering
the features of nodes and neighbors will lead to ignoring
differences in network position and structure, thereby affecting
the accuracy and effectiveness of the algorithm. Meanwhile,
much works focus on using the network topology to identify
the influential spreaders, including k-shell algorithm [10],
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k-shell-based improved algorithms (KIAs) [11–13], k-shell-
based hybrid algorithms (KHAs) [14–16], local global algo-
rithms (LGAs) [17, 18], and structure-based graph neural net-
work algorithms (SGNNs) [19, 20]. Overall, topology-based
algorithms ignore high-influence nodes at the periphery of the
network, which leads to the influential spreaders aggregation
phenomenon. In addition, some hybrid algorithms use multiple
topological attributes to evaluate the node influence, but they
have to set parameters to adjust the weight of the attributes.
Graph neural network algorithms use small network training
models to predict all networks, which makes the models cannot
learn enough network features. In brief, the recognition results
of these algorithms are not stable enough.

In this paper, we identify influential spreaders by network
topology. The main contributions of this paper are:
• Presents a new algorithm that uses the neighborhood

structure to identify influential spreaders, alleviating the
position limitation problem of topological algorithms.

• Taking structural embedding and clustering to collect
comprehensive structural information, which alleviates
the limited information problem of centrality-based al-
gorithms and improves their accuracy.

The rest of this paper is organized as follows. Section 2
describes related work. Section 3 introduces our proposed
algorithm. Section 4 reports the results and the analysis.
Finally, in Section 5 we conclude the paper and present future
work.

II. RELATED WORK

In this section, we will briefly introduce related work.
Firstly, we introduce the definition of the network and the
two algorithms used in this paper. Secondly, we summarize
several popular identifying influential spreaders algorithms.

A. Basic definition

Let an undirected unweighted network G(V,E) is com-
posed of N = |V | nodes and M = |E| edges, where
V = {v1, v2, . . . , vn} represents the set of nodes in the
network and E = {e1, e2, . . . , em} represents the set of edges.

In this paper, we use the GraphWave and KMeans++ algo-
rithms. GraphWave [21] is a structural embedding algorithm



that utilizes spectral analysis to convert a network into a signal
and learns node neighborhood structural features through spec-
tral analysis techniques. This algorithm can capture nodes with
similar local structures throughout the network, and generate
node representations using these structures. KMeans++ [22]
is a clustering algorithm that can partition nodes into k pre-
specified categories. Nodes within each category have high
similarity, while the similarity between nodes from different
categories is low.

B. Identifying influential spreaders algorithms

Kitsak et al. [10] proposed the k-shell algorithm, which cat-
egorizes nodes into different shells to evaluate their influence.
The advantage of k-shell algorithm is its high efficiency and
good recognition results. However, its disadvantages include
position limitations and monotonicity problems, meaning that
it cannot accurately evaluate the influence of nodes located at
the network periphery and cannot distinguish the influence of
nodes within the same shell. In recent years, many efforts have
been devoted to addressing these problems, such as NC+ [12],
G+ [13], KSH [15], and WKSD [16].

NC+ iteratively calculates the sum of neighbors’ k-shell
indexes to evaluate node influence, which improves the ac-
curacy of the algorithm but exacerbates the position limitation
problem. G+ refers to the gravity formula of physics, which
regards the k-shell index value of the node as the mass,
and the path length from the node to the neighbor as the
distance to calculate the influence of the node. G+ achieves
higher accuracy but still has a position limitation problem.
KSH evaluates the influence of nodes based on k-shell power,
degree, and distance. While it alleviates the position limitation
problem, it sets a tunable parameter that may lead to unstable
results. WKSD evaluates node influence using the k-shell
index and degree. It is effective on incompletely connected
networks, but the inclusion of two tunable parameters may
lead to unstable results.

