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Abstract— Continuous reinforcement learning carries
potential security risks when applied in real-world scenarios,
which could have significant societal implications. While its
field of application is expanding, the majority of applications
still remain confined to virtual environments. if only a single
continuous learning method is applied to an unmanned
system, it will still forget previously learned experiences,
and retraining will be required when it encounters unknown
environments. This reduces the learning efficiency of the
unmanned system. To address these issues, some scholars have
suggested prioritizing the experience playback pool and using
transfer learning to apply previously learned strategies to new
environments. However, these methods only alleviate the speed
at which the unmanned system forgets its experiences and
do not fundamentally solve the problem. Additionally, they
cannot prevent dangerous actions and falling into local optima.
Therefore, we propose a dual decision-making continuous
learning method based on Simulation to Reality (Sim2Real).
This method employs a knowledge body to eliminate the local
optimal dilemma, and corrects bad strategies in a timely
manner to ensure that the unmanned system makes the best
decision every time. Our experimental results demonstrate
that our method has a 30% higher success rate than other
state-of-the-art methods, and the model transfer to real scenes
is still highly effective.
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I. INTRODUCTION

Continuous reinforcement learning plays a crucial role in
our society by enabling the development of social software
that enhances interactions within groups and improves the
efficiency of human social activities [1] [2]. Continuous
reinforcement learning involves acquiring skills through
continuous interaction with a complex environment and
building higher-level skills based on previously learned ones.
The continuous reinforcement learning process is analogous
to how babies learn to walk, where crawling is mastered first,
followed by standing and eventually walking, as illustrated
in Fig. 1. In essence, each new skill is built upon the
old ones.However, there are still at least two challenges in
continuous learning: avoiding catastrophic forgetting caused
by neural networks and ensuring the malleability and stability
of the models for migration to real-world scenarios.

The current approach to mitigate the forgetting problem
of agents during the learning process is primarily through
the priority experience replay mechanism [3]. However, this
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Fig. 1: Diagram of continuous learning for Babies

method requires frequent parameter adjustments and can
result in reduced learning efficiency of the agent.

To ensure that the trained model of an agent in a
virtual scene is steadily migrated to a real scene, the
current mainstream approach uses adjusting while training
to optimize the policy parameters of the agent in real time.
However, this method requires a large amount of human
resource cost and will become ineffective in the face of some
complex scenarios.

In this paper, we propose a dual decision-making
continuous learning method based on Simulation to Reality,
which consists of three main stages: perception stage,
decision stage, and execution stage.

In the perception stage, virtual data is first transformed
into real data using existing data generation tools. Then, real
data from the real scene is transformed into virtual data, and
the resulting data is fused. Next, the fused data is passed
through a semantic segmentation extractor to obtain a feature
map, and object detection techniques are employed to extract
entity category information in the scene. Finally, a semantic
knowledge graph is constructed based on the feature map and
entity category information, which serves as the agent’s prior
knowledge during the decision stage. This prior knowledge
can reduce the agent’s exploration of the scene and improve
the efficiency of its decision-making.

In the decision stage, the agent’s decision-making action is
controlled by a dual decision-making mechanism consisting
of continuous learning and body-of-knowledge control
methods. The agent learns different strategies through trial
and error with various environments, with each strategy



forming a skill. To prevent forgetting of the learned
skills, periodic updating of the training environment is
necessary. Body-of-knowledge control is utilized to help the
agent escape from local optimum in policy learning. The
decision to apply body-of-knowledge control is based on
the evaluation results of the discriminator, which consists
of success rate, error rate, and reward value indicators.

In the execution stage, the agent’s actuators receive
the optimal decision-making action determined by the
discriminator evaluation to ensure compliance and safety,
enabling the agent to quickly complete the task.

In summary, we propose a dual decision-making
continuous learning method based on Simulation to Reality,
which can effectively mitigate the problem of skill forgetting
during the learning process of an agent. Moreover, this
method is crucial for ensuring the stable migration of
strategies learned by an agent in a virtual scene to a real
scene.