In addition to the related algorithms of k-shell, neural
networks are also used to identify influential spreaders.
RCNN [19] extracts each node’s neighborhood subnetwork
and constructs a micro-feature matrix, then it uses CNN
to predict the influential spreaders. Based on RCNN, M-
RCNNN [20] adds the community attributes and macro at-
tributes to construct a three-channel node feature matrix, and
automatically learns the weights of the three attributes to pre-
dict the influential spreaders. Although these two algorithms
can automatically adjust parameters to address the instability
problem, their accuracy is relatively low when applied to large-
scale networks.

III. OUR ALGORITHM

In this section, we introduce our proposed NSC algorithm
in detail. Firstly, we give some basic notation definitions as
shown in Table I. NSC algorithm includes three stages: (1)
structure embedding, (2) clustering and cluster index alloca-
tion, and (3) node influence calculation.

TABLE I: Notation definitions.

Notation Explanation
di Degree of node vi, vi∈V in G
k Number of clusters
Luv The distance between nodes u and v
Ci The i-th cluster
KCi The cluster index value of node vi
neigh inf(v) The influence of node v neighbors
node inf(v) The influence of node v

A. First stage: structure embedding

In this stage, we try to capture the topology information of
the network by using GraphWave algorithm [21]. GraphWave
algorithm uses low-dimensional embedding to represent the
node, where nodes with similar neighborhood structures have
similar embeddings. Generally, GraphWave algorithm is di-
vided into three steps: (1) spectral graph wavelet diffusion, (2)
node mapping, and (3) sampling. Once the network structure
embedding is completed, nodes with similar structures are
closer, while nodes with different structures are farther apart
from each other.

B. Second stage: clustering and cluster index allocation

In this stage, we designed a clustering index to distin-
guish structural importance, and to improve the efficiency of
the algorithm, we chose the KMeans++ algorithm [22] for
clustering. In this paper, we assume that the node influence
within each cluster is similar. Firstly, we obtain k clusters
by clustering, each cluster corresponds to one structure and
ultimately captures the network of k structures. Next, we use
the cluster index to represent the node importance within
the cluster. In large-scale networks, the embedding vectors
of nodes clustering boundaries are not apparent, which can
cause incorrect clustering results for some nodes. Therefore,
it is necessary to fine-tune the clustering. We first calculate the
average degree avg(Ci) of each cluster Ci, and sort all clusters
C={C1, C2, · · · , Ck} in ascending order by avg(Ci). Then,
the nodes whose degree is greater than avg(Ci) in the cluster
Ci are exchanged with the nodes whose degree is less than
avg(Ci+1) in the set Ci+1. The number of exchange nodes is
30% of the number of nodes to be adjusted in smaller clusters.
After this processing, we recalculate avg(Ci) and sort C in
ascending order, and give the index of cluster Ci as KCi, the
larger avg(Ci) the higher the value of KCi, KCiε[1, k].

Algorithm. 1 describes the details of this stage. Where the
input is the embedding vector X of nodes and the number of
clusters k. Line 1 is to cluster X . Lines 2-4 are to calculate
the average degree of each cluster. lines 5-7 are to fine-tune
the nodes in the clusters and sort the clusters. Lines 8-13 are
to assign cluster indexes to each cluster.

C. Third stage: node influence calculation

In this stage, we calculate the node influence and then sort
the nodes according to their influence within the network. In
the experiment, we find that the clustering stage will produce
deviation in large-scale networks or high-density networks.



Algorithm 1: Clustering and cluster index allocation
Input: Structural embedding X , Number of clusters k.
Output: Rank[C, Scorekc].

1 KMeans++ clustering to get a set of k clusters C
2 for each cluster Ci ∈ C do
3 di = average degree(Ci)
4 end
5 Sort C in ascending order by di
6 Fine-tuning the nodes in the cluster
7 Recalculate di and resort C in ascending order by di
8 Set score = 1
9 for each cluster Ci ∈ C do

10 The index value of the i-th cluster KCi = score
11 Append Ci and KCi to Rank[C, Scorekc]
12 score+ = 1
13 end

≥ 10,000 nodes
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Fig. 1: The procedure of node influence calculation.

Thus, we design different node influence calculation strategies
according to the network size. On the one hand, for small
networks, we sort the nodes within each cluster first and then
sort the clusters based on their influence. On the other hand, for
larger networks, we directly sort all nodes according to their
influence. Figure. 1 shows the procedure of node influence
calculation. Node influence includes the influence of the node
itself as well as the influence of its neighbors.

For networks with less than 10,000 nodes, we consider node
influence as a combination of its degree and the influence of
its nearest neighbors. Represent neighborhood influence using
the cluster index value of neighbors. If the cluster index value
of a node is high, it indicates that the local structure where
it is located has a significant influence. Then, the influence of
node v and the influence of node v’s neighborhood are defined
in Eq.(1) and Eq.(2) respectively.

node inf1(v) = dv + neigh inf1(v) (1)

neigh inf1(v) =
∑
j∈η(v)

KCj (2)

where η(v) represents all nodes within the nearest neighbor-
hood of node v. dv is the degree of node v, KCj is the cluster
index value of node j.

Algorithm 2: Node influence calculation
Input: Network graph G(V,E), Rank[C, Scorekc].
Output: Rank[V ].

1 if Node number |V | < 10,000 then
2 for each nodes vi ∈ V do
3 node inf1(i) = d(vi)
4 for vj ∈ neighbors(vi, 1) do
5 node inf1(vi)+ = KC(vj)
6 end
7 end
8 for Ci ∈ C do
9 Sort Ci in descending order with node inf1(vi)

10 end
11 Rank[V ] = C
12 end
13 else
14 for each nodes vi ∈ V do
15 neigh inf(vi) = 0
16 for vj ∈ neighbors(vi, r) do
17 neigh inf2(vi) +=

KC(w)∗d(vj)
L(vi,vj)

18 end
19 end
20 for each nodes vi ∈ V do
21 node inf(vi)=0
22 for vj ∈ neighbors(vi, 1) do
23 node inf2(vi) += neigh inf(vj)
24 end
25 end
26 Rank[V ] = Resorting all nodes by node inf2(vi).
27 end

For the network with more than 10,000 nodes, we define the
influence of node v and the influence of node v’s neighbors
as shown in Eq.(3) and Eq.(4) respectively.

node inf2(v) =
∑

w∈η(v)

neigh inf2(w) (3)

neigh inf2(w) =
∑

j∈ηr(w)

KCw ∗ dj
L2
wj

(4)

where Lvj is the distance from node v to node j, ηr(v) denotes
the set of all nodes within r hops of node v, and η(v) denotes
the nearest neighbor node set of node v. In the experiment,
we set r is 3.

Algorithm. 2 describes the details of this stage. The input
of the algorithm is the network G and the clusters with their
index, and the output is the influence sequence. Lines 1-
12 compute the node influence for networks with less than
10,000 nodes, while lines 13-29 compute the node influence
for networks with more than 10,000 nodes. The calculation
process for both parts is similar. Lines 1-3 and 14-19 compute
the self-influence of nodes, while lines 4-7 and 20-25 compute
the influence of the neighbors of the nodes. Lines 8-11 and
26 sort the nodes.

D. Computing complexity

Given a network with N nodes, E edges, R neighbors
within 3 hops of each node, k clusters, and 2-dimensional
node embedding vectors. The time complexity of the network
embedding phase is O(S|E|), where S is the order Cheby-
shev polynomial approximation. The time complexity of the
clustering and cluster index allocation phases is O(2Nk+ k),
and the node influence calculation and sorting phases are



O(NR + NlogN). Overall, the total time complexity of the
NSC algorithm is O(S|E|+ 2Nk + k +NR+NlogN).