The main contributions of our paper are summarized as
follows:

1) We propose a dual decision-making continuous learning
method based on Simulation to Reality, which effectively
circumvents bad strategies and ensures the ability of
continuous learning of the agent.

2) We improve the efficiency of the agent’s search for
unknown environments by introducing semantic knowledge
graphs as prior knowledge in the perception stage.

3) We migrated the trained model in the virtual scene to
the real unmanned vehicle defensive scene, and the mobile
vehicle can still complete the task smoothly.

II. RELATED WORK

A. Continuous reinforcement learning

Continuous reinforcement learning is a method to address
catastrophic forgetting in neural network learning, which
is critical in improving the efficiency of agents in social
activities[4] [5]. This approach allows agents to learn
different skills at different times, improving their continuous
learning ability and avoiding the need to retrain the agent
for new tasks. As a result, the agent’s learning efficiency is
improved.

The mainstream methods are regularization, memory
playback, parametric isolation, and integrated methods.
Regularization methods are achieved by adding regular terms
to the homeopathic function during training a new task and
modifying the ratio of old and new data to reduce the rate
of forgetting the agent. The memory replay method is to
reuse the data that has been used before to reduce forgetting.
The parameter isolation method is to assign different model
parameters in different tasks of the agent training and freezes
some model parameters in time according to the performance
of the agent to ensure that the old model parameters occupy
the majority[6]. The combined approach combines the above
two approaches to form a new approach. For example,
Buzzega combines regularization and memory replay to
propose dark experience replay[7].
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Fig. 2: Semantic knowledge graph

B. Mobile vehicle

Mobile vehicles have been applied across diverse
industries, such as hospitals, factories, supermarkets, and
hotels, profoundly impacting the social life of people
today[8]. Among them, ground-guided vehicles stand out
for their quick response time, fast speed, and high
carrying capacity. However, most current mobile vehicles
rely on rule-based control methods that are limited to
simple scenarios[9] [10]. In complex scenarios, these
methods exhibit poor performance and may even fail.
Vision-based navigation and radar slam navigation are
the two main rule-based control methods, both of which
require environmental map information and suffer from low
decision-making efficiency and poor migration[11].

With the rapid development of deep learning technology,
continuous interaction between mobile vehicles and the
environment via deep reinforcement learning has become
a popular research direction for enabling autonomous
decision-making[12]. To address the challenges of
performance degradation and skill forgetting when trained
models of mobile vehicles are migrated from virtual to
real scenes, we propose a dual decision framework that
successfully completes the red and blue vehicle defense task
in real scenes with zero-shot transfer.

III. METHODS AND ANALYSIS

A. Dual Autonomy Decision Framework

The dual autonomous decision-making framework plays
a very important role in improving the continuous learning
ability of mobile vehicles and reducing the speed of
skill forgetting, laying the foundation for large-avoidance
swarm intelligence, as shown in Fig. 3. The framework is
mainly divided into the perception stage, decision stage and
execution stage, and the role of each stage is also different. In
the perception stage, it focuses on how to obtain feature maps
and reduce the state space of the ground mobile vehicle;
In the decision stage, it focuses on how to improve the
autonomous decision-making ability of the ground mobile
vehicle; In the execution stage, it focuses on how to execute
the output actions of the decision stage smoothly.

Perceptual Stage:The perception stage is the basis of
the dual autonomous decision-making framework. The main
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Fig. 3: The overall framework of dual continuous autonomous decision-making

work of the perception stage has two parts, namely image
generation and feature map construction, as shown in Fig.
2. Image generation uses a generative adversarial network
to generate images in the virtual scene into images in the
real scene, generate virtual scene images from the original
images in the real scene, and then mix the virtual images
and real images for training to obtain an image generation
model.

Decision Stage:The decision stage is similar to the
brain of the dual autonomous decision-making framework,
providing continuous learning capabilities for mobile
vehicles. The decision stage mainly consists of a policy
network, a body of knowledge controllers and two
discriminators. First, the mobile vehicle simultaneously
learns multiple continuous learning policies, and each policy
network is dependent on the critic and actor networks.
Then use the evaluation index in discriminator 1 to evaluate
the policy output in the policy network. If the evaluation
result is not good, it will directly switch to the body
of knowledge controller to correct its policy parameters.
Finally, the optimal action is obtained through the evaluation
conditions and indicators in discriminator 2.