IV. EXPERIMENTS

We conduct experiments on six real-world networks and
four synthetic networks. In the experiment, we compare twelve
baseline algorithms to verify the effectiveness of our proposed
NSC.

A. Baselines

Degree centrality (DC) [3]: It evaluates the influence
of a node by using the number of its nearest neighbors.
Betweenness centrality (BC) [6]: It uses the number of
shortest paths through the node to evaluate node influence.
Eigenvector centrality (EC) [7]: It evaluates the influence
of a node based on the importance of its neighbors. K-shell
(KS) [10]: It evaluates the influence of a node based on
its position in the network. PageRank [8]: It evaluates the
influence of a node based on the probability of the node
being visited during random walks. Ksum [23]: It evaluates
the node influence by calculating the sum of the neighbor’s
degree. Neighborhood coreness centrality (NC+) [12]: It
evaluates the influence of nodes by calculating the sum of
the neighbor’s k-shell. Gravity index centrality (G+) [13]:
It refers to the gravity formula, where the k-shell of nodes
is taken as the mass, and the shortest path length between
nodes is taken as the distance to evaluate node influence.
Global and local structure (GLS) [17]: It evaluates the
influence of nodes by combining local information with global
information. Neighborhood entropy centrality (NEC) [9]: It
evaluates the node influence by calculating the sum of the
entropies of the node’s neighbors. RCNN [19]: It evaluates
node influence by generating a neighborhood feature matrix
for each node and applying a convolutional neural network.
Multi-channel RCNN (M-RCNN) [20]: It evaluates node
influence by generating three-channel node representations and
using convolutional neural networks.

B. Dataset

We use six real-world networks and four synthetic net-
works for the experiments, including Jazz [24], USAir [25],
Hamster[26], Power [27], PGP [28], Sex [29], and BA [30].
BA network synthesized by Python’s networkx library. Table II
gives the detailed description of each network (N denotes the
number of nodes, M denotes the number of edges, βth and β
denote the infection threshold and infection rate of the network
respectively. D is the diameter of the network, <K> is the
average degree of the network, and k is the number of clusters
in NSC).

C. Evaluation criteria

1) Kendall correlation coefficient τ [31] : τ∈[-1,1] is
widely used to measure the correlation between two lists.
After calculating the influence of each node using the SIR
model [32], the accuracy of the algorithm is evaluated by
comparing the ranking produced by the algorithm with the

TABLE II: The description of all networks.

Network N M βth β D <K> k
Jazz 198 2,742 0.0266 0.04 6 27.697 5
USAir 332 2,126 0.0231 0.04 6 12.807 6
Hamster 2,426 16,631 0.0241 0.04 10 13.711 7
Power 4,941 6,594 0.3483 0.40 46 2.669 2
PGP 10,680 24,316 0.0559 0.06 24 4.554 7
Sex 15,810 38,540 0.0366 0.04 17 4.875 9
BA1 1,000 9,900 0.0285 0.03 4 20 9
BA2 1,000 14,775 0.0206 0.03 3 30 13
BA3 2,000 19,900 0.0267 0.03 4 20 8
BA4 2,000 29,775 0.0189 0.02 4 30 12

actual ranking generated by the SIR model. τ is mathemati-
cally defined as Eq.(5):

τ =
Nc −Nd

N(N − 1)/2
(5)

where Nc and Nd denote the number of consistent and
inconsistent pairs respectively, and N is the number of nodes
in the list. Generally, if the value of τ is bigger, the algorithm
considers effective.

2) Improvement percentage η(%) [33, 34]: To verify the
improvement of NSC over the baseline algorithms, we conduct
experiments using the η function (improve τ ratio), and η is
mathematically defined as Eq.(6)

η(%) =


τC(l)−τl

τl
∗ 100, τl > 0

τC(l)−τl
−τl ∗ 100, τl < 0

0, τl = 0

(6)

where τC(l) represents the τ value of NSC, and τl represents
the τ value of other algorithms. η(%)>0 means that the
algorithm has been improved, η(%)<0 means that NSC is
worse than other algorithms, and η(%)=0 means that NSC is
not improved compared with other algorithms.