Execution Stage:The main function of the execution stage
is to ensure that the mobile vehicle can control the movement
of the mobile vehicle smoothly according to continuous
action. The execution stage comprises the underlying
controller, PID module(Proportional, Integral, Differential),
robot operating system(ROS) and API interface. Through
the above modules, it can be seen that the torque of the
underlying motor is converted into continuous speed and

direction data, where the value range of speed and direction
is -1 to between 1.

B. Dual Decision Continuous learning algorithm (DDCL)

We proposed the dual-decision continuous learning
method based on the Proximal Policy Optimization(PPO)
algorithm[13]. The pseudocode of DDCL algorithm is shown
in algorithm 1. Because only relying on this method when
facing some complex scenes, it is easy to forget the
previously learned experience or fall into the problem of
local optimum, which makes the mobile vehicle unable to
perform continuous learning. Therefore, to solve the above
problems, we also use the knowledge body control method
to assist the decision-making of mobile vehicles. On the one
hand, it can improve the efficiency of decision-making, and
on the other hand, it can avoid the training of mobile vehicles
from scratch. The policy network structure of this method is
shown in Fig. 4. The network update method of the actor
and critic depends on the PPO algorithm[13].

To ensure that the red car agent can learn defensive and
patrol strategies, it is necessary to set the reward function
skillfully. The reward function formula is as follows:

Rtotal =

 +10 when Rcar is intercepted
+5 when Rcar is on patrol
−10 when Bcar is attacked the target

(1)

where Rtotal is the reward function for interacting with
the environment.

According to the evaluation index in discrimination 1, the
comprehensive strategy evaluation value Ptotal is obtained,
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and the optimal strategy is selected. The specific formula is
as follows:

Ptotal = W1 · Pe +W2 · Pr +W3 · Pw (2)

where Error rate Pe is represents the stationary time of the
moving vehicle in each round; The risk rate Pr is represents
the number of extreme actions of the moving vehicle in each
round; The reward value PW is represents the average reward
value in each round.

According to the evaluation index in discrimination 2, the
comprehensive action evaluation value Atotal is obtained,
and the optimal action is selected. The specific formula is as
follows:

Atotal = η1 ·Ag + η2 ·As (3)

Where the action success rate Ag represents the number
of times the vehicle swings in each round; The stability
Asss represents the offset of the moving vehicle from the
centerline of the track in each round.

In summary, to prevent the mobile vehicle from forgetting
the previously learned skills and improve the transferability
of the model, it is necessary to adjust the strategy in time
according to the actual situation of the comprehensive action
and the evaluation value of the strategy. If the evaluation
shows poor results, it’s necessary to switch directly to the
knowledge-based control mode.

IV. EXPERMENTS

A. Scenario description and tools

Scenario description: The goal of the red and blue vehicle
defensive task is to allow the red vehicle to intercept the
blue vehicle in time through the double continuous learning
decision-making algorithm to ensure the safety of the guard
target. The main entities in the red and blue offensive and
defensive scene have a red car, a blue car, and a target.
Among them, the agent controls the red vehicle through the
double continuous learning algorithm, the knowledge body

Algorithm 1 Dual Decision Continuous learning

1: Input: Initialize strategy, S1, S2, ... Si. Initialize
actor parameters: A1, A2, ... Ai. Initialize actor
parameters:B1, B2, ... Bi.Initialize hyperparameters
T1and T2.

2: Choose a strategy at random.
3: for n episode do
4: Update Actor Network Parameters:
5: ai

′←ai − T1∆aiNActor(ai)
6: Update Critic Network Parameters:
7: bi

′
←bi − T2∆biMcritic(bi)

8: end for
9: Calculate the strategy evaluation value, see formula 2.

10: Calculate the action evaluation value, see formula 3.