D. Experimental setup

In the process of using the SIR model to obtain the actual
influence of nodes, 1,000 simulations were run on networks
with less than 10,000 nodes, and 100 simulations were run
on networks with more than 10,000 nodes. For the different
structures of each network, we set the appropriate number
of clusters k for NSC, and the specific values are shown in
Table 2. The parameter L for the M-RCNN algorithm is set
to 4 in the Power network and 28 in the other networks. The
parameter L of RCNN is set to 28 in all networks. RCNN
and M-RCNN use BA networks for training, so these two
algorithms are not examined in the effectiveness experiment
on synthetic networks.

E. Results and analysis

1) Effectiveness experiment on real-world network: We
compared our proposed NSC with the twelve baseline algo-
rithms for τ values, as shown in Fig. 2. It can be seen that NSC
can achieve high correlation in most networks. Compared to
the two structure-based neural network algorithms, the NSC
performance was also more significant. Specifically, for Jazz,
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Fig. 2: Comparison results on six real networks.

USAir, Hamster, and Sex networks, NSC achieves the highest
τ value. For larger networks like PGP and Sex, the value of
τ for NSC is significantly higher than most algorithms.

Table III show the average τ value for each algorithm. In
Jazz, NSC achieves the highest τ value of 0.9143. It is 1.21%
better than the second-placed NC+ and 40.3% better than the
worst BC. In USAir, the NSC is 0.5% higher than the second-
placed G+ and 36.2% higher than the worst BC. In Hamster,
the τ=0.9108 of the NSC is the highest. It is 0.19% better
than the second-placed G+ and 40.3% better than the worst
PageRank. In Power, the NSC is 6.81% lower than the first-
place GLS and 1.91% higher than the third-place NC+.

In conclusion, NSC outperforms other baselines. It shows
that the combination of topology and centrality algorithm
is effective, and it can obtain more accurate node influence
ranking.

TABLE III: The average τ comparisons on six real networks.

Algorithm
Network Jazz USAir Hamster Power PGP Sex

τ(DC) 0.8938 0.7624 0.7638 0.7244 0.4506 0.4772
τ(BC) 0.5112 0.5293 0.5143 0.5373 0.2913 0.4136
τ(EC) 0.7984 0.8787 0.8163 0.3113 0.5829 0.6522
τ(PageRank) 0.7917 0.5823 0.2850 0.5849 0.2556 0.2855
τ(KS) 0.7533 0.7811 0.7480 0.4826 0.4242 0.5177
τ(GLS) 0.8896 0.8215 0.7746 0.8157 0.4704 0.5885
τ(Nec) 0.8329 0.6526 0.5515 0.7104 0.3202 0.3640
τ(G+) 0.8456 0.8865 0.9089 0.6937 0.7075 0.7425
τ(Ksum) 0.8610 0.8783 0.8779 0.7267 0.6425 0.6952
τ(NC+) 0.9022 0.8713 0.8700 0.7285 0.6957 0.7373
τ(M −RCNN) 0.7447 0.8667 0.8516 0.7138 0.5319 0.6592
τ(RCNN) 0.8423 0.8721 0.8657 0.4147 0.5581 0.6181
τ(NSC) 0.9143 0.8916 0.9108 0.7476 0.6959 0.7537

2) Cluster number k analysis: In this experiment, we
explore the impact of a different number of clusters k on
the τ value of NSC. Also, we provide guidance on choosing
the value of k for different networks, as shown in Fig. 3.
Except for Power, we can observe that NSC achieves the
highest average τ value when k is around 6 in most networks.
On a small network like Jazz, the average τ reaches the
highest value when k is 5. On medium-sized networks such
as Hamster, NSC achieves the best results when k is 6. For
large networks such as PGP, the best results can be achieved
when k≥7. Power is different from other networks, the average
τ value of the NSC decreases with the increase of the k
value. This is because all nodes in the Power network have a

TABLE IV: The average τ comparisons on BA networks.

Algorithm
Network BA1 BA2 BA3 BA4

τ(DC) 0.8048 0.8635 0.8146 0.8692
τ(BC) 0.7705 0.8051 0.7742 0.8210
τ(EC) 0.6880 0.7206 0.6594 0.6744
τ(PageRank) 0.7854 0.8538 0.7793 0.8529
τ(GLS) 0.8307 0.8416 0.8338 0.8385
τ(Nec) 0.8153 0.8643 0.8005 0.8623
τ(G+) 0.8637 0.8731 0.8607 0.8772
τ(Ksum) 0.6873 0.7219 0.6769 0.6836
τ(NC+) 0.6873 0.7219 0.6769 0.6836
τ(NSC) 0.8595 0.8782 0.8566 0.8794
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Fig. 3: τ comparisons on different cluster k of NSC.

similar neighborhood structure. Therefore dividing the nodes
into more clusters, which will degrade the performance of the
algorithm. In summary, we recommend that the value of k
should be set between 5 and 13. For small-scale networks set
a smaller value of k and for large-scale or dense networks set
a larger value of k. When the network structure is similar, k
is set to 2.
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Fig. 4: Improvement percentage η(%) of NSC relative to
twelve algorithms on τ value.

3) Improvement percentage η(%): The experimental results
are shown in Fig. 4. In most networks, the NSC algorithm has
obvious improvement over other algorithms. The percent im-
provement η(%) for BC, PageRank, and NEC algorithms is the
highest. In Jazz, USAir, Hamster, PGP, and Sex networks, the
value of η(%) is greater than zero when β>0.06. Especially
in Sex, τNSC is relative to τPR, τNEC , τBC , τDC and τKS



exceeds 50%.
4) Effectiveness experiment on synthetic network: To fur-

ther verify the effectiveness of NSC, we conduct experiments
on BA networks. Since the nodes in the BA networks have
at least <K> edges, the shell values of all nodes after k-
shell decomposition are the same, and the influence of nodes
cannot be distinguished, so k-shell is not considered in this
experiment. To verify the robustness of NSC on network
scale and density, we set different node numbers and average
degrees for the network. Table IV shows the average τ value
of each algorithm in different scale BA networks. We observe
that the NSC average τ on BA1 and BA3 is 0.4% lower than
G+, but higher than other algorithms. In other networks, NSC
outperforms other algorithms.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an influential spreaders identi-
fication algorithm NSC. We compare NSC with 12 state-of-
the-art baseline algorithms on 6 real networks and 4 synthetic
networks, the results show that our proposed algorithm can
obtain higher τ values than other algorithms in most networks.
Specifically, compared with the 10 centrality algorithms, our
algorithm is more stable when the network size and β value
change. Meanwhile, compared with the 2 neural network algo-
rithms based on neighborhood structure, NSC complies higher
recognition accuracy, especially in larger networks. In future
work, we will optimize the algorithm to automatically cluster
based on network size, clustering coefficient, and structural
difference metrics, so as to make it more widely applicable.
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[4] L. Lü, T. Zhou, Q.-M. Zhang, and H. E. Stanley, “The h-index of a
network node and its relation to degree and coreness,” Nature commu-
nications, vol. 7, no. 1, pp. 1–7, 2016.

[5] G. Sabidussi, “The centrality index of a graph,” Psychometrika, vol. 31,
no. 4, pp. 581–603, 1966.

[6] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, pp. 35–41, 1977.

[7] P. Bonacich and P. Lloyd, “Eigenvector-like measures of centrality for
asymmetric relations,” Social networks, vol. 23, no. 3, pp. 191–201,
2001.

[8] S. Brin and L. Page, “Reprint of: The anatomy of a large-scale
hypertextual web search engine,” Computer networks, vol. 56, no. 18,
pp. 3825–3833, 2012.