TABLE I: Performance comparison in virtual scene

Algorithm Success Rate Risk Rate Stablity
Random 8% 92% BAD +
SAC[15] 60% 40% GOOD -
DDCL(Ours) 90% 10% GOOD +

controls the blue vehicle, and some fixed decision-making
mechanisms are artificially set. The defensive interception
scenes of the red and blue sides construct the same scene
in virtual and real, respectively, assuming that the dynamic
models of the moving vehicles in the virtual and real scenes
are the same or similar.

Red and blue of vehicle defensive tasks: Blue vehicle
decision-making mode: blue team vehicles drive at a constant
speed in the outer lane of the scene and perform patrol
tasks. It launches an attack on the target every 5s. If it is
intercepted by a red vehicle, it will exit the attack mode
and continue to execute the patrol mechanism. Red vehicle
decision-making mode: The red vehicle pays close attention
to the movement of the blue vehicle in real-time. If the blue
vehicle has already driven to the blue inner circle, the red
vehicle will start to intercept until the blue vehicle exits the
inner blue area.

Scenario tools: We used the unity virtual engine [14] to
create a virtual scene of the game between red and blue. The
GPU in the server is an NVIDIA GeForce RTX3090 graphics
card, and the CPU is Inter core i7-9700. The control driver
of the mobile vehicle is ROS 18.04 LTS, and the controller is
Jetson Xavier NX. The flow chart of real car model migration
is shown in Fig. 9.

B. Unmanned vehicles train in virtual scenarios

Feature map construction: The feature map is to obtain
the feature vector through the method of feature extraction
from the original image, which can process the original
high-dimensional image information into a low-dimensional
feature vector, thereby improving the decision-making
efficiency of the mobile vehicle. The feature map is obtained
by data processing the images in the virtual and real scenes
through the existing yolov5 method. The feature map consists
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of a semantic segmentation map and an entity knowledge
graph.The original and feature maps of the red and blue
vehicles at different moments are shown in Fig. 7 and Fig.
8, respectively.

Decision Model Training: We connect the dual
continuous learning algorithm to unity in the virtual engine
for accelerated training. The overall picture of the red and
blue of defensive vehicle tasks trained at different moments
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Fig. 9: Dual continuous learning algorithm model migration process

TABLE II: Performance comparison in real scene

Algorithm Success rate Risk Rate Stablity
Random 1% 98% BAD +
SAC[15] 20% 40% BAD -
DDCL(Ours) 60% 40% GOOD -

is shown in Fig. 5. Compared with the state-of-the-art
algorithm, our proposed dual continuous learning algorithm
has greater advantages in average reward value, error rate,
success rate, risk rate and episode steps, as shown in Fig. 6
and Table I.

C. Unmanned vehicles verified in real scenarios

Migrate the model trained in the virtual scene to the
real scene with zero-shot. The migration process is shown
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in Fig. 9. It can be seen from Table II that the DDCL
algorithm proposed by us has a success rate of 60% in real
red and blue of defensive vehicle tasks, which is better than
state-of-the-art algorithms. The risk rate reaches 40%, mainly
caused by the kinematic differences of real vehicles, the
ground’s friction coefficient and the light’s intensity. Fig. 10
shows the running trajectories of the red vehicle and the blue
vehicle in the real scene of the mobile vehicle at different
times. The view of the red vehicle is shown in the upper row
of Fig. 11, and the view of the blue vehicle is shown in the
lower row of Fig. 11.

V. CONCLUSIONS

The continuous reinforcement learning method in social
computing is of great assistance in improving the efficiency
of our social life. Therefore, we first developed a
dual-decision framework to enhance the autonomous learning
capability of mobile vehicles and ensure stable performance
when they are applied in real-world scenarios. We then
propose a dual decision-making continuous reinforcement
learning method based on Simulation to Reality, which
enables the mobile vehicle to avoid bad strategies and
maintain continuous learning ability. Our experimental
results demonstrate significant improvements in red and
blue defensive vehicle tasks, and successful migration of
the model to realistic scenarios with zero-shot. The mobile
vehicle was able to complete the task smoothly. In the future,
we aim to construct more complex game confrontation
scenarios and introduce additional mobile vehicles to realize
intelligent group games.
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