[9] L. Qiu, J. Zhang, X. Tian, and S. Zhang, “Identifying influential nodes
in complex networks based on neighborhood entropy centrality,” The
Computer Journal, vol. 64, no. 10, pp. 1465–1476, 2021.

[10] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E.
Stanley, and H. A. Makse, “Identification of influential spreaders in
complex networks,” Nature physics, vol. 6, no. 11, pp. 888–893, 2010.

[11] A. Zeng and C.-J. Zhang, “Ranking spreaders by decomposing complex
networks,” Physics Letters A, vol. 377, no. 14, pp. 1031–1035, 2013.

[12] J. Bae and S. Kim, “Identifying and ranking influential spreaders in
complex networks by neighborhood coreness,” Physica A: Statistical
Mechanics and its Applications, vol. 395, pp. 549–559, 2014.

[13] L.-l. Ma, C. Ma, H.-F. Zhang, and B.-H. Wang, “Identifying influential
spreaders in complex networks based on gravity formula,” Physica A:
Statistical Mechanics and its Applications, vol. 451, pp. 205–212, 2016.

[14] A. Sheikhahmadi and M. A. Nematbakhsh, “Identification of multi-
spreader users in social networks for viral marketing,” Journal of
Information Science, vol. 43, no. 3, pp. 412–423, 2017.

[15] A. Namtirtha, A. Dutta, and B. Dutta, “Identifying influential spreaders
in complex networks based on kshell hybrid method,” Physica A:
Statistical Mechanics and its Applications, vol. 499, pp. 310–324, 2018.

[16] A. ”Namtirtha, A. Dutta, and B. Dutta, “Weighted kshell degree neigh-
borhood: A new method for identifying the influential spreaders from
a variety of complex network connectivity structures,” Expert Systems
with Applications, vol. 139, p. 112859, 2020.

[17] J. Sheng, J. Dai, B. Wang, G. Duan, J. Long, J. Zhang, K. Guan,
S. Hu, L. Chen, and W. Guan, “Identifying influential nodes in complex
networks based on global and local structure,” Physica A: Statistical
Mechanics and its Applications, vol. 541, p. 123262, 2020.

[18] A. Ullah, B. Wang, J. Sheng, J. Long, N. Khan, and Z. Sun, “Identifying
vital nodes from local and global perspectives in complex networks,”
Expert Systems with Applications, vol. 186, p. 115778, 2021.

[19] E.-Y. Yu, Y.-P. Wang, Y. Fu, D.-B. Chen, and M. Xie, “Identifying
critical nodes in complex networks via graph convolutional networks,”
Knowledge-Based Systems, vol. 198, p. 105893, 2020.

[20] Y. Ou, Q. Guo, J.-L. Xing, and J.-G. Liu, “Identification of spreading
influence nodes via multi-level structural attributes based on the graph
convolutional network,” Expert Systems with Applications, p. 117515,
2022.

[21] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec, “Learning structural
node embeddings via diffusion wavelets,” in Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2018, pp. 1320–1329.

[22] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” Stanford, Tech. Rep., 2006.

[23] S. Pei, L. Muchnik, J. S. Andrade Jr, Z. Zheng, and H. A. Makse,
“Searching for superspreaders of information in real-world social me-
dia,” Scientific reports, vol. 4, no. 1, pp. 1–12, 2014.

[24] P. M. Gleiser and L. Danon, “Community structure in jazz,” Advances
in complex systems, vol. 6, no. 04, pp. 565–573, 2003.

[25] V. Batagelj and A. Mrvar, “Pajek-program for large network analysis,”
Connections, vol. 21, no. 2, pp. 47–57, 1998.

[26] J. Kunegis, “Konect: the koblenz network collection,” in Proceedings of
the 22nd international conference on world wide web, 2013, pp. 1343–
1350.

[27] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.
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